• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 323
  • 143
  • 42
  • 25
  • 12
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 648
  • 104
  • 101
  • 99
  • 89
  • 76
  • 72
  • 70
  • 69
  • 68
  • 60
  • 56
  • 51
  • 50
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

Intégrateurs exponentiels modifiés pour la simulation des vagues non linéaires / Non disponible

Eichwald, Brice 05 July 2013 (has links)
Pour réaliser des simulations précises aux temps longs pour des vagues non linéaires, il faut faire appel à des algorithmes d’évolution temporelle précis. En particulier, la combinaison d’un pas de temps adaptatif avec un facteur intégrant est connue pour être très efficace. Nous proposons une modification de cette technique. Le principe consiste à soustraire un certain polynôme à une EDP. Puis, comme pour le facteur intégrant, nous faisons un changement de variable pour retirer la partie linéaire. Mais nous espérons retirer quelque chose de plus afin de rendre l’EDP moins raide pour les calculs numériques. Le polynôme choisi est une expansion de Taylor autour du temps initial de la solution. Afin de calculer les différentes dérivées nécessaires, nous utilisons le Dense Output qui donne la possibilité d’approximer les dérivées de la solution à tout temps. Une fois le facteur intégrant modifié appliqué, nous faisons appel à une avance temporelle classique afin de résoudre l’équation d’évolution. Il a été considéré plusieurs schémas de Runge-Kutta avec pas de temps adaptatif. Nous avons tiré avantage des méthodes emboîtées, afin de ne pas calculer de nouvelles fonctions et perdre du temps de calcul, en utilisant uniquement des données déjà calculées durant l’évolution temporelle. Les résultats numériques montrent que l’efficacité de notre méthode varie selon les cas. Par exemple, nous avons vérifié que plus le profil de l’onde est pentue, plus notre méthode est efficace. Pour le modèle de vagues non linéaires le plus compliqué à notre disposition, le modèle HOS, nous avons pu réduire le nombre de pas de temps de calcul jusqu’à près de 30 % avec un schéma de Runge-Kutta de Dormand-Prince et jusqu’à plus de 99 % pour un schéma de Bogacki-Shampine. / Efficient time stepping algorithms are crucial for accurate long time simulations of nonlinear waves. In particular, adaptive time stepping combined with an integrating factor are known to be very effective. We propose a modification of the existing technique. The trick consists in subtracting a certain-order polynomial to a PDE. Then, like for the integrating factor, a change of variables is performed to remove the linear part. But, here, we hope to remove something more to make the PDE less stiff to numerical resolution. The polynomial is chosen as a Taylor expansion around the initial time of the solution. In order to calculate the different derivatives, we use a dense output which gives a possibility to approximate the derivatives of the solution at any time. The modified integrating factor being applied, a classical time-stepping method can be used to solve the remaining equation. We focus on various Runge-Kutta schemes with a varying step size. We take advantage of embedded methods and use an evolved adaptive step control. We do not need to calculate new functions and loose time of calculation only by using already estimated values during the temporal evolution. Numerical tests show that the actual efficiency of the method varies along cases. For example, we verified that steeper waves profiles give rise to better behaviour of the method. For fully nonlinear water wave simulations with the HOS model, we can save up to 30% of total time steps with a Dormand-Prince Runge-Kutta scheme and we can save up to 99% with the Bogacki-Shampine scheme.
542

Étude mathématique et numérique de quelques généralisations de l'équation de Cahn-Hilliard : applications à la retouche d'images et à la biologie / Mathematics and numerical study of some variants of the Cahn-Hilliard equation : applications in image inpainting and in biology

Fakih, Hussein 02 October 2015 (has links)
Cette thèse se situe dans le cadre de l'analyse théorique et numérique de quelques généralisations de l'équation de Cahn-Hilliard. On étudie l'existence, l'unicité et la régularité de la solution de ces modèles ainsi que son comportement asymptotique en terme d'existence d'un attracteur global de dimension fractale finie. La première partie de la thèse concerne des modèles appliqués à la retouche d'images. D'abord, on étudie la dynamique de l'équation de Bertozzi-Esedoglu-Gillette-Cahn-Hilliard avec des conditions de type Neumann sur le bord et une nonlinéarité régulière de type polynomial et on propose un schéma numérique avec une méthode de seuil efficace pour le problème de la retouche et très rapide en terme de temps de convergence. Ensuite, on étudie ce modèle avec des conditions de type Neumann sur le bord et une nonlinéarité singulière de type logarithmique et on donne des simulations numériques avec seuil qui confirment que les résultats obtenus avec une nonlinéarité de type logarithmique sont meilleurs que ceux obtenus avec une nonlinéarité de type polynomial. Finalement, on propose un modèle basé sur le système de Cahn-Hilliard pour la retouche d'images colorées. La deuxième partie de la thèse est consacrée à des applications en biologie et en chimie. On étudie la convergence de la solution d'une généralisation de l'équation de Cahn-Hilliard avec un terme de prolifération, associée à des conditions aux limites de type Neumann et une nonlinéarité régulière. Dans ce cas, on démontre que soit la solution explose en temps fini soit elle existe globalement en temps. Par ailleurs, on donne des simulations numériques qui confirment les résultats théoriques obtenus. On termine par l'étude de l'équation de Cahn-Hilliard avec un terme source et une nonlinéarité régulière. Dans cette étude, on considère le modèle à la fois avec des conditions aux limites de type Neumann et de type Dirichlet. / This thesis is situated in the context of the theoretical and numerical analysis of some generalizations of the Cahn-Hilliard equation. We study the well-possedness of these models, as well as the asymptotic behavior in terms of the existence of finite-dimenstional (in the sense of the fractal dimension) attractors. The first part of this thesis is devoted to some models which, in particular, have applications in image inpainting. We start by the study of the dynamics of the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with Neumann boundary conditions and a regular nonlinearity. We give numerical simulations with a fast numerical scheme with threshold which is sufficient to obtain good inpainting results. Furthermore, we study this model with Neumann boundary conditions and a logarithmic nonlinearity and we also give numerical simulations which confirm that the results obtained with a logarithmic nonlinearity are better than the ones obtained with a polynomial nonlinearity. Finally, we propose a model based on the Cahn-Hilliard system which has applications in color image inpainting. The second part of this thesis is devoted to some models which, in particular, have applications in biology and chemistry. We study the convergence of the solution of a Cahn-Hilliard equation with a proliferation term and associated with Neumann boundary conditions and a regular nonlinearity. In that case, we prove that the solutions blow up in finite time or exist globally in time. Furthermore, we give numericial simulations which confirm the theoritical results. We end with the study of the Cahn-Hilliard equation with a mass source and a regular nonlinearity. In this study, we consider both Neumann and Dirichlet boundary conditions.
543

Quelques problèmes de stabilisation directe et indirecte d’équations d’ondes par des contrôles de type fractionnaire frontière ou de type Kelvin-Voight localisé / Some problems of direct and indirect stabilization of wave equations with locally boundary fractional damping or with localised Kelvin-Voigh

Akil, Mohammad 06 October 2017 (has links)
Cette thèse est consacrée à l’étude de la stabilisation directe et indirecte de différents systèmes d’équations d’ondes avec un contrôle frontière de type fractionnaire ou un contrôle local viscoélastique de type Kelvin-Voight. Nous considérons, d’abord, la stabilisation de l’équation d’ondes multidimensionnel avec un contrôle frontière fractionnaire au sens de Caputo. Sous des conditions géométriques optimales, nous établissons un taux de décroissance polynomial de l’énergie de système. Ensuite, nous nous intéressons à l’étude de la stabilisation d’un système de deux équations d’ondes couplées via les termes de vitesses, dont une seulement est amortie avec contrôle frontière de type fractionnaire au sens de Caputo. Nous montrons différents résultats de stabilités dans le cas 1-d et N-d. Finalement, nous étudions la stabilité d’un système de deux équations d’ondes couplées avec un seul amortissement viscoélastique localement distribué de type Kelvin-Voight. / This thesis is devoted to study the stabilization of the system of waves equations with one boundary fractional damping acting on apart of the boundary of the domain and the stabilization of a system of waves equations with locally viscoelastic damping of Kelvin-Voight type. First, we study the stability of the multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain. Second, we study the stability of the system of coupled onedimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Next, we study the stability of the system of coupled multi-dimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Finally, we study the stability of the multidimensional waves equations with locally viscoelastic damping of Kelvin-Voight is applied for one equation around the boundary of the domain.
544

Star-exponential of normal j-groups and adapted Fourier transform

Spinnler, Florian 23 April 2015 (has links)
This thesis provides the explicit expression of the star-exponential for the action of normal j-groups on their coadjoint orbits, and of the so-called modified star-exponential defined by Gayral et al. Using this modified star-exponential as the kernel of a functional transform between the group and its coadjoint orbits yields an adapted Fourier transform which is also detailed here. The normal j-groups arise in the work of Pytatetskii-Shapiro, who established the one-to-one correspondence with homogeneous bounded domains of the complex space; these groups are also the central element of the deformation formula recently developed by Bieliavsky & Gayral (a non abelian analog of the strict deformation quantization theory of Rieffel). Since these groups are exponential, the results given in this text illustrate the general work of Arnal & Cortet on the star-representations of exponential groups.<p> As this work is meant to be as self-contained as possible, the first chapter reproduces many definitions introduced by Bieliavsky & Gayral, in order to obtain the expression of the symplectic symmetric space structure on normal j-groups, and of their unitary irreducible representations. The Weyl-type quantizer associated to this symmetric structure is then computed, thus yielding the Weyl quantization map for which the composition of symbols is precisely the deformed product defined by Bieliavsky-Gayral on normal j-groups. A detailed proof of the structure theorem of normal j-groups is also provided.<p> The second chapter focuses on the expression and properties of the star-exponential itself, and exhibits a useful tool for the computation, namely the resolution of the identity associated to square integrable unitary irreducible representations of the groups. The result thus obtained satisfies the usual integro-differential equation defining the star-exponential. A criterion for the existence of a tempered pair underlying a given tempered structure on Lie groups is proven; the star-exponential functions are also shown to belong to the multiplier algebra of the Schwartz space associated to the tempered structure. Before that, it is shown that all Schwartz spaces that appear in this work are isomorphic as topological vector spaces.<p> The modified version of this star-exponential is computed in chapter three, first for elementary normal j-groups and then for normal j-groups. It is then used to define an adapted Fourier transform between the group and the dual of its Lie algebra. This transform generalizes (to all normal j-groups) a Fourier transform that was already studied in the “ax+b” case by Gayral et al. (2008), as well as by Ali et al. (2003) in the context of wavelet transforms. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
545

[en] INTERVENTION MODELS TO FORECAST MONTHLY DEMAND OF ELETRIC ENERGY, CONSIDERING THE RATIONING SCENERY / [pt] MODELOS DE INTERVENÇÃO PARA PREVISÃO MENSAL DE CONSUMO DE ENERGIA ELÉTRICA CONSIDERANDO CENÁRIOS PARA O RACIONAMENTO

EVANDRO LUIZ MENDES 12 March 2003 (has links)
[pt] Nesta dissertação é desenvolvida uma metodologia para previsão de demanda mensal de energia elétrica considerando cenários de racionamento. A metodologia usada consiste em, a partir das taxas de crescimento da série temporal, identificar e eliminar os efeitos do racionamento de energia elétrica através da aplicação de Modelos Lineares Dinâmicos. São analisadas também estruturas de intervenção nos modelos estatísticos de Box & Jenkins e Holt & Winters. Os modelos são então comparados segundo alguns critérios, basicamente no que tange à sua eficiência preditiva. Conclui-se ao final sobre a eficiência da metodologia proposta, dado a grande dificuldade para solucionar o problema a partir dos modelos estatísticos de Box & Jenkins e Holt & Winters. Esta solução é então proposta como a mais viável para criar cenários de racionamento e pósracionamento de energia para ser utilizado por agentes do sistema elétrico nacional. / [en] In this dissertation, a methodology is developed to forecast monthly demand of electric energy, considering the rationing scenery. The methodology is based on, taking the growth rate from the time series, identify and eliminate the effects of electric energy rationing, using Dynamic Linear Models. It is also analyzed intervention structures in the statistics models of Box & Jenkins and Holt & Winters. The models are compared according to some criterions, mainly forecast accuracy. At the end, we concluded that the methodology proposed is more efficient, due to the difficult to solve the problem using the statistics models with intervention. This solution is proposed as the best among them to create scenery during the energy rationing and after energy rationing, to be used by the national electric system agents.
546

Minimization Problems Based On A Parametric Family Of Relative Entropies

Ashok Kumar, M 05 1900 (has links) (PDF)
We study minimization problems with respect to a one-parameter family of generalized relative entropies. These relative entropies, which we call relative -entropies (denoted I (P; Q)), arise as redundancies under mismatched compression when cumulants of compression lengths are considered instead of expected compression lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative -entropies behave like squared Euclidean distance and satisfy the Pythagorean property. We explore the geometry underlying various statistical models and its relevance to information theory and to robust statistics. The thesis consists of three parts. In the first part, we study minimization of I (P; Q) as the first argument varies over a convex set E of probability distributions. We show the existence of a unique minimizer when the set E is closed in an appropriate topology. We then study minimization of I on a particular convex set, a linear family, which is one that arises from linear statistical constraints. This minimization problem generalizes the maximum Renyi or Tsallis entropy principle of statistical physics. The structure of the minimizing probability distribution naturally suggests a statistical model of power-law probability distributions, which we call an -power-law family. Such a family is analogous to the exponential family that arises when relative entropy is minimized subject to the same linear statistical constraints. In the second part, we study minimization of I (P; Q) over the second argument. This minimization is generally on parametric families such as the exponential family or the - power-law family, and is of interest in robust statistics ( > 1) and in constrained compression settings ( < 1). In the third part, we show an orthogonality relationship between the -power-law family and an associated linear family. As a consequence of this, the minimization of I (P; ), when the second argument comes from an -power-law family, can be shown to be equivalent to a minimization of I ( ; R), for a suitable R, where the first argument comes from a linear family. The latter turns out to be a simpler problem of minimization of a quasi convex objective function subject to linear constraints. Standard techniques are available to solve such problems, for example, via a sequence of convex feasibility problems, or via a sequence of such problems but on simpler single-constraint linear families.
547

Exponential weighted aggregation : oracle inequalities and algorithms / Agrégation à poids exponentiels : inégalités oracles et algorithmes

Luu, Duy tung 23 November 2017 (has links)
Dans plusieurs domaines des statistiques, y compris le traitement du signal et des images, l'estimation en grande dimension est une tâche importante pour recouvrer un objet d'intérêt. Toutefois, dans la grande majorité de situations, ce problème est mal-posé. Cependant, bien que la dimension ambiante de l'objet à restaurer (signal, image, vidéo) est très grande, sa ``complexité'' intrinsèque est généralement petite. La prise en compte de cette information a priori peut se faire au travers de deux approches: (i) la pénalisation (très populaire) et (ii) l'agrégation à poids exponentiels (EWA). L'approche penalisée vise à chercher un estimateur qui minimise une attache aux données pénalisée par un terme promouvant des objets de faible complexité (simples). L'EWA combine une famille des pré-estimateurs, chacun associé à un poids favorisant exponentiellement des pré-estimateurs, lesquels privilègent les mêmes objets de faible complexité.Ce manuscrit se divise en deux grandes parties: une partie théorique et une partie algorithmique. Dans la partie théorique, on propose l'EWA avec une nouvelle famille d'a priori favorisant les signaux parcimonieux à l'analyse par group dont la performance est garantie par des inégalités oracle. Ensuite, on analysera l'estimateur pénalisé et EWA, avec des a prioris généraux favorisant des objets simples, dans un cardre unifié pour établir des garanties théoriques. Deux types de garanties seront montrés: (i) inégalités oracle en prédiction, et (ii) bornes en estimation. On les déclinera ensuite pour des cas particuliers dont certains ont été étudiés dans littérature. Quant à la partie algorithmique, on y proposera une implémentation de ces estimateurs en alliant simulation Monte-Carlo (processus de diffusion de Langevin) et algorithmes d'éclatement proximaux, et montrera leurs garanties de convergence. Plusieurs expériences numériques seront décrites pour illustrer nos garanties théoriques et nos algorithmes. / In many areas of statistics, including signal and image processing, high-dimensional estimation is an important task to recover an object of interest. However, in the overwhelming majority of cases, the recovery problem is ill-posed. Fortunately, even if the ambient dimension of the object to be restored (signal, image, video) is very large, its intrinsic ``complexity'' is generally small. The introduction of this prior information can be done through two approaches: (i) penalization (very popular) and (ii) aggregation by exponential weighting (EWA). The penalized approach aims at finding an estimator that minimizes a data loss function penalized by a term promoting objects of low (simple) complexity. The EWA combines a family of pre-estimators, each associated with a weight exponentially promoting the same objects of low complexity.This manuscript consists of two parts: a theoretical part and an algorithmic part. In the theoretical part, we first propose the EWA with a new family of priors promoting analysis-group sparse signals whose performance is guaranteed by oracle inequalities. Next, we will analysis the penalized estimator and EWA, with a general prior promoting simple objects, in a unified framework for establishing some theoretical guarantees. Two types of guarantees will be established: (i) prediction oracle inequalities, and (ii) estimation bounds. We will exemplify them for particular cases some of which studied in the literature. In the algorithmic part, we will propose an implementation of these estimators by combining Monte-Carlo simulation (Langevin diffusion process) and proximal splitting algorithms, and show their guarantees of convergence. Several numerical experiments will be considered for illustrating our theoretical guarantees and our algorithms.
548

Décomposition de petit rang, problèmes de complétion et applications : décomposition de matrices de Hankel et des tenseurs de rang faible / Low rank decomposition, completion problems and applications : low rank decomposition of Hankel matrices and tensors

Harmouch, Jouhayna 19 December 2018 (has links)
On étudie la décomposition de matrice de Hankel comme une somme des matrices de Hankel de rang faible en corrélation avec la décomposition de son symbole σ comme une somme des séries exponentielles polynomiales. On présente un nouvel algorithme qui calcule la décomposition d’un opérateur de Hankel de petit rang et sa décomposition de son symbole en exploitant les propriétés de l’algèbre quotient de Gorenstein . La base de est calculée à partir la décomposition en valeurs singuliers d’une sous-matrice de matrice de Hankel . Les fréquences et les poids se déduisent des vecteurs propres généralisés des sous matrices de Hankel déplacés de . On présente une formule pour calculer les poids en fonction des vecteurs propres généralisés au lieu de résoudre un système de Vandermonde. Cette nouvelle méthode est une généralisation de Pencil méthode déjà utilisée pour résoudre un problème de décomposition de type de Prony. On analyse son comportement numérique en présence des moments contaminés et on décrit une technique de redimensionnement qui améliore la qualité numérique des fréquences d’une grande amplitude. On présente une nouvelle technique de Newton qui converge localement vers la matrice de Hankel de rang faible la plus proche au matrice initiale et on montre son effet à corriger les erreurs sur les moments. On étudie la décomposition d’un tenseur multi-symétrique T comme une somme des puissances de produit des formes linéaires en corrélation avec la décomposition de son dual comme une somme pondérée des évaluations. On utilise les propriétés de l’algèbre de Gorenstein associée pour calculer la décomposition de son dual qui est définie à partir d’une série formelle τ. On utilise la décomposition d’un opérateur de Hankel de rang faible associé au symbole τ comme une somme des opérateurs indécomposables de rang faible. La base d’ est choisie de façon que la multiplication par certains variables soit possible. On calcule les coordonnées des points et leurs poids correspondants à partir la structure propre des matrices de multiplication. Ce nouvel algorithme qu’on propose marche bien pour les matrices de Hankel de rang faible. On propose une approche théorique de la méthode dans un espace de dimension n. On donne un exemple numérique de la décomposition d’un tenseur multilinéaire de rang 3 en dimension 3 et un autre exemple de la décomposition d’un tenseur multi-symétrique de rang 3 en dimension 3. On étudie le problème de complétion de matrice de Hankel comme un problème de minimisation. On utilise la relaxation du problème basé sur la minimisation de la norme nucléaire de la matrice de Hankel. On adapte le SVT algorithme pour le cas d’une matrice de Hankel et on calcule l’opérateur linéaire qui décrit les contraintes du problème de minimisation de norme nucléaire. On montre l’utilité du problème de décomposition à dissocier un modèle statistique ou biologique. / We study the decomposition of a multivariate Hankel matrix as a sum of Hankel matrices of small rank in correlation with the decomposition of its symbol σ as a sum of polynomialexponential series. We present a new algorithm to compute the low rank decomposition of the Hankel operator and the decomposition of its symbol exploiting the properties of the associated Artinian Gorenstein quotient algebra . A basis of is computed from the Singular Value Decomposition of a sub-matrix of the Hankel matrix . The frequencies and the weights are deduced from the generalized eigenvectors of pencils of shifted sub-matrices of Explicit formula for the weights in terms of the eigenvectors avoid us to solve a Vandermonde system. This new method is a multivariate generalization of the so-called Pencil method for solving Pronytype decomposition problems. We analyse its numerical behaviour in the presence of noisy input moments, and describe a rescaling technique which improves the numerical quality of the reconstruction for frequencies of high amplitudes. We also present a new Newton iteration, which converges locally to the closest multivariate Hankel matrix of low rank and show its impact for correcting errors on input moments. We study the decomposition of a multi-symmetric tensor T as a sum of powers of product of linear forms in correlation with the decomposition of its dual as a weighted sum of evaluations. We use the properties of the associated Artinian Gorenstein Algebra to compute the decomposition of its dual which is defined via a formal power series τ. We use the low rank decomposition of the Hankel operator associated to the symbol τ into a sum of indecomposable operators of low rank. A basis of is chosen such that the multiplication by some variables is possible. We compute the sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized approach of the method in n dimensional space. We show a numerical example of the decomposition of a multi-linear tensor of rank 3 in 3 dimensional space. We show a numerical example of the decomposition of a multi-symmetric tensor of rank 3 in 3 dimensional space. We study the completion problem of the low rank Hankel matrix as a minimization problem. We use the relaxation of it as a minimization problem of the nuclear norm of Hankel matrix. We adapt the SVT algorithm to the case of Hankel matrix and we compute the linear operator which describes the constraints of the problem and its adjoint. We try to show the utility of the decomposition algorithm in some applications such that the LDA model and the ODF model.
549

Kumulace biologických signálů / Averaging of biological signals

Kubík, Adam January 2012 (has links)
The main aim of this thesis is to introduce issue of averaging of biological signals. The first part of the thesis deals with the principles of individual averaging methods (constant, floating and exponential window) and describes their basic features. Moreover, the principle of filtered residue, detection of QRS complex, and stretching/shrinking the length of RR-interval to the standardized length are explicated. In the second part of the thesis the outcomes of practically realized (Matlab and GUI) methods of averaging (by final signal-to-noise ratio) are evaluated. Signals from MIT-BIH database are used.
550

Matematické principy robotiky / Mathematical principles of Robotics

Pivovarník, Marek January 2012 (has links)
Táto diplomová práca sa zaoberá matematickými aparátmi popisujúcimi doprednú a inverznú kinematiku robotického ramena. Pre popis polohy koncového efektoru, teda doprednej kinematiky, je potrebné zaviesť špeciálnu Euklidovskú grupu zobrazení. Táto grupa môže byť reprezentovaná pomocou matíc alebo pomocou duálnych kvaterniónov. Problém inverznej kinematiky, kedy je potrebné z určenej polohy koncového efektoru dopočítať kĺbové parametre robotického ramena, je v tejto práci riešený pomocou exponenciálnych zobrazení a Grobnerovej bázy. Všetky spomenuté popisy doprednej a inverznej kinematiky sú aplikované na robotické rameno s troma rotačnými kĺbami. Odvodené postupy sú následne implementované a vizualizované v prostredí programu Mathematica.

Page generated in 0.0308 seconds