• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 20
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 24
  • 21
  • 19
  • 18
  • 14
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

AUTOMATED OPTIMAL FORECASTING OF UNIVARIATE MONITORING PROCESSES : Employing a novel optimal forecast methodology to define four classes of forecast approaches and testing them on real-life monitoring processes

Razroev, Stanislav January 2019 (has links)
This work aims to explore practical one-step-ahead forecasting of structurally changing data, an unstable behaviour, that real-life data connected to human activity often exhibit. This setting can be characterized as monitoring process. Various forecast models, methods and approaches can range from being simple and computationally "cheap" to very sophisticated and computationally "expensive". Moreover, different forecast methods handle different data-patterns and structural changes differently: for some particular data types or data intervals some particular forecast methods are better than the others, something that is usually not known beforehand. This raises a question: "Can one design a forecast procedure, that effectively and optimally switches between various forecast methods, adapting the forecast methods usage to the changes in the incoming data flow?" The thesis answers this question by introducing optimality concept, that allows optimal switching between simultaneously executed forecast methods, thus "tailoring" forecast methods to the changes in the data. It is also shown, how another forecast approach: combinational forecasting, where forecast methods are combined using weighted average, can be utilized by optimality principle and can therefore benefit from it. Thus, four classes of forecast results can be considered and compared: basic forecast methods, basic optimality, combinational forecasting, and combinational optimality. The thesis shows, that the usage of optimality gives results, where most of the time optimality is no worse or better than the best of forecast methods, that optimality is based on. Optimality reduces also scattering from multitude of various forecast suggestions to a single number or only a few numbers (in a controllable fashion). Optimality gives additionally lower bound for optimal forecasting: the hypothetically best achievable forecast result. The main conclusion is that optimality approach makes more or less obsolete other traditional ways of treating the monitoring processes: trying to find the single best forecast method for some structurally changing data. This search still can be sought, of course, but it is best done within optimality approach as its innate component. All this makes the proposed optimality approach for forecasting purposes a valid "representative" of a more broad ensemble approach (which likewise motivated development of now popular Ensemble Learning concept as a valid part of Machine Learning framework). / Denna avhandling syftar till undersöka en praktisk ett-steg-i-taget prediktering av strukturmässigt skiftande data, ett icke-stabilt beteende som verkliga data kopplade till människoaktiviteter ofta demonstrerar. Denna uppsättning kan alltså karakteriseras som övervakningsprocess eller monitoringsprocess. Olika prediktionsmodeller, metoder och tillvägagångssätt kan variera från att vara enkla och "beräkningsbilliga" till sofistikerade och "beräkningsdyra". Olika prediktionsmetoder hanterar dessutom olika mönster eller strukturförändringar i data på olika sätt: för vissa typer av data eller vissa dataintervall är vissa prediktionsmetoder bättre än andra, vilket inte brukar vara känt i förväg. Detta väcker en fråga: "Kan man skapa en predictionsprocedur, som effektivt och på ett optimalt sätt skulle byta mellan olika prediktionsmetoder och för att adaptera dess användning till ändringar i inkommande dataflöde?" Avhandlingen svarar på frågan genom att introducera optimalitetskoncept eller optimalitet, något som tillåter ett optimalbyte mellan parallellt utförda prediktionsmetoder, för att på så sätt skräddarsy prediktionsmetoder till förändringar i data. Det visas också, hur ett annat prediktionstillvägagångssätt: kombinationsprediktering, där olika prediktionsmetoder kombineras med hjälp av viktat medelvärde, kan utnyttjas av optimalitetsprincipen och därmed få nytta av den. Alltså, fyra klasser av prediktionsresultat kan betraktas och jämföras: basprediktionsmetoder, basoptimalitet, kombinationsprediktering och kombinationsoptimalitet. Denna avhandling visar, att användning av optimalitet ger resultat, där optimaliteten för det mesta inte är sämre eller bättre än den bästa av enskilda prediktionsmetoder, som själva optimaliteten är baserad på. Optimalitet reducerar också spridningen från mängden av olika prediktionsförslag till ett tal eller bara några enstaka tal (på ett kontrollerat sätt). Optimalitet producerar ytterligare en nedre gräns för optimalprediktion: det hypotetiskt bästa uppnåeliga prediktionsresultatet. Huvudslutsatsen är följande: optimalitetstillvägagångssätt gör att andra traditionella sätt att ta hand om övervakningsprocesser blir mer eller mindre föråldrade: att leta bara efter den enda bästa enskilda prediktionsmetoden för data med strukturskift. Sådan sökning kan fortfarande göras, men det är bäst att göra den inom optimalitetstillvägagångssättet, där den ingår som en naturlig komponent. Allt detta gör det föreslagna optimalitetstillvägagångssättetet för prediktionsändamål till en giltig "representant" för det mer allmäna ensembletillvägagångssättet (något som också motiverade utvecklingen av numera populär Ensembleinlärning som en giltig del av Maskininlärning).
52

Predictive vertical CPU autoscaling in Kubernetes based on time-series forecasting with Holt-Winters exponential smoothing and long short-term memory / Prediktiv vertikal CPU-autoskalning i Kubernetes baserat på tidsserieprediktion med Holt-Winters exponentiell utjämning och långt korttidsminne

Wang, Thomas January 2021 (has links)
Private and public clouds require users to specify requests for resources such as CPU and memory (RAM) to be provisioned for their applications. The values of these requests do not necessarily relate to the application’s run-time requirements, but only help the cloud infrastructure resource manager to map requested virtual resources to physical resources. If an application exceeds these values, it might be throttled or even terminated. Consequently, requested values are often overestimated, resulting in poor resource utilization in the cloud infrastructure. Autoscaling is a technique used to overcome these problems. In this research, we formulated two new predictive CPU autoscaling strategies forKubernetes containerized applications, using time-series analysis, based on Holt-Winters exponential smoothing and long short-term memory (LSTM) artificial recurrent neural networks. The two approaches were analyzed, and their performances were compared to that of the default Kubernetes Vertical Pod Autoscaler (VPA). Efficiency was evaluated in terms of CPU resource wastage, and insufficient CPU percentage and amount for container workloads from Alibaba Cluster Trace 2018, and others. In our experiments, we observed that Kubernetes Vertical Pod Autoscaler (VPA) tended to perform poorly on workloads that periodically change. Our results showed that compared to VPA, predictive methods based on Holt- Winters exponential smoothing (HW) and Long Short-Term Memory (LSTM) can decrease CPU wastage by over 40% while avoiding CPU insufficiency for various CPU workloads. Furthermore, LSTM has been shown to generate stabler predictions compared to that of HW, which allowed for more robust scaling decisions. / Privata och offentliga moln kräver att användare begär mängden CPU och minne (RAM) som ska fördelas till sina applikationer. Mängden resurser är inte nödvändigtvis relaterat till applikationernas körtidskrav, utan är till för att molninfrastrukturresurshanteraren ska kunna kartlägga begärda virtuella resurser till fysiska resurser. Om en applikation överskrider dessa värden kan den saktas ner eller till och med krascha. För att undvika störningar överskattas begärda värden oftast, vilket kan resultera i ineffektiv resursutnyttjande i molninfrastrukturen. Autoskalning är en teknik som används för att överkomma dessa problem. I denna forskning formulerade vi två nya prediktiva CPU autoskalningsstrategier för containeriserade applikationer i Kubernetes, med hjälp av tidsserieanalys baserad på metoderna Holt-Winters exponentiell utjämning och långt korttidsminne (LSTM) återkommande neurala nätverk. De två metoderna analyserades, och deras prestationer jämfördes med Kubernetes Vertical Pod Autoscaler (VPA). Prestation utvärderades genom att observera under- och överutilisering av CPU-resurser, för diverse containerarbetsbelastningar från bl. a. Alibaba Cluster Trace 2018. Vi observerade att Kubernetes Vertical Pod Autoscaler (VPA) i våra experiment tenderade att prestera dåligt på arbetsbelastningar som förändras periodvist. Våra resultat visar att jämfört med VPA kan prediktiva metoder baserade på Holt-Winters exponentiell utjämning (HW) och långt korttidsminne (LSTM) minska överflödig CPU-användning med över 40 % samtidigt som de undviker CPU-brist för olika arbetsbelastningar. Ytterligare visade sig LSTM generera stabilare prediktioner jämfört med HW, vilket ledde till mer robusta autoskalningsbeslut.
53

Predicting Workforce in Healthcare : Using Machine Learning Algorithms, Statistical Methods and Swedish Healthcare Data / Predicering av Arbetskraft inom Sjukvården genom Maskininlärning, Statistiska Metoder och Svenska Sjukvårdsstatistik

Diskay, Gabriel, Joelsson, Carl January 2023 (has links)
Denna studie undersöker användningen av maskininlärningsmodeller för att predicera arbetskraftstrender inom hälso- och sjukvården i Sverige. Med hjälp av en linjär regressionmodell, en Gradient Boosting Regressor-modell och en Exponential Smoothing-modell syftar forskningen för detta arbete till att ge viktiga insikter för underlaget till makroekonomiska överväganden och att ge en djupare förståelse av Beveridge-kurvan i ett sammanhang relaterat till hälso- och sjukvårdssektorn. Trots vissa utmaningar med datan är målet att förbättra noggrannheten och effektiviteten i beslutsfattandet rörande arbetsmarknaden. Resultaten av denna studie visar maskininlärningspotentialen i predicering i ett ekonomiskt sammanhang, även om inneboende begränsningar och etiska överväganden beaktas. / This study examines the use of machine learning models to predict workforce trends in the healthcare sector in Sweden. Using a Linear Regression model, a Gradient Boosting Regressor model, and an Exponential Smoothing model the research aims to grant needed insight for the basis of macroeconomic considerations and to give a deeper understanding of the Beveridge Curve in the healthcare sector’s context. Despite some challenges with data, the goal is to improve the accuracy and efficiency of the policy-making around the labor market. The results of this study demonstrates the machine learning potential in the forecasting within an economic context, although inherent limitations and ethical considerations are considered.

Page generated in 0.0446 seconds