Spelling suggestions: "subject:"[een] BOOSTING"" "subject:"[enn] BOOSTING""
161 |
Designing, Modeling, and Optimizing Transactional Data StructuresHassan, Ahmed Mohamed Elsayed 25 September 2015 (has links)
Transactional memory (TM) has emerged as a promising synchronization abstraction for multi-core architectures. Unlike traditional lock-based approaches, TM shifts the burden of implementing threads synchronization from the programmer to an underlying framework using hardware (HTM) and/or software (STM) components.
Although TM can be leveraged to implement transactional data structures (i.e., those where multiple operations are allowed to execute atomically, all-or-nothing, according to the transaction paradigm), its intensive speculation may result in significantly lower performance than the optimized concurrent data structures. This poor performance motivates the need to find other, more effective, alternatives for designing transactional data structures without losing the simple programming abstraction proposed by TM.
To do so, we identified three major challenges that need to be addressed to design efficient transactional data structures. The first challenge is composability, namely allowing an atomic execution of two or more data structure operations in the same way as TM provides, but without its high overheads. The second challenge is integration, which enables the execution of data structure operations within generic transactions that may contain other memory- based operations. The last challenge is modeling, which encompasses the necessity of defining a unified formal methodology to reason about the correctness of transactional data structures.
In this dissertation, we propose different approaches to address the above challenges. First, we address the composability challenge by introducing an optimistic methodology to effi- ciently convert concurrent data structures into transactional ones. Second, we address the integration challenge by injecting the semantic operations of those transactional data struc- ture into TM frameworks, and by presenting two novel STM algorithms in order to enhance the overall performance of those frameworks. Finally, we address the modeling challenge by presenting two models for concurrent and transactional data structures designs.
• Our first main contribution in this dissertation is Optimistic transactional boosting (OTB), a methodology to design transactional versions of the highly concurrent optimistic (i.e., lazy) data structures. An earlier (pessimistic) boosting proposal added a layer of abstract locks on top of existing concurrent data structures. Instead, we propose an optimistic boosting methodology, which allows greater data structure-specific optimizations, easier integration with TM frameworks, and lower restrictions on the operations than the original (more pessimistic) boosting methodology.
Based on the proposed OTB methodology, we implement the transactional version of two list-based data structures (i.e., set and priority queue). Then, we present TxCF-Tree, a balanced tree whose design is optimized to support transactional accesses. The core optimizations of TxCF-Tree's operations are: providing a traversal phase that does not use any lock and/or speculation and deferring the lock acquisition or physical modification to the transaction's commit phase; isolating the structural operations (such as re-balancing) in an interference-less housekeeping thread; and minimizing the interference between structural operations and the critical path of semantic operations (i.e., additions and removals on the tree).
• Our second main contribution is to integrate OTB with both STM and HTM algorithms. For STM, we extend the design of both DEUCE, a Java STM framework, and RSTM, a C++ STM framework, to support the integration with OTB. Using our extension, programmers can include both OTB data structure operations and traditional memory reads/writes in the same transaction. Results show that OTB performance is closer to the optimal lazy (non-transactional) data structures than the original boosting algorithm.
On the HTM side, we introduce a methodology to inject semantic operations into the well-known hybrid transactional memory algorithms (e.g., HTM-GL, HyNOrec, and NOre- cRH). In addition, we enhance the proposed semantically-enabled HTM algorithms with a lightweight adaptation mechanism that allows bypassing the HTM paths if the overhead of the semantic operations causes repeated HTM aborts. Experiments on micro- and macro- benchmarks confirm that our proposals outperform the other TM solutions in almost all the tested workloads.
• Our third main contribution is to enhance the performance of TM frameworks in gen- eral by introducing two novel STM algorithms. Remote Transaction Commit (RTC) is a mechanism for executing commit phases of STM transactions in dedicated server cores. RTC shows significant improvements compared to its corresponding validation based STM algorithm (up to 4x better) as it decreases the overhead of spin locking during commit, in terms of cache misses, blocking of lock holders, and CAS operations. Remote Inval- idation (RInval) applies the same idea of RTC on invalidation based STM algorithms. Furthermore, it allows more concurrency by executing commit and invalidation routines concurrently in different servers. RInval performs up to 10x better than its corresponding invalidation based STM algorithm (InvalSTM), and up to 2x better than its corresponding validation-based algorithm (NOrec).
• Our fourth and final main contribution is to provide a theoretical model for concurrent and transactional data structures. We exploit the similarities of the OTB-based data structures and provide a unified model to reason about the correctness of those designs. Specifically, we extend a recent approach that models data structures with concurrent readers and a single writer (called SWMR), and we propose two novel models that additionally allow multiple writers and transactional execution. Those models are more practical because they cover a wider set of data structures than the original SWMR model. / Ph. D.
|
162 |
Modelización integrada con aprendizaje automático para evaluar la contaminación por nutrientes en las masas de agua actual y bajo el efecto del cambio climático. Aplicación a la Demarcación Hidrográfica del JúcarDorado Guerra, Diana Yaritza 26 February 2024 (has links)
Tesis por compendio / [ES] La contaminación del agua representa un desafío ambiental crítico a nivel global y en la Unión Europea (UE), particularmente en la región mediterránea de España. El crecimiento poblacional, la demanda creciente de alimentos y combustibles, junto con el cambio climático, intensifican la contaminación por nutrientes en los cuerpos de agua. Esta contaminación amenaza la calidad del agua y los ecosistemas acuáticos, así como la salud humana. La complejidad de las vías de transporte de nutrientes hace que su monitoreo y mitigación sean complicados. Se requieren modelos integrales que vinculen procesos y relaciones de causa y efecto para controlar eficazmente la contaminación.
En la región mediterránea, como la Demarcación Hidrográfica del Júcar (DHJ), la interacción entre agua superficial y subterránea es clave, pero los modelos tradicionales presentan limitaciones. Esta tesis aborda estos desafíos al caracterizar la contribución de nutrientes a las masas de agua superficiales de la DHJ, evaluar medidas de reducción de la contaminación, considerando el cambio climático a largo plazo y aplicar técnicas de aprendizaje supervisado para predecir la concentración de nitratos. El acoplamiento de modelos hidrológicos y de calidad del agua, junto con el aprendizaje automático, ofrece una comprensión profunda y valiosa de los factores detrás de la contaminación por nutrientes y proporciona una base sólida para la toma de decisiones y la gestión sostenible del agua en la DHJ y regiones similares. Esta tesis fue estructurada como un compendio de tres artículos que abarcan estos desafíos.
El primer artículo profundiza en la compleja interacción entre las aguas superficiales y las subterráneas en las cuencas de la DHJ, centrándose en la dinámica de la contaminación por nitratos. Los resultados muestran una correlación directa entre las concentraciones de nitratos en ríos y acuíferos a lo largo del eje principal de los ríos Júcar y Turia, lo cual destaca el papel fundamental de las aportaciones de agua subterránea en la contribución a los niveles de nitratos de los ríos. Además, el estudio identifica regiones aguas abajo con actividades agrícolas y urbanas intensificadas como focos de contaminación por nitratos.
El segundo artículo aborda la vulnerabilidad de la calidad de las aguas superficiales al cambio climático y escenarios de reducción de la contaminación difusa y puntual en las cuencas de la DHJ a largo plazo. Los resultados indican que, en los escenarios de cambio climático, se espera que aumenten significativamente las masas de agua con un mal estado de amonio, fósforo y DBO5, y en menor proporción las masas en mal estado de nitratos. En concreto, las concentraciones medias de amonio y fósforo podrían duplicarse durante los meses de bajo caudal. Para mantener la calidad actual del agua, se requieren reducciones sustanciales de al menos el 25% de la contaminación difusa por nitratos y del 50% de las cargas puntuales de amonio, fósforo y DBO5.
El tercer artículo presenta un enfoque innovador para simular la concentración de nitratos en masas de agua superficiales mediante modelos de aprendizaje automático. Aprovechando los métodos de selección de características y los algoritmos random forest (RF) y eXtreme Gradient Boosting (XGBoost), el estudio logró una gran precisión en la predicción de la concentración de nitratos. Estos modelos analizaron 19 variables de entrada, que abarcan factores ecológicos, hidrológicos y ambientales, junto con datos de concentración de nitratos procedentes de estaciones de aforo de la calidad de las aguas superficiales. En particular, la investigación destaco que la localización desempeña un papel dominante, explicando el 87% de la variabilidad de los nitratos en relación con la concentración de nitrógeno y fósforo. Esta investigación destaco el potencial del aprendizaje automático en la predicción de la calidad del agua y la evaluación de riesgos. / [CA] La contaminació de l'aigua representa un desafiament ambiental crític a nivell global i a la Unió Europea (UE), particularment a la regió mediterrània d'Espanya. El creixement poblacional, la demanda creixent d'aliments i combustibles, juntament amb el canvi climàtic, intensifiquen la contaminació per nutrients en els cossos d'aigua. Aquesta contaminació amenaça la qualitat de l'aigua i els ecosistemes aquàtics, així com la salut humana. La complexitat de les vies de transport de nutrients fa que el seu monitoratge i mitigació siguin complicats. Es requereixen models integrals que vinculin processos i relacions de causa i efecte per a controlar eficaçment la contaminació.
A la regió mediterrània, com la Demarcació Hidrogràfica del Xúquer (DHJ), la interacció entre aigua superficial i subterrània és clau, però els models tradicionals presenten limitacions. Aquesta tesi aborda aquests desafiaments en caracteritzar la contribució de nutrients a les masses d'aigua superficials de la DHJ, avaluar mesures de reducció de la contaminació, considerant el canvi climàtic a llarg termini i aplicar tècniques d'aprenentatge supervisat per a predir la concentració de nitrats. L'acoblament de models hidrològics i de qualitat de l'aigua, juntament amb l'aprenentatge automàtic, ofereix una comprensió profunda i valuosa dels factors darrere de la contaminació per nutrients i proporciona una base sòlida per a la presa de decisions i la gestió sostenible de l'aigua en la DHJ i regions similars. Aquesta tesi va ser estructurada com un compendi de tres articles que abasten aquests desafiaments.
El primer article aprofundeix en la complexa interacció entre les aigües superficials i les subterrànies en les conques de la DHJ, centrant-se en la dinàmica de la contaminació per nitrats. Els resultats mostren una correlació directa entre les concentracions de nitrats en rius i aqüífers al llarg de l'eix principal dels rius Xúquer i Túria, la qual cosa destaca el paper fonamental de les aportacions d'aigua subterrània en la contribució als nivells de nitrats dels rius. A més, l'estudi identifica regions aigües avall amb activitats agrícoles i urbanes intensificades com a focus de contaminació per nitrats.
El segon article aborda la vulnerabilitat de la qualitat de les aigües superficials al canvi climàtic i escenaris de reducció de la contaminació difusa i puntual en les conques de la DHJ a llarg termini. Els resultats indiquen que, en els escenaris de canvi climàtic, s'espera que augmentin significativament les masses d'aigua amb un mal estat d'amoni, fòsfor i DBO5, i en menor proporció les masses en mal estat de nitrats. En concret, les concentracions mitjanes d'amoni i fòsfor podrien duplicar-se durant els mesos de baix cabal. Per a mantenir la qualitat actual de l'aigua, es requereixen reduccions substancials d'almenys el 25% de la contaminació difusa per nitrats i del 50% de les càrregues puntuals d'amoni, fòsfor i DBO5.
El tercer article presenta un enfocament innovador per a simular la concentració de nitrats en masses d'aigua superficials mitjançant models d'aprenentatge automàtic. Aprofitant els mètodes de selecció de característiques i els algorismes random forest (RF) i extremi Gradient Boosting (XGBoost), l'estudi va aconseguir una gran precisió en la predicció de la concentració de nitrats. Aquests models van analitzar 19 variables d'entrada, que abasten factors ecològics, hidrològics i ambientals, juntament amb dades de concentració de nitrats procedents d'estacions d'aforament de la qualitat de les aigües superficials. En particular, la recerca destaco que la localització exerceix un paper dominant, explicant el 87% de la variabilitat dels nitrats en relació amb la concentració de nitrogen i fòsfor. Aquesta recerca destaco el potencial de l'aprenentatge automàtic en la predicció de la qualitat de l'aigua i l'avaluació de riscos. / [EN] Water pollution poses a critical environmental challenge globally and in the European Union (EU), particularly in the Mediterranean region of Spain. Population growth, increasing demand for food and fuels, coupled with climate change, intensify nutrient pollution in water bodies. This pollution threatens water quality, aquatic ecosystems, and human health. The complexity of nutrient transport pathways makes monitoring and mitigation challenging. Comprehensive models that link processes and cause-and-effect relationships are required to effectively control pollution. In the Mediterranean region, such as the Júcar River Basin District (RBD), the interaction between surface and groundwater is crucial, but traditional models have limitations. This thesis addresses these challenges by characterising the contribution of nutrients to surface waters in the Júcar RBD, evaluating pollution reduction measures considering long-term climate change, and applying supervised learning techniques to predict nitrate concentrations. The coupling of hydrological and water quality models, along with machine learning, provides a deep and valuable understanding of the factors behind nutrient pollution and establishes a solid foundation for decision-making and sustainable water management in the Júcar RBD and similar regions. This thesis is structured as a compendium of three articles that encompass these challenges. The first article delves into the complex interaction between surface and groundwater in the Júcar RBD basins, focusing on nitrate pollution dynamics.The results reveal a direct linear correlation between nitrate concentrations in rivers and aquifers along the main axes of the Júcar and Turia rivers, highlighting the fundamental role of groundwater contributions to river nitrate levels. Additionally, the study identifies downstream regions with intensified agricultural and urban activities as nitrate pollution hotspots. This research not only identifies pollution sources but also offers a means to predict nitrate concentrations and assess the effectiveness of pollution prevention measures.
The second article addresses the vulnerability of surface water quality to climate change and long-term diffuse and point source pollution reduction scenarios in the Júcar RBD basins. In a region where nutrient concentrations are of particular concern, the study investigates how changing climatic conditions, including rising temperatures and altered precipitation patterns, affect nitrate, ammonium, phosphorus, and biochemical oxygen demand (BOD5) levels. The results indicate that under climate change scenarios, significantly more water bodies are expected to be in poor condition for ammonium, phosphorus, and BOD5, and to a lesser extent, nitrate. Specifically, average concentrations of ammonium and phosphorus could double during low-flow months. To maintain current water quality, substantial reductions of at least 25% in diffuse nitrate pollution and 50% in point source loads of ammonium, phosphorus, and BOD5 are required. This research underscores the importance of water quality management strategies.
The third article introduces an innovative approach to simulate nitrate concentrations in surface water bodies using machine learning models. Leveraging feature selection methods and artificial intelligence algorithms, including random forest (RF) and eXtreme Gradient Boosting (XGBoost), the study achieved high precision in predicting nitrate concentrations. These models analysed 19 input variables spanning ecological, hydrological, and environmental factors, along with nitrate concentration data from surface water quality gauging stations. In particular, the research highlighted the dominant role of location, explaining 87% of nitrate variability in relation to nitrogen and phosphorus concentration. This research showcased the potential of machine learning in water quality prediction and risk assessment. / We appreciate the help provided by the Júcar River Basin District Authority (CHJ), who gathered
field data. The first author’s research was partially funded by a PhD scholarship from the food
research stream of the programme “Colombia Científica—Pasaporte a la Ciencia”, granted by
the Colombian Institute for Educational Technical Studies Abroad (Instituto Colombiano de
Crédito Educativo y Estudios Técnicos en el Exterior, ICETEX). The authors thank the Spanish
Research Agency (AEI) for the financial support to RESPHIRA project (PID2019-106322RB-
100)/AEI/10.13039/501100011033. The contributors gratefully acknowledge funding for open
access charge: CRUE-Universitat Politècnica de València / Dorado Guerra, DY. (2024). Modelización integrada con aprendizaje automático para evaluar la contaminación por nutrientes en las masas de agua actual y bajo el efecto del cambio climático. Aplicación a la Demarcación Hidrográfica del Júcar [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202898 / Compendio
|
163 |
Comparative Analysis of Machine Learning Algorithms for Cryptocurrency Price PredictionKurtagic, Leila January 2024 (has links)
As the cryptocurrency markets continuously grow, so does the need for reliable analytical tools for price prediction. This study conducted a comparative analysis of machine learning (ML) algorithms for cryptocurrency price prediction. Through a literature review, three common and reliable ML algorithms for cryptocurrency price prediction were identified: Long Short-Term Memory (LSTM), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost). Utilizing the Bitcoin All Time History dataset from TradingView, the study assessed both the individual performance of each algorithm and the potential of ensemble methods to enhance predictive accuracy. The results reveal that the LSTM algorithm outperformed RF and XGBoost in terms of predictive accuracy according to the metrics Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). Additionally, two ensemble approaches were tested: Ensemble 1, which enhanced the LSTM model with the combined predictions from RF and XGBoost, and Ensemble 2, which integrated predictions from all three models. Ensemble 2 demonstrated the highest predictive performance among all models, highlighting the advantages of using ensemble approaches for more robust predictions.
|
164 |
Maskininlärning för Prediktion av Fartygsvibrationer : En jämförelsestudie av Random forest,Gradient boosting och Neurala nätverkTvinghagen, Fredrik, Queckfeldt, Jonathan January 2024 (has links)
Syftet med detta projekt är att utveckla en prediktiv modell för att förutsäga fartygsvibrationer baserat på historisk mätdata från lastfartyg. Projektet fokuserar på att använda maskininlärningsmetoder för att förutspå amplituden av vibrationer och identifiera de mest relevanta variablerna för modellens prediktiva förmåga. De undersökta metoderna inkluderar random forest, gradient boosting och neurala nätverk. Resultaten visar att random forest-modellen presterar bäst utifrån prestandamåtten: medelkvadratfelet (MSE), genomsnittliga absoluta felet (MAE) och genomsnittliga procentuella felet (MAPE). Projektet bidrar till en djupare förståelse av maskininlärningens användningsområden för en mer hållbar sjöfart. Syftet är att ge ett underlag till att potentiellt reducera vibrationer som påverkar fartygens komfort och strukturella integritet.
|
165 |
Early stopping for iterative estimation proceduresStankewitz, Bernhard 07 June 2024 (has links)
Diese Dissertation ist ein Beitrag zum Forschungsfeld Early stopping im Kontext iterativer Schätzverfahren. Wir betrachten Early stopping dabei sowohl aus der Perspektive impliziter Regularisierungsverfahren als auch aus der Perspektive adaptiver Methoden Analog zu expliziter Regularisierung reduziert das Stoppen eines Schätzverfahrens den stochastischen Fehler/die Varianz des endgültigen Schätzers auf Kosten eines zusätzlichen Approximationsfehlers/Bias. In diesem Forschungsbereich präsentieren wir eine neue Analyse des Gradientenabstiegsverfahrens für konvexe Lernprobleme in einem abstrakten Hilbert-Raum. Aus der Perspektive adaptiver Methoden müssen iterative Schätzerverfahren immer mit einer datengetriebenen letzten Iteration m kombiniert werden, die sowohl under- als auch over-fitting verhindert. In diesem Forschungsbereichpräsentieren wir zwei Beiträge: In einem statistischen inversen Problem, das durch iteratives Trunkieren der Singulärwertzerlegung regularisiert wird, untersuchen wir, unter welchen Umständen optimale Adaptiertheit erreicht werden kann, wenn wir an der ersten Iteration m stoppen, an der die geglätteten Residuen kleiner sind als ein kritischer Wert. Für L2-Boosting mittels Orthogonal Matching Pursuit (OMP) in hochdimensionalen linearen Modellen beweisen wir, dass sequenzielle Stoppverfahren statistische Optimalität garantieren können. Die Beweise beinhalten eine subtile punktweise Analyse einer stochastischen Bias-Varianz-Zerlegung, die durch den
Greedy-Algorithmus, der OMP unterliegt, induziert wird. Simulationsstudien
zeigen, dass sequentielle Methoden zu deutlich reduzierten Rechenkosten die
Leistung von Standardalgorithmen wie dem kreuzvalidierten Lasso oder der
nicht-sequentiellen Modellwahl über ein hochdimensionales Akaike- Kriterium
erbringen können. / This dissertation contributes to the growing literature on early stopping in modern statistics and machine learning. We consider early stopping from the perspective of both implicit regularization and adaptive estimation. From the former, analogous to an explicit regularization method, halting an iterative estimation procedure reduces the stochastic error/variance of the final estimator at the cost of some bias. In this area, we present a novel analysis of gradient descent learning for convex loss functions in an abstract Hilbert space setting, which combines techniques from inexact optimization and concentration of measure. From the perspective of adaptive estimation, iterative estimation procedures have to be combined with a data-driven choice m of the effectively selected iteration in order to avoid under- as well as over-fitting. In this area, we present two contributions: For truncated SVD estimation in statistical inverse problems, we examine under what circumstances optimal adaptation can be achieved by early stopping at the first iteration at which the smoothed residuals are smaller than a critical value. For L2-boosting via orthogonal matching pursuit (OMP) in high dimensional linear models, we prove that sequential early stopping rules can preserve statistical optimality in terms of a general oracle inequality for the empirical risk and recently established optimal convergence rates for the population risk.
|
166 |
Прогнозирование оттока клиентов в банках с помощью машинного обучения : магистерская диссертация / Prediction of customer churn in banks using machine learningКузнецов, А. О., Kuznetsov, A. O. January 2024 (has links)
The object of the study is the churn of customers in the banking sector. The purpose of the work is to develop a system that can effectively predict the churn of customers in the banking sector using ML methods. Research methods: synthesis, analysis, statistical modeling, ranking and abstract logical method. Result of the work: a method for predicting the churn of customers in a bank based on a trained ML model and a web interface that provides access to this model. / Объект исследования – отток клиентов в банковской сфере. Цель работы – разработка системы, которая сможет эффективно прогнозировать отток клиентов в банковском секторе с использованием методов МО. Методы исследования: синтез, анализ, статистическое моделирование, ранжирование и абстрактно–логический метод. Результат работы: метод прогнозирования оттока клиентов в банке основанный на обученной модели МО и web-интерфейс, предоставляющий доступ к этой модели.
|
167 |
Сравнение реализаций бустинг моделей на различных данных : магистерская диссертация / Comparison of boosting model implementations on different dataОнуфриенко, В. И., Onufrienko, V. I. January 2024 (has links)
Статья рассматривает сравнение различных реализаций бустинг моделей, таких как XGBoost, LightGBM и CatBoost, на различных наборах данных для оценки их эффективности и точности. / The article examines the comparison of different implementations of boosting models, such as XGBoost, LightGBM, and CatBoost, on various datasets to assess their effectiveness and accuracy.
|
168 |
[en] MACHINE LEARNING METHODS APPLIED TO PREDICTIVE MODELS OF CHURN FOR LIFE INSURANCE / [pt] MÉTODOS DE MACHINE LEARNING APLICADOS À MODELAGEM PREDITIVA DE CANCELAMENTOS DE CLIENTES PARA SEGUROS DE VIDATHAIS TUYANE DE AZEVEDO 26 September 2018 (has links)
[pt] O objetivo deste estudo foi explorar o problema de churn em seguros de vida, no sentido de prever se o cliente irá cancelar o produto nos próximos 6 meses. Atualmente, métodos de machine learning vêm se popularizando para este tipo de análise, tornando-se uma alternativa ao tradicional método de modelagem da probabilidade de cancelamento através da regressão logística. Em geral, um dos desafios encontrados neste tipo de modelagem é que a proporção de clientes que cancelam o serviço é relativamente pequena. Para isso, este estudo recorreu a técnicas de balanceamento para tratar a base naturalmente desbalanceada – técnicas de undersampling, oversampling e diferentes combinações destas duas foram utilizadas e comparadas entre si. As bases foram utilizadas para treinar modelos de Bagging, Random Forest e Boosting, e seus resultados foram comparados entre si e também aos resultados obtidos através do modelo de Regressão Logística. Observamos que a técnica SMOTE-modificado para balanceamento da base, aplicada ao modelo de Bagging, foi a combinação que apresentou melhores resultados dentre as combinações exploradas. / [en] The purpose of this study is to explore the churn problem in life insurance, in the sense of predicting if the client will cancel the product in the next 6 months. Currently, machine learning methods are becoming popular in this type of analysis, turning it into an alternative to the traditional method of modeling the probability of cancellation through logistics regression. In general, one of the challenges found in this type of modelling is that the proportion of clients who cancelled the service is relatively small. For this, the study resorted to balancing techniques to treat the naturally unbalanced base – under-sampling and over-sampling techniques and different combinations of these two were used and compared among each other. The bases were used to train models of Bagging, Random Forest and Boosting, and its results were compared among each other and to the results obtained through the Logistics Regression model. We observed that the modified SMOTE technique to balance the base, applied to the Bagging model, was the combination that presented the best results among the explored combinations.
|
169 |
How Certain Are You of Getting a Parking Space? : A deep learning approach to parking availability prediction / Maskininlärning för prognos av tillgängliga parkeringsplatserNilsson, Mathias, von Corswant, Sophie January 2020 (has links)
Traffic congestion is a severe problem in urban areas and it leads to the emission of greenhouse gases and air pollution. In general, drivers lack knowledge of the location and availability of free parking spaces in urban cities. This leads to people driving around searching for parking places, and about one-third of traffic congestion in cities is due to drivers searching for an available parking lot. In recent years, various solutions to provide parking information ahead have been proposed. The vast majority of these solutions have been applied in large cities, such as Beijing and San Francisco. This thesis has been conducted in collaboration with Knowit and Dukaten to predict parking occupancy in car parks one hour ahead in the relatively small city of Linköping. To make the predictions, this study has investigated the possibility to use long short-term memory and gradient boosting regression trees, trained on historical parking data. To enhance decision making, the predictive uncertainty was estimated using the novel approach Monte Carlo dropout for the former, and quantile regression for the latter. This study reveals that both of the models can predict parking occupancy ahead of time and they are found to excel in different contexts. The inclusion of exogenous features can improve prediction quality. More specifically, we found that incorporating hour of the day improved the models’ performances, while weather features did not contribute much. As for uncertainty, the employed method Monte Carlo dropout was shown to be sensitive to parameter tuning to obtain good uncertainty estimates.
|
170 |
Optimierung von Algorithmen zur Videoanalyse: Ein Analyseframework für die Anforderungen lokaler FernsehsenderRitter, Marc 02 February 2015 (has links)
Die Datenbestände lokaler Fernsehsender umfassen oftmals mehrere zehntausend Videokassetten. Moderne Verfahren werden benötigt, um derartige Datenkollektionen inhaltlich automatisiert zu erschließen. Das Auffinden relevanter Objekte spielt dabei eine übergeordnete Rolle, wobei gesteigerte Anforderungen wie niedrige Fehler- und hohe Detektionsraten notwendig sind, um eine Korruption des Suchindex zu verhindern und erfolgreiche Recherchen zu ermöglichen. Zugleich müssen genügend Objekte indiziert werden, um Aussagen über den tatsächlichen Inhalt zu treffen.
Diese Arbeit befasst sich mit der Anpassung und Optimierung bestehender Detektionsverfahren. Dazu wird ein auf die hohen Leistungsbedürfnisse der Videoanalyse zugeschnittenes holistisches Workflow- und Prozesssystem mit der Zielstellung implementiert, die Entwicklung von Bilderkennungsalgorithmen, die Visualisierung von Zwischenschritten sowie deren Evaluation zu ermöglichen. Im Fokus stehen Verfahren zur strukturellen Zerlegung von Videomaterialien und zur inhaltlichen Analyse im Bereich der Gesichtsdetektion und Fußgängererkennung.:1. Motivation . . . 1
1.1. Einordnung in den Retrievalprozess . . . . . . . . . . . . . . . . . . . 2
1.2. Infrastruktur zur Optimierung von Verfahren zur Videoanalyse . . . . 4
1.3. Herausforderungen der Bilderkennung . . . . . . . . . . . . . . . . . . 6
1.4. Wissenschaftliche Ergebnisse dieser Arbeit . . . . . . . . . . . . . . . 9
1.5. Kapitelübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2. Methoden und Strategien der Videoanalyse . . . 15
2.1. Fachgebiete der Bilderkennung . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1. Maschinelles Lernen . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2. Maschinelles Sehen . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3. Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4. Mustererkennung . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2. Strukturelle Analyse von generischen Mustererkennungsystemen . . . 22
2.2.1. Datenakquisition . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2. Musteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3. Musterklassifizierung . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.4. Bilderkennungssysteme . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5. Wissensentdeckung in Datenbanken . . . . . . . . . . . . . . . 28
2.3. Bilderkennung in der inhaltsbasierten Bildsuche . . . . . . . . . . . . 29
2.3.1. Paradigmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2. Bildsignaturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3. Signaturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4. Lerntechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4. Holistische Bilderkennungssysteme im Überblick . . . . . . . . . . . . 44
2.4.1. Ein segment- und konturbasiertes CBIR-System . . . . . . . . 45
2.4.2. Biologisch inspirierte Systeme . . . . . . . . . . . . . . . . . . 48
2.4.3. Lernen aus wenigen Beispielen . . . . . . . . . . . . . . . . . . 51
2.5. Objekterkennung im Szenenkontext . . . . . . . . . . . . . . . . . . . 55
2.6. Aktuelle Grenzen der Muster- und Objekterkennung . . . . . . . . . . 60
2.7. Konzept eines generischen Workflows zur Objekterkennung in Videos . . . 64
2.7.1. Strukturelle Analyse . . . . . . . . . . . . . . . . . . . . . . . 64
2.7.2. Inhaltliche Analyse . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.3. Erweiterung des klassischen Paradigmas zur Objekterkennung . . . 67
2.7.4. Anwendungsdomänen . . . . . . . . . . . . . . . . . . . . . . . 68
2.8. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3. Systemarchitektur zur Optimierung von Bilderkennungsverfahren . . . 71
3.1. Vorüberlegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.1. Softwaretechnische Anforderungen . . . . . . . . . . . . . . . . 72
3.1.2. Bewertung der Systemleistung . . . . . . . . . . . . . . . . . . 75
3.1.3. Ein- und Ausgabe . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1.4. Modellierung von Domänenwissen . . . . . . . . . . . . . . . . 90
3.1.5. Diskriminierbarkeit von Merkmalen . . . . . . . . . . . . . . . 92
3.1.6. Zusammenfassende Darstellung . . . . . . . . . . . . . . . . . 95
3.2. Architektur des Gesamtsystems . . . . . . . . . . . . . . . . . . . . . 95
3.3. Struktureller Aufbau von AMOPA . . . . . . . . . . . . . . . . . . . 97
3.3.1. Verwendung von Prozessketten . . . . . . . . . . . . . . . . . 101
3.3.2. Bild- und Videoverarbeitung . . . . . . . . . . . . . . . . . . . 106
3.4. Annotation von Bildern und Videos . . . . . . . . . . . . . . . . . . . 107
3.4.1. Ein Annotationswerkzeug für Videos . . . . . . . . . . . . . . 108
3.4.2. Ein Ansatz zu Annotation, Klassifikation und Evaluation . . . 111
3.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4. Videosegmentierung . . . 119
4.1. Schnitterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.1.1. Struktureller Aufbau von Videos . . . . . . . . . . . . . . . . 121
4.1.2. Klassische Verfahren . . . . . . . . . . . . . . . . . . . . . . . 124
4.1.3. TRECVid: Evaluationskampagne und Datensätze . . . . . . . 125
4.1.4. Das Verfahren von AT&T . . . . . . . . . . . . . . . . . . . . 130
4.2. Schnittkomposition und Ähnlichkeit . . . . . . . . . . . . . . . . . . . 137
4.2.1. Dominant-Color-Deskriptor . . . . . . . . . . . . . . . . . . . 140
4.2.2. Color-Layout-Deskriptor . . . . . . . . . . . . . . . . . . . . . 140
4.2.3. Scalable-Color-Deskriptor . . . . . . . . . . . . . . . . . . . . 141
4.2.4. Edge-Histogram-Deskriptor . . . . . . . . . . . . . . . . . . . 142
4.3. Konzeption und Implementierung . . . . . . . . . . . . . . . . . . . . 143
4.3.1. Einbindung in das Prozesskonzept von AMOPA . . . . . . . . 144
4.3.2. Auswahl des Farbraums . . . . . . . . . . . . . . . . . . . . . 148
4.3.3. Bewegungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3.4. Bestimmung und Verifikation von Schnittkandidaten . . . . . 159
4.3.5. Ergebnisdarstellung und -speicherung . . . . . . . . . . . . . . 171
4.4. Evaluation und Optimierung der harten Schnitterkennung . . . . . . 173
4.4.1. Die TRECVid Evaluationsmethodologie . . . . . . . . . . . . 174
4.4.2. Optimierung von Recall und Laufzeit . . . . . . . . . . . . . . 176
4.4.3. Optimierung der Precision . . . . . . . . . . . . . . . . . . . . 181
4.4.4. Validierung der Ergebnisse . . . . . . . . . . . . . . . . . . . . 183
4.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5. Gesichtsdetektion . . . 187
5.1. Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.1.1. Verfahrensklassen und Datensätze . . . . . . . . . . . . . . . . 189
5.1.2. Boosting-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 192
5.2. Realisierung eines Systems zur Musterklassifizierung . . . . . . . . . . 200
5.2.1. Trainingsphase . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.2.2. Klassifikation mit Hilfe von Detektorketten . . . . . . . . . . . 203
5.2.3. Erlernen eines geboosteten Gesichtsklassifikators . . . . . . . . 206
5.2.4. Exkurs: Gesichtslokalisation mittels Schwarmintelligenz . . . . 210
5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.3.1. Datensatz TS100 . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.3.2. Annotation von Gesichtern in unbeschränkten Domänen . . . 217
5.3.3. Evaluationsmethodik und Ergebnisdiskussion . . . . . . . . . . 218
5.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6. Erkennung weiterer Objektklassen am Beispiel von Personen . . . 229
6.1. Merkmale für die Personenerkennung . . . . . . . . . . . . . . . . . . 230
6.2. Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.3. Evaluation von Merkmalen auf verschiedenen Datensätzen . . . . . . 234
6.3.1. Evaluationsmethodik . . . . . . . . . . . . . . . . . . . . . . . 235
6.3.2. Auswertung und Ergebnisdiskussion . . . . . . . . . . . . . . . 238
6.4. Evaluation eines kaskadierten Klassifikationssystems . . . . . . . . . . 242
6.4.1. Systemarchitektur und Training . . . . . . . . . . . . . . . . . 242
6.4.2. Klassifikation und Evaluation . . . . . . . . . . . . . . . . . . 244
6.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7. Zusammenfassung und Ausblick . . . 251
Anhang . . . 257
A. Übersicht zu den Experimenten zur Schnitterkennung . . . . . . . . . 259
A.1. Konfiguration und Laufzeiten der Experimente . . . . . . . . . 259
A.2. Stufe I: Farbraum und Bewegungsschätzung . . . . . . . . . . 261
A.3. Stufe II: Optimierung der Precision . . . . . . . . . . . . . . . 261
A.4. Echtzeitfähige Datenvisualisierung . . . . . . . . . . . . . . . . 267
A.5. Visualisierung einzelner Komponenten an Beispielen . . . . . . 269
B. Ergänzungen zu den Experimenten zur Gesichtsdetektion . . . . . . . 273
B.1. Trainingsverlauf des Klassifikators TUC FD . . . . . . . . . . 273
B.2. Übersicht zu den Mindestdetektionsgrößen auf TS100 . . . . . 273
B.3. Visualisierung der Detektionen auf TS100 . . . . . . . . . . . 279
C. Systemkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Verzeichnis der Abkürzungen und Begriffe . . . v
Literaturverzeichnis . . . vii / The data collections of local television stations often consist of multiples of ten thousand video tapes. Modern methods are needed to exploit the content of such archives. While the retrieval of objects plays a fundamental role, essential requirements incorporate low false and high detection rates in order to prevent the corruption of the search index. However, a sufficient number of objects need to be found to make assumptions about the content explored.
This work focuses on the adjustment and optimization of existing detection techniques. Therefor, the author develops a holistic framework that directly reflects on the high demands of video analysis with the aim to facilitate the development of image processing algorithms, the visualization of intermediate results, and their evaluation and optimization. The effectiveness of the system is demonstrated on the structural decomposition of video footage and on content-based detection of faces and pedestrians.:1. Motivation . . . 1
1.1. Einordnung in den Retrievalprozess . . . . . . . . . . . . . . . . . . . 2
1.2. Infrastruktur zur Optimierung von Verfahren zur Videoanalyse . . . . 4
1.3. Herausforderungen der Bilderkennung . . . . . . . . . . . . . . . . . . 6
1.4. Wissenschaftliche Ergebnisse dieser Arbeit . . . . . . . . . . . . . . . 9
1.5. Kapitelübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2. Methoden und Strategien der Videoanalyse . . . 15
2.1. Fachgebiete der Bilderkennung . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1. Maschinelles Lernen . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2. Maschinelles Sehen . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3. Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4. Mustererkennung . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2. Strukturelle Analyse von generischen Mustererkennungsystemen . . . 22
2.2.1. Datenakquisition . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2. Musteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3. Musterklassifizierung . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.4. Bilderkennungssysteme . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5. Wissensentdeckung in Datenbanken . . . . . . . . . . . . . . . 28
2.3. Bilderkennung in der inhaltsbasierten Bildsuche . . . . . . . . . . . . 29
2.3.1. Paradigmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2. Bildsignaturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3. Signaturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4. Lerntechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4. Holistische Bilderkennungssysteme im Überblick . . . . . . . . . . . . 44
2.4.1. Ein segment- und konturbasiertes CBIR-System . . . . . . . . 45
2.4.2. Biologisch inspirierte Systeme . . . . . . . . . . . . . . . . . . 48
2.4.3. Lernen aus wenigen Beispielen . . . . . . . . . . . . . . . . . . 51
2.5. Objekterkennung im Szenenkontext . . . . . . . . . . . . . . . . . . . 55
2.6. Aktuelle Grenzen der Muster- und Objekterkennung . . . . . . . . . . 60
2.7. Konzept eines generischen Workflows zur Objekterkennung in Videos . . . 64
2.7.1. Strukturelle Analyse . . . . . . . . . . . . . . . . . . . . . . . 64
2.7.2. Inhaltliche Analyse . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.3. Erweiterung des klassischen Paradigmas zur Objekterkennung . . . 67
2.7.4. Anwendungsdomänen . . . . . . . . . . . . . . . . . . . . . . . 68
2.8. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3. Systemarchitektur zur Optimierung von Bilderkennungsverfahren . . . 71
3.1. Vorüberlegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.1. Softwaretechnische Anforderungen . . . . . . . . . . . . . . . . 72
3.1.2. Bewertung der Systemleistung . . . . . . . . . . . . . . . . . . 75
3.1.3. Ein- und Ausgabe . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1.4. Modellierung von Domänenwissen . . . . . . . . . . . . . . . . 90
3.1.5. Diskriminierbarkeit von Merkmalen . . . . . . . . . . . . . . . 92
3.1.6. Zusammenfassende Darstellung . . . . . . . . . . . . . . . . . 95
3.2. Architektur des Gesamtsystems . . . . . . . . . . . . . . . . . . . . . 95
3.3. Struktureller Aufbau von AMOPA . . . . . . . . . . . . . . . . . . . 97
3.3.1. Verwendung von Prozessketten . . . . . . . . . . . . . . . . . 101
3.3.2. Bild- und Videoverarbeitung . . . . . . . . . . . . . . . . . . . 106
3.4. Annotation von Bildern und Videos . . . . . . . . . . . . . . . . . . . 107
3.4.1. Ein Annotationswerkzeug für Videos . . . . . . . . . . . . . . 108
3.4.2. Ein Ansatz zu Annotation, Klassifikation und Evaluation . . . 111
3.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4. Videosegmentierung . . . 119
4.1. Schnitterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.1.1. Struktureller Aufbau von Videos . . . . . . . . . . . . . . . . 121
4.1.2. Klassische Verfahren . . . . . . . . . . . . . . . . . . . . . . . 124
4.1.3. TRECVid: Evaluationskampagne und Datensätze . . . . . . . 125
4.1.4. Das Verfahren von AT&T . . . . . . . . . . . . . . . . . . . . 130
4.2. Schnittkomposition und Ähnlichkeit . . . . . . . . . . . . . . . . . . . 137
4.2.1. Dominant-Color-Deskriptor . . . . . . . . . . . . . . . . . . . 140
4.2.2. Color-Layout-Deskriptor . . . . . . . . . . . . . . . . . . . . . 140
4.2.3. Scalable-Color-Deskriptor . . . . . . . . . . . . . . . . . . . . 141
4.2.4. Edge-Histogram-Deskriptor . . . . . . . . . . . . . . . . . . . 142
4.3. Konzeption und Implementierung . . . . . . . . . . . . . . . . . . . . 143
4.3.1. Einbindung in das Prozesskonzept von AMOPA . . . . . . . . 144
4.3.2. Auswahl des Farbraums . . . . . . . . . . . . . . . . . . . . . 148
4.3.3. Bewegungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3.4. Bestimmung und Verifikation von Schnittkandidaten . . . . . 159
4.3.5. Ergebnisdarstellung und -speicherung . . . . . . . . . . . . . . 171
4.4. Evaluation und Optimierung der harten Schnitterkennung . . . . . . 173
4.4.1. Die TRECVid Evaluationsmethodologie . . . . . . . . . . . . 174
4.4.2. Optimierung von Recall und Laufzeit . . . . . . . . . . . . . . 176
4.4.3. Optimierung der Precision . . . . . . . . . . . . . . . . . . . . 181
4.4.4. Validierung der Ergebnisse . . . . . . . . . . . . . . . . . . . . 183
4.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5. Gesichtsdetektion . . . 187
5.1. Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.1.1. Verfahrensklassen und Datensätze . . . . . . . . . . . . . . . . 189
5.1.2. Boosting-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 192
5.2. Realisierung eines Systems zur Musterklassifizierung . . . . . . . . . . 200
5.2.1. Trainingsphase . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.2.2. Klassifikation mit Hilfe von Detektorketten . . . . . . . . . . . 203
5.2.3. Erlernen eines geboosteten Gesichtsklassifikators . . . . . . . . 206
5.2.4. Exkurs: Gesichtslokalisation mittels Schwarmintelligenz . . . . 210
5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.3.1. Datensatz TS100 . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.3.2. Annotation von Gesichtern in unbeschränkten Domänen . . . 217
5.3.3. Evaluationsmethodik und Ergebnisdiskussion . . . . . . . . . . 218
5.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6. Erkennung weiterer Objektklassen am Beispiel von Personen . . . 229
6.1. Merkmale für die Personenerkennung . . . . . . . . . . . . . . . . . . 230
6.2. Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.3. Evaluation von Merkmalen auf verschiedenen Datensätzen . . . . . . 234
6.3.1. Evaluationsmethodik . . . . . . . . . . . . . . . . . . . . . . . 235
6.3.2. Auswertung und Ergebnisdiskussion . . . . . . . . . . . . . . . 238
6.4. Evaluation eines kaskadierten Klassifikationssystems . . . . . . . . . . 242
6.4.1. Systemarchitektur und Training . . . . . . . . . . . . . . . . . 242
6.4.2. Klassifikation und Evaluation . . . . . . . . . . . . . . . . . . 244
6.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7. Zusammenfassung und Ausblick . . . 251
Anhang . . . 257
A. Übersicht zu den Experimenten zur Schnitterkennung . . . . . . . . . 259
A.1. Konfiguration und Laufzeiten der Experimente . . . . . . . . . 259
A.2. Stufe I: Farbraum und Bewegungsschätzung . . . . . . . . . . 261
A.3. Stufe II: Optimierung der Precision . . . . . . . . . . . . . . . 261
A.4. Echtzeitfähige Datenvisualisierung . . . . . . . . . . . . . . . . 267
A.5. Visualisierung einzelner Komponenten an Beispielen . . . . . . 269
B. Ergänzungen zu den Experimenten zur Gesichtsdetektion . . . . . . . 273
B.1. Trainingsverlauf des Klassifikators TUC FD . . . . . . . . . . 273
B.2. Übersicht zu den Mindestdetektionsgrößen auf TS100 . . . . . 273
B.3. Visualisierung der Detektionen auf TS100 . . . . . . . . . . . 279
C. Systemkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Verzeichnis der Abkürzungen und Begriffe . . . v
Literaturverzeichnis . . . vii
|
Page generated in 0.0517 seconds