Spelling suggestions: "subject:"[een] DIELECTRIC CONSTANT"" "subject:"[enn] DIELECTRIC CONSTANT""
41 |
Critical Behaviour Of The Thermodynamic Quantities For The Thermotropic And Ferroelectric Liquid Crystals Close To The Phase TransitionsKilit, Emel 01 February 2011 (has links) (PDF)
The specific heat Cp has been showed at various temperatures in the literature, which shows a
sharp increase labeled as the lambda-transition at the critical temperature. This transition has been
observed previously among the phases of solid-nematic-isotropic liquid in p-azoxyanisole
(PAA) and anisaldazine (AAD), and among the phases of solid-smectic-cholesteric-isotropic
liquid in cholesteryl myristate (CM). In this thesis work, we analyze the experimental data for
the temperature dependence of Cp and the thermal expansion alpha_p and also pressure dependence
of alpha_p by a power-law formula. From the analysis of pressure dependence of alpha_p, we calculate
the temperature dependencies of specific heat Cp and of the isothermal compressibility kappa_T for
the phase transitions considered in PAA, AAD and CM. Our calculations for the temperature
dependence of the p and kappa_T can be compared with the experimental data when available in
the literature.
Polarization, tilt angle and the dielectric constant have been reported in the literature at various
temperatures close to the solid-smectic C*-smectic A-isotropic liquid transition in the
ferroelectric liquid crystals of A7 and C7. The mean field model with the free energy expanded in terms of the order parameters (polarization and tilt angle) has been reported in the
literature previously. In this thesis work, we apply the mean field model first time by fitting
the expressions derived for the temperature dependence of the polarization, tilt angle and
the dielectric constant to the experimental data for A7 and C7 from the literature. Since the
mean field model studied here describes adequately the observed behaviour of A7 and C7, the
expressions for the temperature dependence of the polarization, tilt angle and the dielectric
constant which we derive, can also be applied to some other ferroelectric liquid crystals to
explain their observed behaviour.
|
42 |
Design and Numerical Simulation of Wide-Band Electromagnetic Absorption MaterialsChang, Yung-Feng 27 June 2003 (has links)
Radio wave absorbing materials (RAM) are commonly found amongst high-tech products such as LCD electronic devices, laptop and desktop computers.
Electromagnetic wave absorbing materials are composed of dielectric materials mixed with ferrite, a magnetic material, with varying shapes and sizes. It should be capable of absorbing electromagnetic energy at normal and large incident angles over a wide range of frequencies. This requires the material to possess a large relative complex dielectric constant (permitivity £`r), as well as a large relative complex magnetic permeability constant (£gr).
Due to the nature of the complexity of the RAM, which surpasses standard analysis techniques, we have derived, for this thesis, frequency-domain two-dimensional finite-difference formulas for modeling the electromagnetic behavior of RAM. This involves using a material that has a given £`r(1:10 range) and £gr(1:1000 range) which covers a vast range of indices of refraction. To reduce the computational domain, we took care of implementing the numerical absorbing boundary conditions, while also implementing material averaging schemes for the finite-difference coefficients that cover the region where sample medium changes. Simple numerical examples are included to verify our mathematical model.
We also implemented an optimal one-dimensional multi-layered RAM design, designed by using a constrained optimization searching technique. Included in the thesis are two complete, practical, optimal designs considering available material parameters (finite loss tangent) as well as their actual manufacturing limitations (layer thickness).
|
43 |
Passive inductively coupled wireless sensor for dielectric constant sensingZhang, Sheng, active 2013 24 October 2013 (has links)
In order to address the challenges of capacitive sensing in harsh environment, self resonant passive wireless sensors are studied. The capacitive sensing elements based on interdigitated capacitor (IDC) sensor are used. A semi-empirical model providing accurate capacitance calculation for IDCs over a wide range of dimensions and dielectric constants is developed. An equivalent circuit model based on electric field distribution is proposed, leading to a closed form approximation for IDC capacitance calculation. The conductivity of the material under test is also considered and a model is proposed to calculate effective capacitance as a function of conductivity and measurement frequency. The model is used to study the design optimization of IDC sensor and suggested design procedure is proposed. To wirelessly interrogate the capacitive sensor, it is connected to an inductive element to form a resonant circuit, while the measurement is made at remote reader coil. Advantages and disadvantages of different type of resonant structure design are analyzed. In order to assist the design process, a SPICE circuit model is developed to estimate the resonant frequency of the self resonant sensor. Miniaturized sensors with different dimensions are designed, fabricated and tested. The sensor is integrated with silicon nanowire fabric coated with polymer. Measurements are made to illustrate the enhancement in sensing capability by integrating chemical selective material. / text
|
44 |
A study on the calibration and accuracy of the one-step TDR methodRunkles, Brian David 01 June 2006 (has links)
Traditional in-situ soil compaction monitoring methods are often limited in their application, thus quality control of compacted fills and roadway embankments remains a challenging problem. As a result, new methods are being developed to more accurately measure in-situ compaction parameters. Time domain reflectometry (TDR) is one such method. Several advances have been made over the past few years to further the use of TDR technology in water content and density measurement of compacted fill. The one-step method relies on the measurement of the apparent dielectric constant in conjunction with the bulk electrical conductivity, and correlates them through two soil-specific constants, f and g. The two measurements, together with other soil specific constants, are then used to back calculate the water content and density in a single step. However, questions remain regarding the accuracy and bias of TDR measurements in relation to other "established" in-situ procedures such as the nuclear gage and speedy moisture. Results from an experimental program to obtain calibration constants for typical sands used in roadway construction are presented. A number of side-by-side tests are performed to compare the measurements obtained using the TDR one-step method to those obtained form other methods. Conducting such side-by-side tests is a critical step in the progress and eventual widespread usage of the one-step method. In addition, all the results are compared against an independent measurement of the in-place density from a slurry-replacement method. The objective of the independent measurement is to provide a baseline for accurate and unbiased evaluation of TDR and other technologies.
|
45 |
Studies on Synthesis, Structural and Electrical Properties of Complex Oxide Thin Films: Ba1-xSrxTiO3 and La2-xSrxNiO4Podpirka, Adrian Alexander 27 July 2012 (has links)
High performance miniaturized passives are of great importance for advanced nanoelectronic packages for several applications including efficient power delivery. Low cost thin film capacitors fabricated directly on package (and/or on-chip) are an attractive approach towards realizing such devices. This thesis aims to explore fundamental frequency dependent dielectric and insulating properties of thin film high-k dielectric constant in the perovskite and perovskite-related complex oxides. Throughout this thesis, we have successfully observed the role of structure, strain and oxygen stoichiometry on the dielectric properties of thin film complex oxides, allowing a greater understanding of processing conditions and polarization mechanisms. In the first section of the thesis, we explore novel processing methods in the conventional ferroelectric, barium strontium titanate, \(Ba_{1-x}Sr_xTiO_3 (BST)\), using ultraviolet enhanced oxidation techniques in order to achieve improvements in the dielectric properties. Using this method, we also explore the growth of BST on inexpensive non-noble metals such as Ni which presents technical challenges due to the ability to oxidize at high temperatures. We observe a significant lowering of the dielectric loss while also lowering the process temperature which allows us to maintain an intimate interface between the dielectric layer and the metal electrode. The second section of this thesis explores the novel dielectric material, Lanthanum Strontium Nickelate, \(La_{2-x}Sr_xNiO_4 (LSNO)\), which exhibits a colossal dielectric response. For the first time, we report on the colossal dielectric properties of polycrystalline and epitaxial thin film LSNO. We observe a significant polarization dependence on the microstructure due to the grain/grain boundary interaction with charged carriers. We next grew epitaxial films on various insulating oxide substrates in order to decouple the grain boundary interaction. Here we observed substrate dependent dielectric properties associated with induced strain. We also observe, due to the p-type carriers in LSNO, pn junction formation when grown epitaxially on the conducting oxide degenerate n-type Nb-doped \(SrTiO_3\). Finally we explore the growth mechanism of epitaxial LSNO as a function of high oxygen content. Due to the ability for LSNO to take in interstitial oxygen, a reoriented growth is observed at a critical thickness, thereby allowing us to vary anisotropy as a function of deposition conditions. / Engineering and Applied Sciences
|
46 |
Periodic Mesoporous Organosilica and SilicaWang, Wendong 31 August 2011 (has links)
Periodic mesoporous material is a class of solids that possess periodically ordered pores with sizes of 2–50 nm. After a brief introduction to the synthesis, structure, property and function of periodic mesoporous materials in general in Chapter 1, a specific type of periodic mesoporous material, periodic mesoporous organosilica (PMO), is examined in detail in Chapter 2. Chapter 3 and Chapter 4 focus on the application of periodic mesoporous organosilica as low-dielectric-constant (low-k) insulating materials on semiconductor microprocessors. Specifically, Chapter 3 introduces a vapor-phase delivery technique, vacuum-assisted aerosol deposition, for the synthesis of PMO thin films; Chapter 4 studies one property crucial for the application of low-k PMO in detail—hydrophobicity. The focus of Chapter 5 turns to a novel sandwich-structured
nanocomposite made of periodic mesoporous silica and graphene oxide. In Chapter 6,
progress towards the synthesis of periodic mesoporous quartz is summarized. A
conclusion and an outlook are given in Chapter 7.
|
47 |
Periodic Mesoporous Organosilica and SilicaWang, Wendong 31 August 2011 (has links)
Periodic mesoporous material is a class of solids that possess periodically ordered pores with sizes of 2–50 nm. After a brief introduction to the synthesis, structure, property and function of periodic mesoporous materials in general in Chapter 1, a specific type of periodic mesoporous material, periodic mesoporous organosilica (PMO), is examined in detail in Chapter 2. Chapter 3 and Chapter 4 focus on the application of periodic mesoporous organosilica as low-dielectric-constant (low-k) insulating materials on semiconductor microprocessors. Specifically, Chapter 3 introduces a vapor-phase delivery technique, vacuum-assisted aerosol deposition, for the synthesis of PMO thin films; Chapter 4 studies one property crucial for the application of low-k PMO in detail—hydrophobicity. The focus of Chapter 5 turns to a novel sandwich-structured
nanocomposite made of periodic mesoporous silica and graphene oxide. In Chapter 6,
progress towards the synthesis of periodic mesoporous quartz is summarized. A
conclusion and an outlook are given in Chapter 7.
|
48 |
High dielectric constant polymer nanocomposites for embedded capacitor applicationsLu, Jiongxin 17 September 2008 (has links)
Driven by ever growing demands of miniaturization, increased functionality, high performance and low cost for microelectronic products and packaging, embedded passives will be one of the key emerging techniques for realizing the system integration which offer various advantages over traditional discrete components. Novel materials for embedded capacitor applications are in great demand, for which a high dielectric constant (k), low dielectric loss and process compatibility with printed circuit boards are the most important prerequisites. To date, no available material satisfies all these prerequisites and research is needed to develop materials for embedded capacitor applications. Conductive filler/polymer composites are likely candidate material because they show a dramatic increase in their dielectric constant close to the percolation threshold. One of the major hurdles for this type of high-k composites is the high dielectric loss inherent in these systems.
In this research, material and process innovations were explored to design and develop conductive filler/polymer nanocomposites based on nanoparticles with controlled parameters to fulfill the balance between sufficiently high-k and low dielectric loss, which satisfied the requirements for embedded decoupling capacitor applications.
This work involved the synthesis of the metal nanoparticles with different parameters including size, size distribution, aggregation and surface properties, and an investigation on how these varied parameters impact the dielectric properties of the high-k nanocomposites incorporated with these metal nanoparticles. The dielectric behaviors of the nanocomposites were studied systematically over a range of frequencies to determine the dependence of dielectric constant, dielectric loss tangent and dielectric strength on these parameters.
|
49 |
Theoretical Study of Electronic States of Chemical Bonds / 化学結合の電子状態に関する理論的研究 / カガク ケツゴウ ノ デンシ ジョウタイ ニ カンスル リロンテキ ケンキュウSzarek, Pawel 24 September 2008 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14161号 / 工博第2995号 / 新制||工||1444(附属図書館) / 26467 / UT51-2008-N478 / 京都大学大学院工学研究科マイクロエンジニアリング専攻 / (主査)教授 立花 明知, 教授 榊 茂好, 教授 木村 健二 / 学位規則第4条第1項該当
|
50 |
Synthesis, high-pressure study and dielectric characterization of two lead-free perovskite materials : SrTi1-xZrxO3 and KNb1-xTaxO3 / Synthèse, étude sous haute pression et caractérisation diélectrique des deux matériaux pérovskites sans plomb : SrTi1-xZrxO3 and KNb1-xTaxO3Di Geronimo Camacho, Elizabeth Carolina 15 December 2016 (has links)
Les matériaux de structure pérovskite de formule générale ABO3 sont les ferroélectriques les plus étudiés pour leurs propriétés intéressantes dans de nombreuses applications technologiques. Cependant leurs propriétés sont directement reliées à la structure et sont fortement conditionnées par les transitions de phases qui dépendent de la température, de la composition chimique et de la pression. Dans le manuscrit de thèse, le comportement sous haute pression de deux matériaux pérovskite SrTi1-xZrxO3 (STZ) et KNb1-XTaXO3 (KNT) est étudié et différentes techniques de frittage pour améliorer la densité des céramiques et optimiser les propriétés ferroélectriques des céramiques K(Nb0.40Ta0.60)O3 et (KxNa1-x)Nb0.6Ta0.4O3 sont examinées.Des analyses sous hautes pressions par spectroscopie Raman et diffraction des rayons X des poudres de SrTi1-xZrxO3 (x= 0.3, 0.4, 0.5, 0.6, 0.7) et KNb1-XTaXO3 (x=0.4, 0.5, 0.6, 0.9) en enclume diamant ont été réalisées. Les spectres Raman montrent une augmentation des modes Raman avec la pression pour les poudres de STZ indiquant que la pression induit des transitions de phases vers des symétries plus basses de la maille dans ces composés.De plus, les expériences de spectroscopie Raman ont fait apparaître une décroissance des modes Raman lorsque la pression est augmentée, montrant bien que la pression induit des transitions de phases vers des structure plus symétriques. L'évolution du mode Raman principal pour les phases orthorhombique et quadratique a été suivi jusqu'à ce que la phase cubique apparaîsse, ce qui nous a permis de proposer un diagramme de phase pression-composition pour les composés KNT.Trois différentes techniques de frittage, utilisation d'additifs, frittage en deux paliers et SPS ont été étudiées pour les céramiques de K(Nb0.4Ta0.6)O3 et (KxNa1-x)Nb0.6Ta0.4O3 . La constante diélectrique et les pertes en fonction de la température des céramiques ont été améliorées par l'utilisation du KF comme additif de frittage et par le frittage en deux paliers. Les échantillons densifiés par SPS présentent une microstructure fine et possèdent les plus fortes densités. Ils ont les meilleurs propriétés ferroélectriques. Aucun changement significatif de la température de Curie ne semble être induit par le taux de Na, et on observe cependant une augmentation de la constante diélectrique et des propriétés ferroélectriques suivant le taux de Na. / Perovskite materials whose general chemical formula is ABO3 are one of the most study ferroelectrics due to the interesting properties that they have for technological applications. However, their properties are directly related to structural phase transitions that could depend of temperature, composition and pressure. In the studies presented here, we first examined the high-pressure behavior of two perovskite materials SrTi1-xZrxO3 (STZ) and KNb1-XTaXO3 (KNT), and we later continued to investigate different sintering techniques in order to improve the densification, dielectric and ferroelectric properties of K(Nb0.40Ta0.60)O3 and (KxNa1-x)Nb0.6Ta0.4O3 ceramics.High-pressure Raman scattering and X-ray diffraction investigations of SrTi1-xZrxO3 (x= 0.3, 0.4, 0.5, 0.6, 0.7) and KNb1-XTaXO3 (x=0.4, 0.5, 0.6, 0.9) powders were conducted in diamond anvil cells. Raman scattering experiments showed and increased of Raman modes with pressure for the STZ samples, which indicates that pressure induced phase transitions towards lower symmetry for these compounds.Moreover, high pressure Raman spectroscopy experiments showed a decrease of the Raman modes as the pressure was increased for the KNT samples, showing that pressure induced phase transitions towards higher symmetries. The evolution of the main Raman modes for the orthorhombic and tetragonal phases were followed until the cubic phase was reach, and allowed us to propose a pressure-composition phase diagram for the KNT compounds.Three different sintering techniques, sintered aids, two step sintering and spark plasma sintering, were used on K(Nb0.4Ta0.6)O3 and (KxNa1-x)Nb0.6Ta0.4O3 ceramics. The use of KF as sintered aid and the two step sintering method showed an improvement of the dielectric constant and dielectric losses of these samples. SPS samples presented a fine microstructure with the highest density and the best ferroelectric behavior. We did not detect any changes on the Curie temperature due the amount of Na but and increase of the dielectric constant and the ferroelectric properties was observed due to the amount of Na.
|
Page generated in 0.0581 seconds