• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 13
  • 11
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 96
  • 96
  • 30
  • 24
  • 16
  • 13
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Mecânica estatística em sistemas com interações de longo alcance : estados estacionários e equilíbrio

Teles, Tarcisio Nunes January 2012 (has links)
Desde os trabalhos de Clausius, Boltzmann e Gibbs, sabe-se que partículas que interagem através de potenciais de curto alcance alcançam, após um processo de relaxação, o estado final estacionário que corresponde ao equilíbrio termodinâmico [I]. Embora nenhuma prova exata exista para isso, na prática, verifica-se que os sistemas não-integráveis com uma energia fixa e um número finito de partículas (ensemble microcanônico, por exemplo) sempre relaxam para um estado estacionário que só depende de quantidades globais conservadas pela dinâmica: energia, momentum e momentum angular. Este estado estacionário corresponde ao estado de equilíbrio termodinâmico e não depende das especificidades da distribuição inicial de partículas. Este cenário muda drasticamente quando a interação entre as partículas passa a ser de longo alcance [2]. A descrição estatística e termodinâmica desses sistemas ainda é objeto de estudo. Contudo, o que se sabe é que esses sistemas têm como propriedade fundamental o fato de que, no limite termodinâmico o tempo de colisão diverge e o equilíbrio termodinâmico nunca é atingido [3]. Nesse trabalho analisamos do ponto de vista teórico e por simulação de dinâmica molecular o estado estacionário atingido por sistemas auto-gravitantes em uma, duas e três dimensões e plasmas não-neutros na dinâmica de um feixe de partículas carregadas. Analisamos ainda um modelo com transição de fases para o estado fora do equilíbrio (HMF). Em todos os casos a teoria proposta na tese mostrou-se consistente com os simulações numéricas empregadas. / Since the work of Clausius, Boltzmann and Gibbs, it is known that particles interacting by a short-range potential, after a relaxation process, reach a final stationary state that corresponds to thermodynamic equilibrium. Although no exact proof exists, in practice non-integrable systems with fixed energy and a finite number of particles (i.e., microcanonical ensemble) always relax to a stationary state that depends only on global quantities conserved by the dynamics: energy, momentum and angular momentum. This stationary state corresponds to the state of thermodynamic equilibrium and does not depend on the specifics of the initial particle distribution. This scenario changes drastically when the interaction between particles is longranged [2] The statistical and thermodynamic description of these systems is still an object of study. However, a fundamental property of these systems is the fact that, in the thermodynamic limit, the collision time diverges and thermodynamic equilibrium is never achieved [3].. In this thesis we analyse, from a theoretical point of view and using molecular dynamics simulations, the stationary state achieved by self-gravitating systems in one, two and three dimensions and non-neutral plasmas in the dynamics of charged particle beams. We also analyse a model with out-of-equilibrium phase transitions (HMF). In all these cases, the theory proposed in this thesis is shown to be consistent with the numerical simulations applied.
82

Lattice Boltzmann Relaxation Scheme for Compressible Flows

Kotnala, Sourabh January 2012 (has links) (PDF)
Lattice Boltzmann Method has been quite successful for incompressible flows. Its extension for compressible (especially supersonic and hypersonic) flows has attracted lot of attention in recent time. There have been some successful attempts but nearly all of them have either resulted in complex or expensive equilibrium function distributions or in extra energy levels. Thus, an efficient Lattice Boltzmann Method for compressible fluid flows is still a research idea worth pursuing for. In this thesis, a new Lattice Boltzmann Method has been developed for compressible flows, by using the concept of a relaxation system, which is traditionally used as semilinear alternative for non-linear hypebolic systems in CFD. In the relaxation system originally introduced by Jin and Xin (1995), the non-linear flux in a hyperbolic conservation law is replaced by a new variable, together with a relaxation equation for this new variable augmented by a relaxation term in which it relaxes to the original nonlinear flux, in the limit of a vanishing relaxation parameter. The advantage is that instead of one non-linear hyperbolic equation, two linear hyperbolic equations need to be solved, together with a non-linear relaxation term. Based on the interpretation of Natalini (1998) of a relaxation system as a discrete velocity Boltzmann equation, with a new isotropic relaxation system as the basic building block, a Lattice Boltzmann Method is introduced for solving the equations of inviscid compressible flows. Since the associated equilibrium distribution functions of the relaxation system are not based on a low Mach number expansion, this method is not restricted to the incompressible limit. Free slip boundary condition is introduced with this new relaxation system based Lattice Boltzmann method framework. The same scheme is then extended for curved boundaries using the ghost cell method. This new Lattice Boltzmann Relaxation Scheme is successfully tested on various bench-mark test cases for solving the equations of compressible flows such as shock tube problem in 1-D and in 2-D the test cases involving supersonic flow over a forward-facing step, supersonic oblique shock reflection from a flat plate, supersonic and hypersonic flows past half-cylinder.
83

An Optimizing Code Generator for a Class of Lattice-Boltzmann Computations

Pananilath, Irshad Muhammed January 2014 (has links) (PDF)
Lattice-Boltzmann method(LBM), a promising new particle-based simulation technique for complex and multiscale fluid flows, has seen tremendous adoption in recent years in computational fluid dynamics. Even with a state-of-the-art LBM solver such as Palabos, a user still has to manually write his program using the library-supplied primitives. We propose an automated code generator for a class of LBM computations with the objective to achieve high performance on modern architectures. Tiling is a very important loop transformation used to improve the performance of stencil computations by exploiting locality and parallelism. In the first part of the work, we explore diamond tiling, a new tiling technique to exploit the inherent ability of most stencils to allow tile-wise concurrent start. This enables perfect load-balance during execution and reduces the frequency of synchronization required. Few studies have looked at time tiling for LBM codes. We exploit a key similarity between stencils and LBM to enable polyhedral optimizations and in turn time tiling for LBM. Besides polyhedral transformations, we also describe a number of other complementary transformations and post processing necessary to obtain good parallel and SIMD performance on modern architectures. We also characterize the performance of LBM with the Roofline performance model. Experimental results for standard LBM simulations like Lid Driven Cavity, Flow Past Cylinder, and Poiseuille Flow show that our scheme consistently outperforms Palabos–on average by3 x while running on 16 cores of a n Intel Xeon Sandy bridge system. We also obtain a very significant improvement of 2.47 x over the native production compiler on the SPECLBM benchmark.
84

Simulace proudění tekutiny okolo překážek Lattice Boltzmannovou metodou / Simulation of fluid flow around obstacles by Lattice Boltzmann Method

Prinz, František January 2020 (has links)
The task of this diploma thesis is the Lattice Boltzmann method (LBM). LBM is a mesoscopic method describing the particle motion in a fluid by the Boltzmann equation, where the distribution function is involved. The Chapman-Enskog expansion shows the connection with the macroscopic Navier-Stokes equations of conservation laws. In this process the Hermite polynoms are used. The Lattice Boltzmann equation is derived by the discretisation of velocity, space and time which is concluding to the numerical algorithm. This algorithm is applied at two problems of fluid flow: the two-dimensional square cavity and a flow arround obstacles. In both cases were the results of velocities compared to results calculated by finite volume method (FVM). The relative errors are in order of multiple 1 %.
85

Analyse spectrale et calcul numérique pour l'équation de Boltzmann / Spectral analysis and numerical calculus for the Bomtzmann equation

Jrad, Ibrahim 27 June 2018 (has links)
Dans cette thèse, nous étudions les solutions de l'équation de Boltzmann. Nous nous intéressons au cadre homogène en espace où la solution f(t; x; v) dépend uniquement du temps t et de la vitesse v. Nous considérons des sections efficaces singulières (cas dit non cutoff) dans le cas Maxwellien. Pour l'étude du problème de Cauchy, nous considérons une fluctuation de la solution autour de la distribution Maxwellienne puis une décomposition de cette fluctuation dans la base spectrale associée à l'oscillateur harmonique quantique. Dans un premier temps, nous résolvons numériquement les solutions en utilisant des méthodes de calcul symbolique et la décomposition spectrale des fonctions de Hermite. Nous considérons des conditions initiales régulières et des conditions initiales de type distribution. Ensuite, nous prouvons qu'il n'y a plus de solution globale en temps pour une condition initiale grande et qui change de signe (ce qui ne contredit pas l'existence globale d'une solution faible pour une condition initiale positive - voir par exemple Villani Arch. Rational Mech. Anal 1998). / In this thesis, we study the solutions of the Boltzmann equation. We are interested in the homogeneous framework in which the solution f(t; x; v) depends only on the time t and the velocity v. We consider singular crosssections (non cuto_ case) in the Maxwellian case. For the study of the Cauchy problem, we consider a uctuation of the solution around the Maxwellian distribution then a decomposition of this uctuation in the spectral base associated to the quantum harmonic oscillator At first, we solve numerically the solutions using symbolic computation methods and spectral decomposition of Hermite functions. We consider regular initial data and initial conditions of distribution type. Next, we prove that there is no longer a global solution in time for a large initial condition that changes sign (which does not contradict the global existence of a weak solution for a positive initial condition - see for example Villani Arch. Rational Mech. Anal 1998).
86

General Projective Approach to Transport Coefficients of Condensed Matter Systems and Application to an Atomic Wire

Bartsch, Christian 16 March 2010 (has links)
We present a novel approach to the investigation of transport coefficients in condensed matter systems, which is based on a pertinent time-convolutionless (TCL) projection operator technique. In this context we analyze in advance the convergence of the corresponding perturbation expansion and the influence of the occurring inhomogeneity. The TCL method is used to establish a formalism for a consistent derivation of a Boltzmann equation from the underlying quantum dynamics, which is meant to apply to non-ideal quantum gases. We obtain a linear(ized) collision term that results as a finite non-singular rate matrix and is thus adequate for further considerations, e.g., the calculation of transport coefficients. In the work at hand we apply the provided scheme to numerically compute the diffusion coefficient of an atomic wire and especially analyze its dependence on certain model properties, in particular on the width of the wire.
87

Investigations of transport phenomena and dynamical relaxation in closed quantum systems

Khodja, Abdellah 17 March 2015 (has links)
The first part of the present Phd thesis is devoted to transport investigations in disordered quantum systems. We aim at quantitatively determining transport parameters like conductivity, mean free path, etc., for simple models of spatially disordered and/or percolated quantum systems in the limit of high temperatures and low fillings using linear response theory. We find the transport behavior for some models to be in accord with a Boltzmann equation, i.e., long mean free paths, exponentially decaying currents although there are no band-structures to start from, while this does not apply to other models even though they are also almost completely delocalized. The second part of the present PhD thesis addresses the issue of initial state independence (ISI) in closed quantum system. The relevance of the eigenstate thermalization hypothesis (ETH) for the emergence of ISI equilibration is to some extent addressed. To this end, we investigate the Heisenberg spin-ladder and check the validity of the ETH for the energy difference operator by examining the scaling behavior of the corresponding ETH-fluctuations, which we compute using an innovative numerical method based on typicality related arguments. While, the ETH turns out to hold for the generic non-integrable models and may therefore serve as the key mechanism for ISI for this cases, it does not hold for the integrable Heisenberg-chain. However, close analysis on the dynamic of substantially out-of-equilibrium initial states indicates the occurrence of ISI equillibration in the thermodynamic limit regardless of whether the ETH is violated. Thus, we introduce a new parameter $v$, which we propose as an alternative of the ETH to indicate ISI equillibration in cases, in which the ETH does not strictly apply.
88

NON-EQUILIBRIUM HYDRODYNAMICS OF THE QUARK-GLUON PLASMA

Mohammad, Nopoush 11 April 2019 (has links)
No description available.
89

[pt] EQUAÇÃO INELASTICA DE BOLTZMANN COM BANHO TÉRMICO / [en] INELASTIC BOLTZMANN EQUATION DRIVEN BY A PARTICLE THERMAL BATH

RAFAEL ANTONIO SANABRIA VILLALOBOS 08 September 2020 (has links)
[pt] Consideramos a equação de Boltzmann espacialmente não homogênea para esferas duras inelásticas, com coeficiente de restituição constante alfa pertence (0, 1), sob a termalização induzida por um meio hospedeiro com uma distribuição Maxwelliana fixa e fixando e pertence (0, 1) qualquer. Quando o coeficiente de restituição alfa é próximo de 1, comprovamos a existência de soluções globais considerando o regime próximo ao equilíbrio. Também estudamos o comportamento de longo prazo dessas soluções e comprovamos uma convergência para o equilíbrio com uma taxa exponencial. / [en] We consider the spatially inhomogeneous Boltzmann equation for inelastic hard-spheres, with constant restitution coefficient alpha element of (0, 1), under the thermalization induced by a host medium with a fixed Maxwellian distribution and any fixed e element of (0, 1). When the restitution coefficient alpha is close to 1 we prove existence of global solutions considering the close-to-equilibrium regime. We also study the long-time behaviour of these solutions and prove a convergence to equilibrium with an exponential rate.
90

Existence et stabilité de solutions fortes en théorie cinétique des gaz / Existence and stability of strong solutions in kinetic theory

Tristani, Isabelle 22 June 2015 (has links)
Cette thèse est centrée sur l’étude d’équations issues de la théorie cinétique des gaz. Dans tous les problèmes qui y sont explorés, une analyse des problèmes linéaires ou linéarisés associés est réalisée d’un point de vue spectral et du point de vue des semi-groupes. A cela s’ajoute une analyse de la stabilité non linéaire lorsque le modèle est non linéaire. Plus précisément, dans une première partie, nous nous intéressons aux équations de Fokker-Planck fractionnaire et Boltzmann sans cut-off homogène en espace et nous prouvons un retour vers l’équilibre des solutions de ces équations avec un taux exponentiel dans des espaces de type L1 à poids polynomial. Concernant l’équation de Landau inhomogène en espace, nous développons une théorie de Cauchy de solutions perturbatives dans des espaces de type L2 avec différents poids (polynomiaux ou exponentiels) et nous prouvons également la stabilité exponentielle de ces solutions.Nous démontrons ensuite pour l’équation de Boltzmann inélastique inhomogène avec terme diffusif le même type de résultat dans des espaces L1 à poids polynomial dans un régime de faible inélasticité. Pour finir, nous étudions dans un cadre général et uniforme des modèles qui convergent vers l’équation de Fokker-Planck du point de vue de l’analyse spectrale et des semi-groupes. / The topic of this thesis is the study of models coming from kinetic theory. In all the problems that are addressed, the associated linear or linearized problem is analyzed from a spectral point of view and from the point of view of semigroups. Tothat, we add the study of the nonlinear stability when the equation is nonlinear. More precisely, to begin with, we treat the problem of trend to equilibrium for the fractional Fokker-Planck and Boltzmann without cut-off equations, proving an exponential decay to equilibrium in spaces of type L1 with polynomial weights. Concerning the inhomogeneous Landau equation, we develop a Cauchy theory of perturbative solutions in spaces of type L2 with various weights such as polynomial and exponential weights and we also prove the exponential stability of these solutions. Then, we prove similar results for the inhomogeneous inelastic diffusively driven Boltzmann equation in a small inelasticity regime in L1 spaces with polynomial weights. Finally, we study in the same and uniform framework from the spectral analysis point of view with a semigroup approach several Fokker-Planck equations which converge towards the classical one.

Page generated in 0.0543 seconds