• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 19
  • 15
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 211
  • 93
  • 75
  • 61
  • 50
  • 49
  • 41
  • 37
  • 36
  • 31
  • 31
  • 26
  • 23
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Détection automatique de chutes de personnes basée sur des descripteurs spatio-temporels : définition de la méthode, évaluation des performances et implantation temps-réel / Automatic human fall detection based on spatio-temporal descriptors : definition of the method, evaluation of the performance and real-time implementation

Charfi, Imen 21 October 2013 (has links)
Nous proposons une méthode supervisée de détection de chutes de personnes en temps réel, robusteaux changements de point de vue et d’environnement. La première partie consiste à rendredisponible en ligne une base de vidéos DSFD enregistrées dans quatre lieux différents et qui comporteun grand nombre d’annotations manuelles propices aux comparaisons de méthodes. Nousavons aussi défini une métrique d’évaluation qui permet d’évaluer la méthode en s’adaptant à la naturedu flux vidéo et la durée d’une chute, et en tenant compte des contraintes temps réel. Dans unsecond temps, nous avons procédé à la construction et l’évaluation des descripteurs spatio-temporelsSTHF, calculés à partir des attributs géométriques de la forme en mouvement dans la scène ainsique leurs transformations, pour définir le descripteur optimisé de chute après une méthode de sélectiond’attributs. La robustesse aux changements d’environnement a été évaluée en utilisant les SVMet le Boosting. On parvient à améliorer les performances par la mise à jour de l’apprentissage parl’intégration des vidéos sans chutes enregistrées dans l’environnement définitif. Enfin, nous avonsréalisé, une implantation de ce détecteur sur un système embarqué assimilable à une caméra intelligentebasée sur un composant SoC de type Zynq. Une démarche de type Adéquation AlgorithmeArchitecture a permis d’obtenir un bon compromis performance de classification/temps de traitement / We propose a supervised approach to detect falls in home environment adapted to location andpoint of view changes. First, we maid publicly available a realistic dataset, acquired in four differentlocations, containing a large number of manual annotation suitable for methods comparison. We alsodefined a new metric, adapted to real-time tasks, allowing to evaluate fall detection performance ina continuous video stream. Then, we build the initial spatio-temporal descriptor named STHF usingseveral combinations of transformations of geometrical features and an automatically optimised setof spatio-temporal descriptors thanks to an automatic feature selection step. We propose a realisticand pragmatic protocol which enables performance to be improved by updating the training in thecurrent location with normal activities records. Finally, we implemented the fall detection in Zynqbasedhardware platform similar to smart camera. An Algorithm-Architecture Adequacy step allowsa good trade-off between performance of classification and processing time
182

Conception et synthèse de molécules à visée anti-infectieuse selon deux stratégies : le criblage à haut débit et l’approche par fragments / Design and synthesis of anti-infectious molecules using two different strategies : high throughput screening and fragment-based drug discovery approaches

Prevet, Hugues 30 September 2016 (has links)
La découverte d’un candidat médicament repose sur l’identification de hits, présentant des propriétés physico-chimiques adéquates pour leur optimisation. Le criblage à haut débit et l’approche par fragments sont deux techniques couramment utilisées lors de cette étape d’identification et elles ont été mises en œuvre au cours de ma thèse dans le but de découvrir de nouveaux composés ciblant d’une part le complexe CD81/CLDN-1 pour empêcher l’entrée du virus de l’hépatite C (VHC) dans les hépatocytes et d’autre part EthR2, un régulateur transcriptionnel mycobactérien, afin de potentialiser l’activité d’un antituberculeux sur les souches résistantes de M. tuberculosis.Dans une première partie, un criblage à haut débit sur le complexe CD81/CLDN-1 a permis d’identifier des modulateurs en série thiéno[2,3-c]pyrazole. Ces composés ont été pharmacomodulés et un composé spécifique de l’étape d’entrée du VHC, non toxique et présentant une activité submicromolaire a pu être ainsi identifié. Cette sonde pharmacologique permettra de mieux comprendre les mécanismes impliqués dans le processus d’entrée virale.Dans une deuxième partie, nous nous sommes intéressés à la conception de nouveaux fragments dits privilégiés. Ainsi, le développement des voies de synthèse, sous irradiation micro-onde, de deux entités moléculaires, le noyau 1,4-benzodiazepine-2,5-dione et le noyau spirohydantoïne, nous a permis d’obtenir 34 composés originaux. Afin d’évaluer le potentiel de cette stratégie, une librairie virtuelle de fragments a été générée et son criblage in silico sur la protéine MDM2 a été effectué. La mesure in vitro de l’activité des hits identifiés permettra de valider l’intérêt de cette approche pour la découverte de nouveaux ligands ciblant les interactions protéine-protéine.Dans une troisième partie, des inhibiteurs d’un répresseur transcriptionnel mycobactérien impliqué dans la potentialisation de l’activité de l’éthionamide ont été développés. A l’issue d’un criblage de 960 fragments, l’identification d’un hit en série tropinone, et sa cocristallisation avec la protéine EthR2, a permis d’entamer une optimisation rationnelle qui a conduit à l’obtention rapide de composés présentant de meilleures activités. / The discovery of drug candidates is based on the identification of hits with appropriated physico-chemical properties for further development. High throughput screening and fragment-based drug discovery approaches are two strategies commonly used for this identification. These strategies were applied during my PhD research work for identifying not only new modulators of the CD81/CLDN-1 complex to prevent entry of the Hepatitis C virus (HCV) into hepatocytes but also inhibitors of the mycobacterial transcriptional repressor, called EthR2, to boost ethionamide antibacterial activity against resistant strains of M. tuberculosis.Firstly, a high throughput screening assay was developed to identify molecules bearing a thieno[2,3-c]pyrazole scaffold that modulate the CD81/CLDN-1 complex. The structure-activity relationships allowed us to design and synthesize one non-toxic compound that inhibits viral entry with an IC50 in the submicromolar range. This best analog will be used as pharmacological tool to understand the molecular mechanism involving the CD81/CLDN-1 interaction during virus entry.Secondary, we worked on the design and synthesis of a new generation of fragments called privileged fragments. We focused our interest on the 1,4-benzodiazepine-2,5-dione and spirohydantoin scaffolds and using microwave-assisted conditions 44 original privileged fragments have been synthesized. To further illustrate the potential of our privileged fragments, a virtual focused library has been generated and screened in silico on MDM2 protein. The in vitro evaluation of the identified hits will allow us to validate our approach and to show the potential of our privileged fragments for the discovery of new hits against protein-protein interactions.Finally, inhibitors of a new mycobacterial transcriptional repressor involved in the boosting of ethionamide activity have been developed. Screening of 960 fragments allowed us to identify a hit bearing a tropinone scaffold which was cocrystallized with EthR2. A rational design from this cocrystal structure led rapidly to more potent ligands.
183

Gradient Boosting Machine and Artificial Neural Networks in R and H2O / Gradient Boosting Machine and Artificial Neural Networks in R and H2O

Sabo, Juraj January 2016 (has links)
Artificial neural networks are fascinating machine learning algorithms. They used to be considered unreliable and computationally very expensive. Now it is known that modern neural networks can be quite useful, but their computational expensiveness unfortunately remains. Statistical boosting is considered to be one of the most important machine learning ideas. It is based on an ensemble of weak models that together create a powerful learning system. The goal of this thesis is the comparison of these machine learning models on three use cases. The first use case deals with modeling the probability of burglary in the city of Chicago. The second use case is the typical example of customer churn prediction in telecommunication industry and the last use case is related to the problematic of the computer vision. The second goal of this thesis is to introduce an open-source machine learning platform called H2O. It includes, among other things, an interface for R and it is designed to run in standalone mode or on Hadoop. The thesis also includes the introduction into an open-source software library Apache Hadoop that allows for distributed processing of big data. Concretely into its open-source distribution Hortonworks Data Platform.
184

Quantitative Retrieval of Organic Soil Properties from Visible Near-Infrared Shortwave Infrared (Vis-NIR-SWIR) Spectroscopy Using Fractal-Based Feature Extraction.

Liu, Lanfa, Buchroithner, Manfred, Ji, Min, Dong, Yunyun, Zhang, Rongchung 27 March 2017 (has links)
Visible and near-infrared diffuse reflectance spectroscopy has been demonstrated to be a fast and cheap tool for estimating a large number of chemical and physical soil properties, and effective features extracted from spectra are crucial to correlating with these properties. We adopt a novel methodology for feature extraction of soil spectroscopy based on fractal geometry. The spectrum can be divided into multiple segments with different step–window pairs. For each segmented spectral curve, the fractal dimension value was calculated using variation estimators with power indices 0.5, 1.0 and 2.0. Thus, the fractal feature can be generated by multiplying the fractal dimension value with spectral energy. To assess and compare the performance of new generated features, we took advantage of organic soil samples from the large-scale European Land Use/Land Cover Area Frame Survey (LUCAS). Gradient-boosting regression models built using XGBoost library with soil spectral library were developed to estimate N, pH and soil organic carbon (SOC) contents. Features generated by a variogram estimator performed better than two other estimators and the principal component analysis (PCA). The estimation results for SOC were coefficient of determination (R2) = 0.85, root mean square error (RMSE) = 56.7 g/kg, the ratio of percent deviation (RPD) = 2.59; for pH: R2 = 0.82, RMSE = 0.49 g/kg, RPD = 2.31; and for N: R2 = 0.77, RMSE = 3.01 g/kg, RPD = 2.09. Even better results could be achieved when fractal features were combined with PCA components. Fractal features generated by the proposed method can improve estimation accuracies of soil properties and simultaneously maintain the original spectral curve shape.
185

Implementace obrazových klasifikátorů v FPGA / Implementation of Image Classifiers in FPGAs

Kadlček, Filip January 2010 (has links)
The thesis deals with image classifiers and their implementation using FPGA technology. There are discussed weak and strong classifiers in the work. As an example of strong classifiers, the AdaBoost algorithm is described. In the case of weak classifiers, basic types of feature classifiers are shown, including Haar and Gabor wavelets. The rest of work is primarily focused on LBP, LRP and LR classifiers, which are well suitable for efficient implementation in FPGAs. With these classifiers is designed pseudo-parallel architecture. Process of classifications is divided on software and hardware parts. The thesis deals with hardware part of classifications. The designed classifier is very fast and produces results of classification every clock cycle.
186

Entwicklung einer offenen Softwareplattform für Visual Servoing

Sprößig, Sören 28 June 2010 (has links)
Ziel dieser Diplomarbeit ist es, eine flexibel zu verwendende Plattform für Visual Servoing-Aufgaben zu Erstellen, mit der eine Vielzahl von verschiedenen Anwendungsfällen abgedeckt werden kann. Kernaufgabe der Arbeit ist es dabei, verschiedene Verfahren der Gesichtserkennung (face detection) am Beispiel der Haar-Kaskade und -wiedererkennung (face recognition) am Beispiel von Eigenfaces und Fisherfaces zu betrachten und an ausführlichen Beispielen vorzustellen. Dabei sollen allgemeine Grundbegriffe der Bildverarbeitung und bereits bekannte Verfahren vorgestellt und ihre Implementierung im Detail dargestellt werden. Aus den dadurch gewonnen Erkenntnissen und dem sich ergebenden Anforderungsprofil an die zu entwickelnde Plattform leitet sich anschließend die Realisierung als eigenständige Anwendung ab. Hierbei ist weiterhin zu untersuchen, wie die neu zu entwickelnde Software zukunftssicher und in Hinblick auf einen möglichen Einsatz in Praktika einfach zu verwenden realisiert werden kann. Sämtliche während der Arbeit entstandenen Programme und Quellcodes werden auf einem separaten Datenträger zur Verfügung gestellt. Eine komplett funktionsfähige Entwicklungsumgebung wird als virtuelle Maschine beigelegt.
187

Using supervised learning methods to predict the stop duration of heavy vehicles.

Oldenkamp, Emiel January 2020 (has links)
In this thesis project, we attempt to predict the stop duration of heavy vehicles using data based on GPS positions collected in a previous project. All of the training and prediction is done in AWS SageMaker, and we explore possibilities with Linear Learner, K-Nearest Neighbors and XGBoost, all of which are explained in this paper. Although we were not able to construct a production-grade model within the time frame of the thesis, we were able to show that the potential for such a model does exist given more time, and propose some suggestions for the paths one can take to improve on the endpoint of this project.
188

Introduction à l’apprentissage automatique en pharmacométrie : concepts et applications

Leboeuf, Paul-Antoine 05 1900 (has links)
L’apprentissage automatique propose des outils pour faire face aux problématiques d’aujourd’hui et de demain. Les récentes percées en sciences computationnelles et l’émergence du phénomène des mégadonnées ont permis à l’apprentissage automatique d’être mis à l’avant plan tant dans le monde académique que dans la société. Les récentes réalisations de l’apprentissage automatique dans le domaine du langage naturel, de la vision et en médecine parlent d’eux-mêmes. La liste des sciences et domaines qui bénéficient des techniques de l’apprentissage automatique est longue. Cependant, les tentatives de coopération avec la pharmacométrie et les sciences connexes sont timides et peu nombreuses. L’objectif de ce projet de maitrise est d’explorer le potentiel de l’apprentissage automatique en sciences pharmaceutiques. Cela a été réalisé par l’application de techniques et des méthodes d’apprentissage automatique à des situations de pharmacologie clinique et de pharmacométrie. Le projet a été divisé en trois parties. La première partie propose un algorithme pour renforcer la fiabilité de l’étape de présélection des covariables d’un modèle de pharmacocinétique de population. Une forêt aléatoire et l’XGBoost ont été utilisés pour soutenir la présélection des covariables. Les indicateurs d’importance relative des variables pour la forêt aléatoire et pour l’XGBoost ont bien identifié l’importance de toutes les covariables qui avaient un effet sur les différents paramètres du modèle PK de référence. La seconde partie confirme qu’il est possible d’estimer des concentrations plasmatiques avec des méthodes différentes de celles actuellement utilisés en pharmacocinétique. Les mêmes algorithmes ont été sélectionnés et leur ajustement pour la tâche était appréciable. La troisième partie confirme la possibilité de faire usage des méthodes d'apprentissage automatique pour la prédiction de relations complexes et typiques à la pharmacologie clinique. Encore une fois, la forêt aléatoire et l’XGBoost ont donné lieu à un ajustement appréciable. / Machine learning offers tools to deal with current problematics. Recent breakthroughs in computational sciences and the emergence of the big data phenomenon have brought machine learning to the forefront in both academia and society. The recent achievements of machine learning in natural language, computational vision and medicine speak for themselves. The list of sciences and fields that benefit from machine learning techniques is long. However, attempts to cooperate with pharmacometrics and related sciences are timid and limited. The aim of this Master thesis is to explore the potential of machine learning in pharmaceutical sciences. This has been done through the application of machine learning techniques and methods to situations of clinical pharmacology and pharmacometrics. The project was divided into three parts. The first part proposes an algorithm to enhance the reliability of the covariate pre-selection step of a population pharmacokinetic model. Random forest and XGBoost were used to support the screening of covariates. The indicators of the relative importance of the variables for the random forest and for XGBoost recognized the importance of all the covariates that influenced the various parameters of the PK model of reference. The second part exemplifies the estimation of plasma concentrations using machine learning methods. The same algorithms were selected and their fit for the task was appreciable. The third part confirms the possibility to apply machine learning methods in the prediction of complex relationships, as some typical clinical pharmacology relationships. Again, random forest and XGBoost got a nice adjustment.
189

Ensemble Classifier Design and Performance Evaluation for Intrusion Detection Using UNSW-NB15 Dataset

Zoghi, Zeinab 30 November 2020 (has links)
No description available.
190

Data Driven Energy Efficiency of Ships

Taspinar, Tarik January 2022 (has links)
Decreasing the fuel consumption and thus greenhouse gas emissions of vessels has emerged as a critical topic for both ship operators and policy makers in recent years. The speed of vessels has long been recognized to have highest impact on fuel consumption. The solution suggestions like "speed optimization" and "speed reduction" are ongoing discussion topics for International Maritime Organization. The aim of this study are to develop a speed optimization model using time-constrained genetic algorithms (GA). Subsequent to this, this paper also presents the application of machine learning (ML) regression methods in setting up a model with the aim of predicting the fuel consumption of vessels. Local outlier factor algorithm is used to eliminate outlier in prediction features. In boosting and tree-based regression prediction methods, the overfitting problem is observed after hyperparameter tuning. Early stopping technique is applied for overfitted models.In this study, speed is also found as the most important feature for fuel consumption prediction models. On the other hand, GA evaluation results showed that random modifications in default speed profile can increase GA performance and thus fuel savings more than constant speed limits during voyages. The results of GA also indicate that using high crossover rates and low mutations rates can increase fuel saving.Further research is recommended to include fuel and bunker prices to determine more accurate fuel efficiency.

Page generated in 0.0443 seconds