• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1145
  • 177
  • 168
  • 106
  • 78
  • 67
  • 48
  • 42
  • 18
  • 17
  • 17
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 2342
  • 427
  • 318
  • 309
  • 303
  • 270
  • 269
  • 262
  • 209
  • 180
  • 179
  • 153
  • 136
  • 133
  • 127
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Investigation of wave propagation and antenna radiation in forested environments

Li, Yang, 1982- 21 June 2011 (has links)
Recently, there is emerging interests in deploying wireless sensor networks in forests for applications such as forest fire detection, environmental monitoring and remote surveillance. One challenge in the design of such networks is to ensure reliable communication between sensors located near the ground and over short distances. However, the propagation mechanisms in this type of scenario are complex and not well understood. Furthermore, the design of antennas that can exploit the resulting propagation mechanisms for optimal power transfer remains an open question. The objective of this dissertation is to understand wave propagation and antenna radiation in forested environments in the HF/VHF frequency range. To achieve this objective, several forest scaled models are introduced. The first scaled forest model is a periodic metal cut-wire array. The transmission data inside the cut-wire array are simulated and measured. The propagation mechanisms inside the array are extracted. Several interesting propagation phenomena associated with surface waves and leaky waves are observed and explained. Next, a dielectric rod array consisting of water-filled straws is investigated as a more realistic forest model. Water is chosen since its dielectric constant in the microwave range is close to that of tree trunks in the HF/VHF frequencies. The propagation mechanisms in the water rod array are investigated through scaled model measurements in the laboratory, numerical simulations and an effective medium theory. Randomization effects due to rod spacing and rod height on the propagation mechanisms are also studied. Finally, the transmission data in a real forest are collected in the HF/VHF frequency range to corroborate the findings from the models. The measurement site is located at Bastrop, Texas. For comparison, the transmission data are also measured in an open field. The transmission data are processed and the resulting propagation mechanisms are extracted and compared with the model predictions. As an extension of the propagation study, the potential to achieve directive antenna radiations in a forest is explored. A simple metal cut-wire array environment is considered for ease in modeling. For the case when both the transmit antenna and the receive antenna are embedded inside the array, two design ideas are presented. The first design tries to couple the antenna radiation into the dominant propagation mechanism through phase matching and the second design uses a closely spaced Yagi array to decouple the antenna from its surrounding medium. For the case when the transmit antenna is embedded inside the array and the receive antenna is located outside the array, the leaky wave mechanism is explored to achieve directive radiation. These designs are verified through theoretical predictions, numerical simulations and prototype measurements. / text
312

K-band Phased Array Feed (KPAF) Receiver Imaging System

Locke, Lisa Shannon 29 September 2014 (has links)
Astronomy large-scale surveys require instrumentation to minimize the time required to complete observations of large sections of the sky. Optimizing receiver systems has been achieved through reducing the system temperature primarily by advances in low-noise amplifier technology to a point that the internally generated noise is now fast approaching the quantum limit. Instead, reflector-coupled focal plane arrays are now used to increase the field of view (FoV) by employing either multi-element horn feeds or phased array feeds. Widely spaced (2-3 wavelengths diameter) horn feeds inefficiently sample the available focal plane radiation, thus requiring multiple imaging passes. Alternatively, a more efficient method is to use a narrow element (0.5 wavelengths diameter) phased array feed with a beamformer to produce overlapping beams on the sky, fully Nyquist sampling the focal plane with a single pass. The FoV can be further increased with additional phased array feed (PAF) antenna-receiver modules adding to the contiguous fully sampled region. A 5 x 5 K-band (18 - 26 GHz) single polarization modular PAF incorporating an antenna array of planar axially symmetric elements is designed, simulated, manufactured and tested. Each narrow width tapered slot antenna element has an independent receiver chain consisting of a cryogenic packaged monolithic microwave integrated circuit (MMIC) GaAs amplifier and a packaged MMIC down converting mixer. Synthesized beams and beamformer characteristics are presented. The PAF imaging system performance is evaluated by survey speed and compared to the industry standard, the single pixel feed (SPF). Scientifically, K-band is attractive because it contains numerous molecular transitions, in particular the rotation-inversion lines of ammonia. These transitions are excited in dense gas, and can be used to directly measure kinetic temperatures and velocities of protostars throughout the Galaxy. Depending on the line detected, gas of different temperatures can be probed. It is concluded that even with a higher system temperature, a PAF with sufficient number of synthesized beams can outperform a SPF in imaging speed by more than an order of magnitude. / Graduate
313

Characterization of antibody specificity using peptide array technologies

Forsström, Björn January 2014 (has links)
Antibodies play an important role in the natural immune response to invading pathogens. The strong and specific binding to their antigens also make them indispensable tools for research, diagnostics and therapy. This thesis describes the development of methods for characterization of an- tibody specificity and the use of these methods to investigate the polyclonal antibody response after immunization. Paper I describes the development of an epitope-specific serum fractionation technique based on epitope map- ping using overlapping peptides followed by chromatographic separation of polyclonal serum. This technique together with another epitope mapping technique based on bacterial display of protein fragments were then used to generate antibody sandwich pairs (Paper I), investigate epitope variations of repeated immunizations (Paper II) and to determine the ratio of antibodies targeting linear and conformational epitopes of polyclonal antibodies (Paper III). Paper IV describes the optimization of in situ-synthesized high-density peptide arrays for epitope mapping and how different peptide lengths influ- ence epitope detection and resolution. In Paper V we show the development of planar peptide arrays covering the entire human proteome and how these arrays can be used for epitope mapping and off-target binding analysis. In Paper VI we show how polyclonal antibodies targeting linear epitopes can be used for peptide enrichment in a rapid, absolute protein quantification protocol based on mass spectrometry. Altogether these investigations demonstrate the usefulness of peptide arrays for fast and straightforward characterization of antibody specificity. The work also contributes to a deeper understanding of the polyclonal anti- body response obtained after immunization with recombinant protein frag- ments. / <p>QC 20141111</p>
314

Investigations into Passive and Active Microstrip Antenna Arrays for Power Combining Applications

Tsai, Feng-Chi Eddie Unknown Date (has links)
There has been a rapid growth of terrestrial and satellite communications in the last few decades of the 20th century. This has resulted in a heavy congestion of low microwave bands and has been a major driving force for exploring the upper microwave and millimeter-wave frequencies. One of the main requirements for a successful shift to the new frequency spectrum is the availability of high power solid-state transmitters. Solid-state devices such as diodes or transistors have been able to meet such demands when their output signals are combined using space-level power combining methods that avoid conduction losses, which become pronounced at millimeter wave frequencies. In this thesis, theoretical and experimental investigations are carried out into the spatial power combiners (SPCs) which employ active planar arrays formed by transistor amplifiers whose input and output ports are equipped with planar radiating elements. The SPC structures include the reflection-type combiner using the tile configuration of planar array and the transmission-type combiner using tile or tray configurations of planar arrays. The frequency bands chosen for the designing and testing of prototypes are X- and Ku-band. The first stage of the investigation concerns the 10 GHz reflection-type power combiner structure formed by a phased planar microstrip reflectarray (MRA) of 37-element dual-feed aperture coupled microstrip patch antennas equipped with open-circuit stubs as phasing components. The experimental tests reveal poor radiation performance and hence poor power combining efficiency of this structure. These results indicated the need for theoretical investigations into the operation of this type of SPC. The study of the unit cell of this power combiner reveals that the phase of an open-circuit stub does not increase linearly as a function of the stub length and its range is limited to less than (about is required for proper functioning). This finding, forms the basis for extending the investigations into alternative phasing mechanisms of a MRA which would offer a phasing range exceeding . A phasing mechanism exploiting variable size stacked patches is chosen. In order to accurately determine the phasing of the reflected wave, a theory based on an equivalent unit cell waveguide approach (WGA) is proposed and developed. The proposed theory is computationally efficient and is proven to be accurate compared with benchmark results published by other researchers. Following the verification, an offset feed 161-element two-layer printed MRA prototype with patches of variable size is designed and developed for operation in Ku-band. The test results aim at verifying the validity of applying a unit cell WGA to designing passive and active MRAs. The next investigations, which are presented in the thesis concern increasing operational bandwidth of the transmission-type SPC in tile configuration. The designs presented so far in the open literatures were based on edge-feed microstrip patch antennas as radiating elements of individual active stages and featured a narrow-band performance. In order to overcome this shortcoming, stacked patch (SP) microstrip antennas as receiving and transmitting elements in an active transmitarray (TXA) are proposed. For the aim of testing the proposed concept, a 16-element SP TXA is designed for operation in X-band. Two identical hard horn antennas with an approximately uniform field across the aperture for signal launching and collecting complete the design and development of this space-level power combiner. The performance of the developed device is assessed experimentally and an increased operational bandwidth is demonstrated. The final structure being investigated in the thesis project is the transmission-type SPC in tray configuration. This power combining structure employs a travelling wave antenna of uniplanar quasi-Yagi type as a radiating element to achieve broad-band operation. The investigated SPC is formed by seven trays of uniplanar quasi-Yagi antenna. In order to achieve uniform and in-phase excitation of individual trays, which is required to obtain high power combining efficiency, hard horn antennas and Schiffman phase shifters are employed in the design of this space-level combiner. The proposed device is developed and its performance is assessed through experiments. The work performed as part of this Ph.D. thesis project has resulted in 5 journal papers and 11 refereed conference papers. This acceptance rate supports the claim of the originality and significance of the research undertaken as part of the thesis project.
315

Dynamically reconfigurable dataflow architecture for high performance digital signal processing on multi FPGA platforms

Voigt, Sven-Ole January 2008 (has links)
Zugl.: Hamburg, Techn. Univ., Diss., 2008
316

Development of nonlinear reconfigurable control of reconfigurable plants using the FPGA technology /

Han, Yi. January 2008 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2008. / Includes bibliographical references (leaves 335-340). Also available online.
317

Técnicas para obtenção de arrays lineares esparsos usando algoritmo genético /

Souza, Julio Cesar Eduardo de January 2018 (has links)
Orientador: Ricardo Tokio Higuti / Resumo: O ultrassom pode ser utilizado para gerar imagens aplicadas aos ensaios não destrutivos (END) e diagnóstico médico, em que arrays são utilizados para obter imagens com melhor resolução lateral e contraste em relação a um único transdutor. No entanto, os arrays precisam ter o centro do seus elementos espaçados por uma distância (pitch) menor que λ/2, em que λ é o comprimento de onda gerado pelo transdutor, para que as imagens geradas por estes não apresente artefatos causados pelos lóbulos de espaçamento. Porém, para evitar circunstâncias como o aumento na complexidade eletrônica e tempo elevado para geração de imagens ultrassônicas, os arrays esparsos podem ser utilizados, os quais possuem os elementos espaçados por uma distância maior que λ/2 e as imagens geradas apresentam artefatos causados por lóbulos de espaçamento. Contudo, quando os arrays esparsos são utilizados, existem diversas combinações entre os pitches dos elementos para produzir imagens com diferentes qualidades, inviabilizando o teste de todas as combinações possíveis. Assim, neste trabalho, foi utilizado o algoritmo de busca genética para encontrar configurações de arrays esparsos que gerem imagens com boa qualidade, sendo proposto duas novas funções aptidão para avaliar os arrays esparsos. A primeiraé baseada no diagrama de radiação, e a segunda, na comparação entre PSFs (Point Spread Function). As configurações de arrays esparsos encontrados pelo algoritmo genético foram comparadas aos arrays esparsos dispo... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Ultrasound can be used to generate images for nondestructive testing and medical diagnostic, in which arrays are used to generate images with better lateral resolution and contrast in comparison to a single transducer. In order to avoid artifacts in ultrasonic images caused by grating lobes, arrays need to have the center of their elements spaced by a distance (pitch) less than λ/2, where λ is the wavelength generated by the transducer. However, in order to avoid electronic complexity and high time to create an ultrasonic image, sparse arrays can be used, which their elements have a pitch greater than λ/2 that generates images with artifacts caused by grating lobes. Although, sparse arrays have their elements with different pitches that produce images with different qualities which it makes impossible to test all combinations. Thus, in this work, the genetic search algorithm was used to find sparse arrays that generate images with good quality. In addition, two new fitness functions were proposed. The first one based on the beam pattern and the second one in the comparison of two PSFs (Point Spread Function). The quality of the sparse arrays found by the genetic algorithm was then compared to the sparse arrays proposed by different authors using the beam pattern, PSF, and images generated from experimental data provided by CSIC (Consejo Superior de Investigaciones Científicas). In general, the images generated by the arrays obtained by the methodology developed in this work p... (Complete abstract click electronic access below) / Mestre
318

A Simulator for Solar Array Monitoring

January 2016 (has links)
abstract: Utility scale solar energy is generated by photovoltaic (PV) cell arrays, which are often deployed in remote areas. A PV array monitoring system is considered where smart sensors are attached to the PV modules and transmit data to a monitoring station through wireless links. These smart monitoring devices may be used for fault detection and management of connection topologies. In this thesis, a compact hardware simulator of the smart PV array monitoring system is described. The voltage, current, irradiance, and temperature of each PV module are monitored and the status of each panel along with all data is transmitted to a mobile device. LabVIEW and Arduino board programs have been developed to display and visualize the monitoring data from all sensors. All data is saved on servers and mobile devices and desktops can easily access analytics from anywhere. Various PV array conditions including shading, faults, and loading are simulated and demonstrated. Additionally, Electrical mismatch between modules in a PV array due to partial shading causes energy losses beyond the shaded module, as unshaded modules are forced to operate away from their maximum power point in order to compensate for the shading. An irradiance estimation algorithm is presented for use in a mismatch mitigation system. Irradiance is estimated using measurements of module voltage, current, and back surface temperature. These estimates may be used to optimize an array’s electrical configuration and reduce the mismatch losses caused by partial shading. Propagation of error in the estimation is examined; it is found that accuracy is sufficient for use in the proposed mismatch mitigation application. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2016
319

Development of nonlinear reconfigurable control of reconfigurable plants using the FPGA technology

Han, Yi January 2008 (has links)
Thesis submitted in fulfilment of the requirements for the degree Magister Technologiae: Discipline Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology 2008 / As one of the biggest developing country in the world, South Africa is developing very fast resent years. The country’s industrialization process is rapidly evolved. The manufacturing industry as one of the most important sections of the industrialization is playing a very heavy role in South Africa’s economic growth. Big percentage of population is involved in the manufacturing industry. It is necessary to keep and enhance the competitiveness of the South Africa’s manufacturing industry in the world wide. But the manufacturing companies are facing with unpredictable market demands and global competitions. To overcome these challenges, the manufacturing companies need to produce new products which can cater to the market demand as soon as possible. Reconfigurable Manufacturing System (RMS) is one of the possible solutions for the manufacturing companies to produce the suitable product for the market in a short period of time with low cost and flexibility. That is because the RMS can be reconfigured easily according to the required specifications for manufacturing the appropriate product for the market and with above mentioned characteristics. Now, RMS is considered as one of the promising concepts for mass production. As one of the very latest research fields, many companies, universities and institutions have been involved to design and develop RMSs. South Africa as one of the most important manufacturing country in the world, her own universities and researchers has the obligation to study this field and follow the newest development steps. In this project, a lab-scaled reconfigurable plant and a Field Programmable Gate Array (FPGA) technology based reconfigurable controller are used to realize and verify the concepts of the RMS in order to find the methodology of developing RMSs. The lab-scaled reconfigurable plant can be reconfigured into the inverted pendulum and the overhead crane. Although it is not used for manufacturing purpose, it can be used to verify the RMS concepts and the control strategies applied to it. Furthermore, control of the inverted pendulum and the overhead crane are both typical problems in the control field. It is meaningful to develop the controllers for them. As the reconfigurable plant is configured, the reconfigurable controller is reconfigured synchronously in order to produce the proper control signal for the reconfigured plant. In this project, both linear and nonlinear control strategies are deployed. Good results are received. The outcomes of the project are mainly for the education and fundamental research purposes, but the developed control strategies have significant sense towards the military missile guidance and the overhead crane operation in industry.
320

Potenciais microRNAs circulantes como biomarcadores de Leucemia Mieloide Crônica - Fase Crônica recém diagnosticada e tratada com mesilato de imatinibe /

Ferreira, Letícia Antunes Muniz. January 2016 (has links)
Orientador: Célia Regina Nogueira / Resumo: A Leucemia Mieloide Crônica (LMC) é uma doença mieloproliferativa, resultado da expansão clonal de células tronco progenitoras hematopoiéticas, caracterizada pelo gene de fusão BCR-ABL1, resultado da translocação recíproca t (9;22) (q34; q11) que dá origem ao cromossomo Philadelphia (Ph). Com todo o conhecimento acumulado sobre os mecanismos de ação do BCR-ABL1 foi possível o desenvolvimento de uma droga alvo-específica muito eficiente. Porém, alguns pacientes não respondem ou desenvolvem mutações que levam a resistência ao tratamento e as células tronco leucêmicas da LMC também são resistentes ao tratamento. Tais fatores renovaram o interesse na fisiopatologia da LMC, incluindo o papel dos microRNAs (miRNAs).miRNAs são pequenos RNAs não codificantes (ncRNAs) que controlam a expressão gênica e desempenham um importante papel no desenvolvimento e progressão do câncer. Assim, os objetivos deste estudo foram identificar um perfil global de expressão de miRNAs circulantes em pacientes com LMC-FC (Leucemia Mieloide Crônica – Fase Crônica) recém diagnosticada e LMC-FC tratados com imatinibe, correlacionar o perfil de expressão de miRNAs entre os dois grupos de pacientes e, por fim, detectar redes de interação entre miRNAs e BCR-ABL1.RT-qPCR array foi utilizado para a análise de 768 miRNAs. Os resultados indicam que dos 768 miRNAs analisados, 43 miRNAs caracterizam a LMC-FC recém diagnosticada versus LMC-FC tratada com imatinibe. Destes, 39 miRNAs apresentam níveis de expressão ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder, result of clonal expansion of hematopoietic stem cells progenitor, characterized by BCR-ABL1 fusion gene as a result of reciprocal translocation t (9;22) (q34;q11) called chromosome Philadelphia (Ph). With the acquired knowledge about the BCR-ABL1 action mechanisms has been possible to develop a target specific drug very efficient. However, some patients have refractoriness to treatement or develop mutations which induce drug resitence and also CML leukemia stem cells can be resistant to treatment. Such factors renewed interest in the pathophysiology of CML, including the role of microRNAs (miRNAs).miRNAs are small non-coding RNAs (ncRNAs) that control the gene expression, and play an important role in cancer development and progression. The aims of this study were to identify a global expression profile of circulating miRNAs in patients CML-CP (Chronic Myeloid Leukemia – chronic phase) newly diagnosed and CML-CP treated with imatinib, correlating the profile of miRNA expression between the two groups of patients, and finally, detect networks of interactions between miRNAs and BCR-ABL1.RT-qPCR array was used for analysis of 768 miRNAs. The results indicated that the 768 miRNAs analyzed, 43 miRNAs characterize CML-CP newly diagnosed versus CML-CP treated with imatinib. Of these, 39 miRNAs are downregulated – miR-16-5p, miR-1-3p, miR-291a-3p and miR-27a-3p – and 4 miRNAs are upregulated – miR-150-5p and miR-45... (Complete abstract click electronic access below) / Mestre

Page generated in 0.0325 seconds