• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1788
  • 330
  • 127
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2349
  • 2349
  • 309
  • 309
  • 258
  • 255
  • 244
  • 231
  • 225
  • 187
  • 181
  • 177
  • 176
  • 175
  • 165
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Equations fonctionnelles abéliennes et théorie des tissus

Pirio, Luc 15 December 2004 (has links) (PDF)
Dans la première partie de cette thèse, on étudie les équations fonctionnelles de la forme F1(U1)+...+Fn(U_n)=0 en les inconnues, lorsque les Ui sont des fonctions de deux variables données. <br /><br />Dans la seconde partie, on applique les résultats obtenus auparavant à l'étude des tissus plans de rang maximal.
82

Représentations des groupes de Lie conformes et quantification des espaces symétriques

Pevzner, Michael 12 December 2005 (has links) (PDF)
Représentations des groupes de Lie conformes et quantification des espaces symétriques
83

Connexité et analyse des données non linéaires

Aaron, Catherine 15 December 2005 (has links) (PDF)
On s'intéresse dans cette thèse, à la mise en évidence des propriétés de connexité dans les données à analyser. Dans le cas de l'analyse des données ”classique” (i.e. linéaire), comme les surfaces de séparation des classes sont des hyperplans (des droites en dimension 2), la notion topologique sous-jacente est presque toujours la convexité. Au contraire dans tout ce qui suit, on cherche en priorité à segmenter les données en sous-ensembles (classes) connexes.
84

Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfeld

Racinet, Georges 14 December 2000 (has links) (PDF)
On étudie les relations algébriques sur le corps des nombres rationnels entre les nombres polyzêtas (généralisations à plusieurs indices des valeurs de la fonction zêta de Riemann aux entiers positifs).<br /><br />Après avoir dressé une liste de relations algébriques considérées comme élémentaires, j'explore l'algèbre des "polyzêtas formels" définie par ces relations (et elles seules). Je mets en évidence une structure de torseur sur l'ensemble DM des séries génératrices non-commutatives de polyzêtas "formels". Ce torseur est imité du torseur des associateurs, défini par Drinfel'd. Ils sont tous deux réalisés comme ensembles de séries formelles non-commutatives sur deux lettres et leurs lois d'actions sont données par les mêmes formules. On en déduit facilement que l'algèbre des polyzêtas formels est une algèbre de polynômes (théorème d'Écalle). L'intersection du groupe pro-unipotent DM et du groupe GRT de Drinfel'd (lié aux associateurs) est très grosse et il est naturel de conjecturer que ces groupes sont égaux.
85

Surfaces branchées en géométrie de contact

Zannad, Skander 15 September 2006 (has links) (PDF)
Le but de cette thèse est d'établir des liens entre la théorie des laminations et celle des structures de contact, via les surfaces branchées. Cette démarche est motivée par l'existence de liens étroits entre les structures de contact tendues et les feuilletages tendus. <br />Le résultat principal est l'obtention d'une condition suffisante pour qu'une surface branchée B d'une variété V de dimension 3 porte pleinement une lamination. Il en découle une condition suffisante pour que le rappel de B dans le revêtement universel de V porte pleinement une lamination. Cette condition est nécessaire pour que cette lamination soit essentielle. Ce résultat apporte un élément de réponse à une question classique de Gabai.<br />On introduit ensuite une notion de structure de contact portée par une surface branchée qui généralise celle de Oertel-Swiatkowski. Enfin, on établit une condition sufisante pour que deux structures de contact soient, à isotopie près, portées par une même surface branchée.
86

Contrôle en dimension finie et infinie

Trélat, Emmanuel 25 November 2005 (has links) (PDF)
Ce mémoire présente les travaux que j'ai effectués, tout d'abord, à<br />l'Institut de Mathématiques de l'Université de Dijon, pendant ma thèse de<br />1998 à 2000, puis dans l'équipe d'Analyse Numérique et Equations aux<br />Dérivées Partielles du Département de Mathématiques de l'Université<br />d'Orsay, depuis 2001.<br />Ces travaux sont regroupés en deux parties, la première traitant de<br />problèmes de contrôle en dimension finie, et la seconde, en dimension<br />infinie. Ces deux parties sont elles-mêmes séparées en deux<br />sous-parties~: les résultats théoriques, et les résultats<br />numériques. A la fin de chaque partie, des projets de recherche sont<br />présentés.<br /><br /><br />Dans la première partie, on s'intéresse à <br />la régularité de la fonction valeur associée à un problème de contrôle<br />optimal non linéaire en dimension finie. Il s'avère<br />que cette régularité est liée à l'existence de \textit{trajectoires<br />singulières minimisantes}.<br />Rappelons qu'une trajectoire \textit{singulière} est une singularité<br />de l'ensemble des solutions du système de contrôle.<br />Selon le principe du maximum de Pontryagin, les trajectoires<br />singulières sont projections d'\textit{extrémales anormales}, par<br />opposition aux \textit{extrémales normales} qui constituent le cadre<br />classique du calcul des variations.<br />Pour des systèmes affines à coût quadratique,<br />on montre que, s'il n'existe aucune trajectoire singulière<br />minimisante, alors la fonction valeur associée est<br />\textit{sous-analytique} (cela s'étend à des situations<br />plus générales). <br /><br />Ces résultats ont des conséquences dans les théories d'Hamilton-Jacobi<br />et de stabilisation. Tout d'abord, on montre que<br />la \textit{solution de viscosité} de certaines<br />classes d'\textit{équations d'Hamilton-Jacobi}<br />est sous-analytique, ce qui implique en particulier<br />que l'ensemble de ses singularités est une sous-variété stratifiée de<br />codimension au moins un. Ensuite, on montre un résultat de<br />\textit{stabilisation hybride semi-globale} pour des<br />systèmes de contrôle affines sans dérive.<br /><br />S'il existe des trajectoires singulières minimisantes, la fonction<br />valeur n'est pas sous-analytique en général. Une étude<br />asymptotique est faite sur le cas modèle sous-Riemannien de Martinet.<br />Dans le cas intégrable, on montre que la fonction valeur appartient à<br />la classe \textit{log-exp}, qui est une extension de la classe<br />sous-analytique avec des fonctions logarithme et exponentielle.<br /><br />Ces résultats motivent donc l'étude des propriétés des<br />trajectoires singulières.<br /><br />Tout d'abord, concernant leur optimalité, ces trajectoires ont,<br />sous des conditions génériques, la propriété de<br />\textit{rigidité}, c'est-à-dire qu'elles sont localement isolées<br />parmi toutes les solutions du système ayant les mêmes extrémités, et<br />donc, elles sont localement optimales, jusqu'à un premier temps dit<br />\textit{conjugué} que l'on peut caractériser.<br /><br />On s'intéresse alors à l'occurence des trajectoires singulières<br />minimisantes.<br />Des résultats de type \textit{Morse-Sard} sont présentés dans le cadre<br />de la géométrie sous-Riemannienne, qui montrent qu'elles ne<br />remplissent que peu d'espace.<br />En particulier, on montre que l'image de l'application exponentielle<br />(qui paramétrise les extrémales normales) est partout dense, et même<br />de mesure de Lebesgue pleine dans le cas de corang un.<br /><br />On prend ensuite le point de vue inverse, en s'intéressant aux<br />propriétés de généricité des trajectoires singulières, pour des<br />systèmes de contrôle affines. On montre que, génériquement au sens de<br />Whitney, elles sont \textit{d'ordre minimal} et \textit{de corang un},<br />ce qui a des corollaires en contrôle optimal.<br />Par exemple, pour des systèmes de contrôle affines génériques ayant<br />plus de trois champs de vecteurs, avec coût quadratique, il n'existe<br />aucune trajectoire singulière minimisante~;<br />en particulier, la fonction valeur associée est donc sous-analytique.<br /><br /><br /><br />Dans le deuxième chapitre de la première partie, on s'intéresse aux<br />méthodes numériques en<br />contrôle optimal. Il existe deux types principaux de méthodes~: les<br />\textit{méthodes directes} d'une part, qui reposent sur une discrétisation<br />totale du problème de contrôle optimal, et conduisent à des problèmes<br />de programmation non linéaire~; les \textit{méthodes indirectes}<br />d'autre part,<br />basées sur le principe du maximum, qui réduisent le problème à un<br />problème aux valeurs limites se résolvant numériquement par une<br />\textit{méthode de tir}. Ces dernières sont<br />particulièrement adaptées aux applications en aéronautique présentées<br />ici. Le principe du maximum étant une condition nécessaire<br />d'optimalité, il convient de s'assurer a posteriori que les<br />extrémales calculées par la méthode de tir sont bien optimales.<br />Pour cela, on rappelle le concept de \textit{temps<br />conjugué}, c'est-à-dire le temps au-delà duquel une extrémale n'est<br />plus localement optimale, et on décrit des algorithmes de calcul,<br />basés sur des développements théoriques récents en théorie du<br />contrôle optimal géométrique, qui couvrent le cas normal et le cas<br />anormal. Ces algorithmes, ainsi que la méthode de tir, sont<br />implémentés dans le logiciel \textit{COTCOT}<br />(Conditions of Order Two and COnjugate times), disponible sur le web.<br /><br />Des applications en aéronautique sont ensuite présentées~: le problème<br />de rentrée atmosphérique d'une navette spatiale tout d'abord, où le<br />but est de déterminer une trajectoire optimale jusqu'à une cible<br />donnée, le contrôle étant l'angle de g\^\i te, et le coût étant<br />le flux thermique total (facteur d'usure). La navette est de plus<br />soumise à des contraintes sur l'état~: flux thermique,<br />accélération normale, et pression dynamique. Ces contraintes<br />rendent le problème de contrôle optimal difficile, et nécessitent<br />une étude préliminaire théorique et géométrique sur les synthèses<br />optimales locales avec contraintes.<br />Ensuite, on présente le problème de transfert orbital d'un satellite à<br />poussée faible, où le but est de transférer l'engin d'une orbite basse<br />à une orbite géostationnaire, en temps minimal, sachant que la force de<br />propulsion est très faible. Le problème de temps optimal est important<br />lorsque la poussée est faible (par exemple, une propulsion<br />ionique), car le transfert orbital peut prendre plusieurs mois.<br />Pour ces deux problèmes, des simulations numériques,<br />utilisant les méthodes précédentes, sont présentées.<br /><br /><br /><br /><br /><br />Dans la deuxième partie, on s'intéresse à des problèmes de contrôle des<br />équations aux dérivées partielles.<br />On présente tout d'abord une méthode de contrôlabilité et de<br />stabilisation, qui consiste à stabiliser un système de contrôle le<br />long d'un chemin d'états stationnaires. Pour mettre en évidence l'idée<br />principale, cette méthode est présentée en dimension finie. Elle<br />permet de construire un contrôle feedback sous forme explicite, ainsi<br />qu'une fonction de Lyapunov, et par ailleurs, elle est facilement<br />implémentable. Cette méthode de déformation quasi-statique permet<br />d'établir des résultats de contrôlabilité exacte et de stabilisation<br />pour des équations de la chaleur et des ondes semi-linéaires en<br />dimension un, où la non-linéarité est quelconque. Notons que<br />l'existence de fonctions barrières et/ou de<br />phénomènes d'explosion limitent les résultats de contrôlabilité.<br />Pour ces deux équations, on montre que l'on peut passer, avec un<br />contrôle frontière, en temps éventuellement grand, d'un état<br />stationnaire à tout autre, pourvu qu'ils appartiennent à une même<br />composante connexe de l'ensemble des états stationnaires (cette<br />condition étant vérifiée dans un grand nombre de cas). La procédure<br />consiste en fait à stabiliser un système de contrôle linéaire<br />instationnaire de dimension finie, et on peut construire un contrôle<br />sous forme de boucle fermée, en calculant un nombre fini de composantes<br />de la solution, dans une décomposition sur une base Hilbertienne (pour<br />l'équation de la chaleur) ou sur une base de Riesz (pour l'équation<br />des ondes). Des simulations numériques sont effectuées.<br /><br />On présente ensuite un résultat de contrôlabilité exacte<br />sur les flots de Couette, qui sont des solutions stationnaires<br />particulières des équations de Navier-Stokes d'un fluide<br />incompressible entre deux cylindres<br />concentriques infinis en rotation. On montre qu'il est possible de passer d'un<br />flot de Couette à tout autre, en agissant juste sur la rotation du<br />cylindre extérieur.<br /><br /><br />Dans le dernier chapitre,<br />on s'intéresse à la semi-discrétisation (en espace) des<br />équations aux dérivées partielles linéaires contrôlées.<br />La discrétisation d'une EDP contrôlable, en utilisant par exemple une<br />méthode de Galerkin, conduit à une<br />famille de systèmes de contrôle linéaires, et on se pose la question<br />de savoir si on peut déterminer des contrôles pour ces systèmes<br />semi-discrétisés, convergeant, lorsque le pas de discrétisation tend<br />vers zéro, vers un contrôle pour le modèle continu, permettant<br />d'atteindre un certain point. Pour des EDP<br />linéaires contrôlables, il existe de nombreuses<br />méthodes pour réaliser la contrôlabilité~; parmi elles, la méthode HUM<br />(\textit{Hilbert Uniqueness Method})<br />consiste à minimiser la norme $L^2$ du<br />contrôle pour atteindre une cible fixée. Pour des systèmes<br />paraboliques exactement contrôlables à zéro, sous des conditions<br />standards sur le procédé de semi-discrétisation (vérifiées pour la<br />plupart des méthodes habituelles), lorsque l'opérateur de contrôle<br />n'est que faiblement non borné, on montre un résultat de<br />\textit{contrôlabilité uniforme} des systèmes de contrôles<br />discrétisés. De plus, on donne un procédé de minimisation pour<br />calculer des contrôles sur les modèles approchés, qui convergent<br />vers le contrôle HUM du modèle continu permettant d'atteindre une<br />certaine cible.<br />La condition sur l'opérateur de contrôle est vérifiée, par exemple,<br />pour l'équation de la chaleur avec contrôle frontière de type Neumann,<br />et des simulations numériques sont présentées dans ce cadre.
87

Etude de noyaux de semigroupe pour objets structurés dans le cadre de l'apprentissage statistique

Cuturi, Marco 17 November 2005 (has links) (PDF)
Les méthodes à noyaux désignent une famille récente d'outils d'analyse de données, pouvant être utilisés dans une grande variété de tâches classiques comme la classification ou la régression. Ces outils s'appuient principalement sur le choix a priori d'une fonction de similarité entre paires d'objets traités, communément appelée "noyau'' en apprentissage statistique et analyse fonctionnelle. Ces méthodes ont récemment gagné en popularité auprès des praticiens par leur simplicité d'utilisation et leur performance. Le choix d'un noyau adapté à la tâche traitée demeure néanmoins un problème épineux dans la pratique, et nous proposons dans cette thèse plusieurs noyaux génériques pour manipuler des objets structurés, tels que les séquences, les graphes ou les images. L'essentiel de notre contribution repose sur la proposition et l'étude de différents noyaux pour nuages de points ou histogrammes, et plus généralement de noyaux sur mesures positives. Ces approches sont principalement axées sur l'utilisation de propriétés algébriques des ensembles contenant les objets considérés, et nous faisons ainsi appel pour une large part à la théorie des fonctions harmoniques sur semigroupes. Nous utilisons également la théorie des espaces de Hilbert à noyau reproduisant dans lesquels sont plongées ces mesures, des éléments d'analyse convexe ainsi que plusieurs descripteurs de ces mesures utilisés en statistiques ou en théorie de l'information, comme leur variance ou leur entropie. En considérant tout objet structuré comme un ensemble de composants, à l'image d'une séquence transformée en un ensemble de sous-séquences ou d'images en ensembles de pixels, nous utilisons ces noyaux sur des données issues principalement de la bioinformatique et de l'analyse d'images, en les couplant notamment avec des méthodes discriminantes comme les machines à vecteurs de support. Nous terminons ce mémoire sur une extension de ce cadre, en considérons non plus chaque objet comme un seul nuage de point, mais plutôt comme une suite de nuages emboîtés selon un ensemble d'évènements hierarchisés, et aboutissons à travers cette approche à une famille de noyaux de multirésolution sur objets structurés.
88

Anneaux de séries formelles à croissance contrôlée

Mouze, Augustin 21 June 2000 (has links) (PDF)
Soit $M=\{M_n\}_{n\in\bkN}$ une suite de réels positifs logarithmiquement convexe. On étudie les sous-anneaux $\Gamma_M$ de l'anneau des séries<br />formelles en $s$ variables dont la croissance des coefficients est contrôlée par la suite $M.$ Sous de faibles hypothèses sur $M,$ on obtient, tout d'abord, des théorèmes de composition. On apporte, par exemple, une réponse à la question suivante. Etant donnée une application $F$ dans $(\Gamma_M)^{s},$ si ${\cal A}\circ F$ appartient à $\Gamma_M,$ à quelle classe $\Gamma_N$ la<br />série ${\cal A}$ appartient-elle? On établit ensuite quelques propriétés algébriques de ces anneaux. On montre qu'étant donné un bon ordre sur $\bkN^{s},$ on peut diviser dans $\Gamma_M$ toute série<br />par une famille finie $f_1,\dots,f_p$ telle que les quotients et le reste appartiennent encore à $\Gamma_M.$ Cela permet d'aborder des problèmes<br />comme la division modulo un idéal, la noetherianité ou la platitude.<br />On obtient aussi des théorèmes de préparation du type Malgrange.<br />On étend également le célèbre théorème d'approximation d'Artin.
89

Des groupes aux groupoides quantiques

Vallin, Jean-Michel 14 December 2001 (has links) (PDF)
La Géométrie vue à la fin du 19eme. siècle par Félix Klein et Sophus Lie consiste à envisager l'action d'un groupe sur un espace. En termes contemporains on a ainsi un groupoïde de transformation. Une version non commutative de ce point de vue consiste à remplacer tout espace par une algèbre de fonctions sur celui ci, et considérer certaines algèbres comme celles des fonctions sur un espace quantique. <br />Ainsi toute algèbre de von Neumann peut-elle être considérée comme une "algèbre de fonctions mesurables essentiellement bornées sur un espace quantique mesuré" et toute C*-algèbre, comme une "algèbre de fonctions continues sur un espace quantique localement compact". Un groupe est un espace ayant une structure supplémentaire, l'algèbre associée est une bigèbre, plus précisément une algèbre de Hopf.<br />Ma thèse a porté sur les C*- algèbres de Hopf donc sur les groupes quantiques topologiques localement compacts. il s'agissait de transcrire aux C*-algèbres les précédants travaux sur les <br />algèbres de Hopf von Neumann. Nous avons ensuite avec Michel Enock généralisé, à ce cadre non commutatif, un théorème d'André Weil montrant que pour un groupe, la donnée d'une classe de mesures invariantes ou une topologie localement compacte et compatible sont équivalentes.<br />Dans le cas des groupes quantiques, Saad Baaj et Georges Skandalis avaient montré que l'essentiel de la structure est contenu dans un unique opérateur, appelé "unitaire multiplicatif", connu et étudié depuis des décennies dans le cas des groupes localement compacts. J'ai d'abord montré une généralisation de ce résultat au cas des groupoïdes, et dégagé un unique opérateur qui contient l'essentiel de la structure du groupoide, que j'ai appelé "unitaire pseudo-multiplicatif", et qui généralise l'unitaire multiplicatif associé aux groupes topologiques localement compacts.<br />Dans l'article suivant avec M.Enock, portant sur les inclusions de profondeur deux d'algèbres de von Neumann, nous avons mis en lumière un "unitaire pseudo-multiplicatif" plus général, qui prolonge la notion de Baaj-Skandalis, et engendre donc ce qu'on peut appeler un groupoide quantique. Il s'agissait ainsi d'appréhender ces inclusions dans les termes de la Géométrie non commutative.<br />Mes travaux actuels portent sur ces groupoïdes quantiques en dimension finie avec pour objectif, entre autres, de les caractériser en tant qu'algèbres d'opérateurs sur un espace hilbertien de dimension finie. Un premier article en ce sens a été publié, un second est en préparation.
90

Etude mathématique de quelques modèles issus de la théorie cinétique

Bagland, Véronique 09 December 2005 (has links) (PDF)
Dans cette thèse, on s'intéresse à différentes équations issues de la théorie cinétique. Tout d'abord, on considère une équation de Landau pour les particules de Fermi-Dirac. On montre l'existence d'une solution au problème de Cauchy associé et on détermine les états d'équilibre. Ensuite, dans une deuxième partie, on s'intéresse aux systèmes de moments pour l'équation de Boltzmann en relativité restreinte et on détermine les espaces de moments relativistes adéquats. Dans une troisième partie, on étudie les états stationnaires d'une équation de Kac avec thermostat dans le cas où la section efficace est supposée non-intégrable. Finalement, la quatrième partie est consacrée à l'étude d'une équation issue de la théorie de la coagulation, l'équation de Oort-Hulst-Safronov, qui est approchée par une suite d'équations discrètes.

Page generated in 0.0592 seconds