• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 19
  • 10
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 114
  • 26
  • 26
  • 23
  • 17
  • 16
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

[pt] AVALIAÇÃO DE ESQUEMAS DE ACOPLAMENTO NA SIMULAÇÃO DE RESERVATÓRIOS DE PETRÓLEO / [en] EVALUATION OF COUPLING SCHEMES IN THE SIMULATION OF PETROLEUM RESERVOIRS

NIURKA PATRICIA RODRIGUEZ YAQUETTO 04 July 2013 (has links)
[pt] Os estudos entre a interação do fluxo de fluido e a deformação do meio poroso têm sido realizados com o objetivo de explicar alguns fenômenos que ocorrem ao longo da produção/injeção de fluidos, e assim obter uma simulação de reservatórios cada vez mais precisa. A solução ideal para o problema é implementar um esquema, onde as leis que governam o fluxo e analise de tensões sejam obedecidas simultaneamente em cada intervalo de tempo. Este trabalho apresenta os resultados de um código (programado em C positivo positivo) que permite acoplar um simulador de fluxo convencional (ECLIPSE) e um programa que permite analisar tensões e deslocamentos (Abaqus /CAE). O objetivo deste trabalho é validar varias soluções para resolver um problema usando os diferentes tipos de acoplamento, que juntamente com uma filosofia empregada nas principais formulações permite dar respostas similares aquelas do acoplamento total. São apresentadas as formas de acoplamento e a formulação empregada em cada um dos esquemas usados. Os resultados obtidos pelos esquemas são comparados em termos de fluxo e tensões e deslocamentos a partir de modelos tridimensionais. / [en] Studies between the interaction of fluid flow and deformation of porous media have been carried out with the aim of explaining some phenomena that occur along the production/injection of fluids, thereby obtaining a more accurate reservoir simulation. The ideal solution for this problem is to implement a scheme where laws governing the flow and stress analysis are met simultaneously at each time interval. This dissertation presents the results of a computer code (programmed in C positive positive) that allows the coupling of a conventional reservoir simulator (ECLIPSE) and a stress-displacement finite element based program (Abaqus /CAE). This work presents the use of various coupling schemes for the solution of a synthetic case, in particular the use of a methodology that generates results very close to the ones predicted from the use of fully coupled methods. The results obtained by the different coupling schemes are compared in terms of fluid pressure, stress and displacement responses for synthetic three-dimensional models.
102

[en] ANALYTICAL MODELING OF DEFORMATION BANDS GENERATION IN SANDSTONE RESERVOIRS / [pt] MODELAGEM ANALÍTICA DA GERAÇÃO DE BANDAS DE DEFORMAÇÃO EM RESERVATÓRIOS ARENÍTICOS

LEANDRO GUEDES CARVALHO 12 August 2021 (has links)
[pt] A predição da permeabilidade é uma etapa crítica no fluxo de caracterização e modelagem geológica de reservatórios e essencial para o desenvolvimento de projetos de produção. Estruturas subsísmicas denominadas bandas de deformação (BD) podem diminuir a permeabilidade em até seis ordens de grandeza em relação à rocha matriz de reservatórios areníticos e podem, dessa forma, atuar como barreiras totais ou parciais ao fluxo de fluidos. O presente trabalho pretende contribuir na determinação do comportamento hidráulico de reservatórios propondo um modelo geomecânico analítico para a predição de BD em reservatórios de arenitos. Em termos práticos, o objetivo é prever se em uma determinada porção de um depósito siliciclástico de hidrocarboneto foram atingidas condições para a formação de BD, ou quão próximo se está de uma possível geração dessa feição a fim de se sugerir uma análise da redução de permeabilidade. A proposta se estende na implementação computacional do método e sua aplicação em um estudo de caso de um reservatório arenítico pouco consolidado da margem continental brasileira rico em BD. Os resultados confirmaram a viabilidade do método mostrando que a porção do reservatório analisada atingiu as condições mecânicas para a gênese de BD a partir da idade geológica intitulada de Oligoceno (~ 23 a 35 Ma) para os cenários estabelecidos. / [en] The permeability prediction is a critical step in the flow of geological modeling and reservoir characterization and is essential for the development of production projects. Sub-seismic structures called deformation bands (BD) can reduce permeability up to six orders of magnitude in relation to the host reservoir sandstone and can thus act as total or partial barriers to the fluid flow. The present work intends to contribute in the determination of the hydraulic behavior of reservoirs proposing an analytical geomechanical model for BD s prediction in sandstone reservoirs. In practical terms, the objective is to predict whether the conditions in a given portion of a siliciclastic hydrocarbon deposit have been reached for the localization of BD or how close it is to a possible generation of this feature in order to suggest an analysis of the permeability reduction. The proposal extends to the computational implementation of the method and its application in a case study of a poorly consolidated sandstone reservoir on the brazilian continental margin, rich in BD. The results confirmed the viability of the method by showing that the portion of the analyzed reservoir reached the mechanical conditions for the genesis of BD from the geological age entitled Oligocene (~ 23 to 35 Ma) for the established scenarios.
103

[en] IMPACT ON SEISMIC IMAGING OF GEOLOGICAL FAULTS IN CARBONATE ROCKS / [pt] IMPACTO NO IMAGEAMENTO SÍSMICO DE FALHAS GEOLÓGICAS EM ROCHAS CARBONÁTICAS

MARIO PAES DE ALMEIDA JUNIOR 25 September 2023 (has links)
[pt] As falhas geológicas são estruturas tipicamente interpretadas em duas dimensões, como superfícies, nos dados sísmicos e da mesma maneira são representadas em modelos geológicos de reservatórios de petróleo. Entretanto, as falhas são zonas tridimensionalmente complexas que representam regiões de fraquezas que concentram fraturas e rochas altamente e heterogeneamente deformadas. Portanto, a representação adequada destas zonas é importante para o gerenciamento e avaliação econômica de um campo de petróleo, com impacto nas áreas de perfuração, completação e locação de poços, estratégias para aumento de fator de recuperação e até na estimativa da reserva recuperável. Devido a grande importância dos reservatórios carbonáticos fraturados, mais de 60 por cento das reservas provadas de óleo e 40 por cento das reservas de gás no mundo [1] estão presentes nesses reservatórios, o trabalho proposto tem como objetivo a modelagem geológica estrutural de uma falha em rochas carbonáticas do reservatório de Gawar da Arábia Saudita a partir de parâmetros de deformabilidade obtidos por Ameen et al. [2]. O trabalho também aborda os impactos da resolução espacial dos dados sísmicos na intepretação destas estruturas, através da simulação da imagem sísmica da falha. Os resultados mostram que o método de elemento discreto é uma ferramenta adequada para modelagem realística de falhas geológicas, entretanto, alguns modelos obtiveram resultados não realísticos devido à dificuldade da manutenção da tensão confinante durante a produção da falha. Os estudos mostraram que apesar da interpretação volumétrica destas estruturas através das metodologias de interpretação baseadas em atributos sísmicos serem possíveis, existe uma considerável limitação devido a resolução espacial e na dificuldade dos algoritmos em formar a imagem sísmica da zona de falha, onde há contraste lateral de propriedades acústicas. / [en] Faults are structures typically interpreted in two dimensions, such assurfaces, in seismic data and are similarly represented in geological models of oil reservoirs. However, faults are three-dimensionally complex zones that represent regions of weakness that concentrate fractures and highly heterogeneously deformed rocks. Therefore, the adequate representation of these zonesis important for the management and economic evaluation of an oil field, withan impact on the areas of drilling, completion and location of wells, strategies for increasing the recovery factor and even on estimating the recoverable reserve. Due to the great importance of fractured carbonate reservoirs, more than 60 percent of the proven oil reserves and 40 percent of the gas reserves in the world[1] are present in these reservoirs, the proposed work aims at the geomechanical modeling of a geological fault in carbonate rocks of Saudi Arabia s Gawar reservoir from deformability parameters obtained by Ameen et al. [2]. The work also addresses the impacts of the spatial resolution of seismic data on the interpretation of these structures, through the simulation of the fault seismic image. The results show that the discrete element method is an adequate tool for realistic modeling of geological faults, however, some models obtained unrealistic results due to the difficulty of maintaining the confining stress during fault production. The studies showed that although the volumetric interpretation of these structures through interpretation methodologies based on seismic attributes are possible, there is a considerable limitation due to the spatial resolution and the inadequacy of the seismic data to adequately deal with the lateral contrast of acoustic properties present in areas close to the damage zones.
104

[en] INTEGRATING ARTIFICIAL NEURAL NETWORKS AND GREEN S FUNCTION APPROACH FOR GEOMECHANICS APPLICATION / [pt] INTEGRAÇÃO DE REDES NEURAIS ARTIFICIAIS A MÉTODOS NUMÉRICOS BASEADOS EM FUNÇÕES DE GREEN PARA APLICAÇÕES EM GEOMECÂNICA

MATHEUS LOPES PERES 18 July 2023 (has links)
[pt] A modelagem de problemas relacionados a geomecânica do reservatório é tradicionalmente realizada por elementos finitos. Para utilizar esse método é preciso que o modelo englobe uma região consideravelmente superior a região em que o reservatório está inserido, além de necessitar imposição condições de contorno. Pensando em reduzir a necessidade de discretização de grandes regiões do maciço rochoso é proposto o método das funções de Green para análise geomecânica. Este método é baseado no uso de soluções analíticas clássicas (solução fundamental de Kelvin, solução fundamental de Melan, por exemplo) como soluções auxiliares para resolver problemas elasticamente heterogêneo e não lineares em meios saturados de fluidos. A não linearidade do material pode ser devido a deformações irreversíveis ou resposta de elasticidade não linear típica da análise 4D. O procedimento de solução geral depende de um método de colocação discreta e uma abordagem iterativa de ponto fixo para construir o campo de deslocamento. Esse método teve sua convergência verificada através de modelos simplificados que possuem solução analítica. Visando o avanço do desempenho computacional do método das funções de Green, foram feitas duas modificações independentes utilizando inteligência artificial. A primeira modificação é baseada na integração de dois conceitos principais: o teorema da reciprocidade e a capacidade de generalização das redes neurais artificiais. O teorema da reciprocidade é usado para formular a expressão matemática que rege o problema geomecânico, que é então discretizado no espaço em elementos inteligentes. O comportamento do campo de deformação dentro desses novos elementos é previsto usando uma rede neural artificial. Para fazer essas previsões, a rede neural usa condições de contorno de deslocamento, propriedades do material e a forma geométrica do elemento como dados de entrada. A segunda modificação consiste na utilização de soluções auxiliares que considerem a heterogeneidade de maciços estratificados. Essas soluções são obtidas através do treinamento de redes neurais artificiais que tem como dado de saída o deslocamento em um determinado ponto do maciço estratificado devido a aplicação de uma força pontual em um ponto no interior desse maciço. Para isso, as redes neurais de deslocamentos necessitam das propriedades elásticas e da espessura de cada camada do maciço bem como das coordenadas de aplicação da força pontual e do ponto onde será avaliado o deslocamento. Ao se utilizar essas soluções fundamentais baseadas em inteligência artificial é possível se obter todo o campo de deslocamentos de um problema heterogêneo e elástico de geomecânica do reservatório bastando apenas discretizar o reservatório. Cada uma das modificações do método da função de Green foi avaliada individualmente e observou-se um ganho de pelo menos 5 vezes no tempo de processo, utilizando o mesmo recurso computacional, quando se compara ao método clássico da função de Green. / [en] The analysis and simulation of problems associated with reservoir geomechanics are traditionally performed using the finite element method. However, to perform this analysis, it is necessary to consider a region much larger than the region in which the reservoir is inserted. This is done so that boundary conditions can be applied in an attempt to mimic the effect of the infinite media surrounding the reservoir. With the aim of reducing the need for discretization of large regions of the massif, a Green s functions approach was proposed for reservoir geomechanical analysis. This method is based on the use of classical analytical solutions (Kelvin s fundamental solution, Melan s fundamental solution, for example) as auxiliary solutions to solve elastically heterogeneous and nonlinear problems in fluid-saturated media. The non-linearity of the material can be due to irreversible deformations or non-linear elasticity response typical of 4D analysis. The general solution procedure relies on a discrete collocation method and an iterative fixed-point approach to build the displacement field. This method´s convergence was verified through simplified models that have analytical solutions. As the reduction in processing time is crucial for decision-makers to act in field applications, two improvements were proposed using artificial intelligence (AI) to reduce processing time of the Green s function approach. The first improvement is based on the generalization ability of artificial neural networks (ANN). Due to this characteristic, it was proposed to discretize the model with a coarse mesh of intelligent elements instead of refined mesh of traditional elements based on polynomials. The behavior of the strain field within these new elements is predicted using an ANN. To make these predictions, the neural network uses displacement boundary conditions, material properties and the geometric shape of the element as input data. The examples comparing the intelligent element approach and the traditional method were performed on a computer with 12 threads of 2,6GHz and 32GB RAM. This comparison showed reductions between five and ten times in CPU time, while maintaining the accuracy of the results. The second improvement consists in the use of auxiliary solutions that consider the heterogeneity of stratified massifs. These solutions are obtained through the training of artificial neural networks that have as output the displacement in a certain point of the stratified massif due to the application of a point load inside the massif. This ANN uses as input data elastic properties and the thickness of each layer of the massif, and of the semi-infinite media, as well as the coordinates of the point load and of the point where the displacement is to be evaluated. The use of the developed ANN-based Green’s function approach only demands the discretization of the reservoir itself, thus avoiding the discretization of other regions of the massif. Furthermore, it is possible to obtain the displacement at any point of the massif due to a pore pressure variation within the reservoir without having to solve for the other points in the massif. These two characteristics increase the efficient of the method in relation to traditional methods, such as the finite element method. A numerical example was performed on a computer with 12 threads of 2,6GHz and 32GB RAM to compare the ANN-based Green’s function approach with the traditional approach. The CPU time to obtain the solution using the ANN-based Green’s function approach was five times smaller than the that required by the traditional approach.
105

[pt] ANÁLISE GEOMECÂNICA DIRECIONADA À MODELAGEM DE BACIAS SEDIMENTARES E SISTEMAS PETROLÍFEROS / [en] GEOMECHANICAL ANALYSIS DIRECTED AT BASIN AND PETROLEUM SYSTEM MODELING

PEDRO DE ALMEIDA MARTINS DAS NEVES MIRANDA 13 September 2019 (has links)
[pt] A Modelagem de Bacias Sedimentares e Sistemas Petrolíferos (BPSM) integra técnicas sofisticadas das disciplinas de geologia, engenharia e desenvolvimento de software, com o objetivo de mitigar os riscos econômicos da atividade de exploração de hidrocarbonetos. Entretanto, ainda que o processo de formação de bacias sedimentares apresente alta complexidade, envolvendo diversos processos geológicos, a técnica empregada majoritariamente em análises numéricas para representar o comportamento tensãodeformação das rochas sedimentares consiste em uma lei empírica desenvolvida pelo geofísico Lawrence F. Athy na década de 1930, fundamentada em uma série de simplificações sobre o problema mecânico. Neste contexto, o presente trabalho avalia a capacidade de modelos constitutivos baseados na mecânica do contínuo: elástico, elastoplástico com superfície de escoamento aberta e elastoplástico com superfície de escoamento fechada de representar o comportamento mecânico de rochas sedimentares associado aos processos de deposição e compactação observados na BPSM, usando os dados do modelo empírico de Athy como referência. Após a investigação inicial, os modelos constitutivos são comparados à solução tradicional (Lei de Athy) na representação de outros processos geológicos (erosão, compressão tectônica e extensão tectônica) usando cenários simplificados, com a finalidade de projetar o impacto desse tipo de representação em uma análise convencional de BPSM. / [en] Basin and Petroleum System Modeling integrates sofisticated techniques from the fields of geology, engineering and software development, aiming to mitigate the economic risks presented in the exploration of hydrocarbons. Even though the formation of sedimentary basins presents a high level of complexity, involving several geological processes, the main technique applied to represent the tension-deformation behavior of sedimentary rocks in numerical analyses is an empirical law developed by geophysicist Lawrence F. Athy in the 1930s, based on a series of simplifications about the mechanical problem. In that context, this work evaluates the capability of constitutive models based on Continuum Mechanics: elastic, elastoplastic with an uncapped yield surface and elastoplastic with a capped yield surface to represent the mechanical behavior of sedimentary rocks associated with the deposition and compaction processes observed in BPSM, using the data from Athy s empirical model as reference. After the initial investigation, the constitutive models are compared to the traditional solution (Athy s Law) in the representation of other geological processes (erosion, tectonic compression and tectonic extension) using simplified scenarios to predict the impact of such models in conventional BPSM analyses.
106

[en] 2D AND 3D MODELING TO EVALUATE REACTIVATION OF GEOLOGICAL FAULTS IN OIL RESERVOIRS / [pt] MODELAGENS 2D E 3D PARA AVALIAÇÃO DE REATIVAÇÃO DE FALHAS GEOLÓGICAS EM RESERVATÓRIOS DE PETRÓLEO

MARIO ALBERTO RAMIREZ CASTAÑO 28 December 2017 (has links)
[pt] Reservatórios de petróleo e gás estruturalmente compartimentados por falhas geológicas selantes são encontrados em diversas regiões do mundo. Durante a fase de explotação, a integridade do selo destas falhas pode ser comprometida pelas deformações decorrentes dos processos de depleção e/ou injeção de fluidos. Estas deformações, em conjunto com as propriedades físicas e geométricas das rochas e falhas presentes, podem alterar significativamente o estado de tensões do maciço rochoso fazendo com que uma falha reative e se torne hidraulicamente condutora. A esse fenômeno estão associados riscos de exsudação, perda de integridade de poços e outros potencias problemas geomecânicos. Na literatura, diversas modelagens numéricas têm sido utilizadas a fim de caracterizar e prever os fenômenos de reativação e/ou abertura de falhas geológicas. A maior parte de estas abordagens faz uso de modelos bidimensionais considerando seções críticas na hipótese de estado plano de deformação. Essas simplificações são adotadas a fim de evitar a complexidade geométrica e o alto custo computacional de uma modelagem tridimensional. No entanto, a configuração tridimensional dos planos de falha pode induzir a reativação em direção a zonas mais críticas do que aquelas contidas numa única seção. Neste trabalho apresenta-se uma metodologia para análise de reativação de falhas geológicas e discute-se a importância do uso dos modelos 3D na previsão do comportamento geomecânico de reservatórios compartimentados por falhas geológicas. São apresentados 3 modelos diferentes. O primeiro exemplo traz um modelo bidimensional apresentado na literatura, faz-se uma comparação dos resultados com representação por meio do elemento de interface, por meio do continuo equivalente e por meio de um elemento solido com fraturas embutidas. O segundo exemplo faz-se um comparativo entre a utilização de elementos quadrilaterais e triangulais para a representação da falha em modelos 3D. Para o terceiro modelo foram realizadas simulações numéricas considerando modelos 2D e 3D em um simulador in-house baseado no método dos elementos finitos. Para a representação do meio continuo foram utilizados elementos quadrilaterais para o caso 2D, e elementos hexaédricos e tetraédricos para o caso 3D. Para a representação das falhas geológicas foram utilizados elementos de interface de espessura nula segundo o critério de ruptura de Mohr-Coulomb. Da comparação dos resultados, constata-se que as análises 2D e 3D forneceram previsões de reativação similares. No entanto, as previsões de pressões de abertura foram distintas em ambos os modelos devido às diferentes trajetórias de migração de fluido. Particularmente em modelos com geometria irregular confirma-se a importância do emprego de modelo 3D. / [en] Oil and gas reservoirs that are structurally compartmented by sealing geological faults are common in several areas around the world. During production, the deformations from the processes of fluid depletion and/or injection can compromise the integrity of the seal of the faults. This deformation, together with the physical and geometrical properties from the rocks and faults can significantly change the stress state. Therefore, it might cause fault reactivation, turning it in a hydraulic conduit. Related to this phenomenon, are the exudation, loss of wellbore integrity and other potential geomechanical problems. There are several numerical modelling techniques available in literature to characterize and predict the reactivation and/or opening of geological faults. In most of these modelling approaches, bi-dimensional models are used for critical sections through the assumption of plane strain conditions. The reason for using 2D models is to avoid the geometrical complexity and the high computational costs associated to three-dimensional modeling. On the other hand, the fault planes in the three-dimensional approach can show fault reactivation in a more critical direction e than the one represented by the bi-dimensional model. In this work, a methodology is presented in order to assess geological fault reactivation. In addition, the importance of using 3D models in the prediction of the geomechanical behavior of reservoirs compartmented by geological faults is discussed. Three different models are presented. The first example is based on a two dimensional model from the literature. A comparison between approaches using interface elements, equivalent continuum elements and solid element with fractures is carried out in the first example. The second example brings a comparison between the quadrilateral and triangular elements to represent faults in a 3D model. In addition, an analysis was carried out considering 2D and 3D models using an in house software based on the finite element method. To simulate the continuum medium, quadrilateral elements are used in the 2D case and in the 3D case hexahedral and tetrahedral elements are employed. In addition, to represent the geological faults, interface elements with zero thickness are used in association with the Mohr-Coulomb failure criterion. In the case study, predictions of fault reactivation were similar in the 2D and 3D models. However, fault opening pressures were different in both models, due to the 3D fluid migration path. It also confirmed the importance of using 3D models when simulating irregular geometries.
107

[en] WELLBORE STABILITY IN SALT ZONES: USING STRESS TRANSFER TECHNIQUES / [pt] ESTABILIDADE DE POÇOS EM ZONAS DE SAL: EMPREGANDO TÉCNICAS DE TRANSFERÊNCIA DE TENSÕES

SERGIO OROZCO OROZCO 16 May 2014 (has links)
[pt] A estabilidade de poços através de zonas de sal é um aspecto relevante em ambientes de perfuração offshore no Brasil. O fluxo convencional no planejamento de um poço de petróleo não reconhece a natureza complexa do estado de tensões in-situ em torno destes corpos de sal. Portanto, é necessária uma avaliação fiável das tensões in-situ considerando tanto a escala de campo (global) quanto as principais estruturas presentes no overburden. Neste trabalho, a análise de estabilidade de poços é realizada em três etapas. Primeiro, é realizada uma análise numérica a escala global para avaliar as tensões in-situ considerando a geometria de um corpo de sal. A seguir, são introduzidas as tensões in-situ em um modelo local, chamado subestrutura, através de duas técnicas de transferência de tensões propostas, denominadas as técnicas do Inverso Ponderado da Distância (IPD) e do Gradiente de Tensões (GT). O termo subestrutura é definido como uma linha curva no espaço composta por um conjunto de pontos, se assemelhando a uma seção ou trajetória completa de um poço. Finalmente, a janela operacional do poço é calculada acoplando os resultados de tensões da modelagem numérica com equações elásticas. Neste trabalho as técnicas IPD e GT são também utilizadas para transferir tensões em submodelos localizados dentro de um modelo global, visando realizar futuros estudos de submodelagem de estabilidade de poços. O termo submodelo consiste em uma malha de elementos finitos de um tamanho menor e um refinamento maior em relação ao modelo global. / [en] Wellbore Stability drilling through salt zones is an important current endeavor in many areas offshore of Brazil. The conventional well design workflow does not recognize the complex nature of the stress field near these salt bodies. Therefore, a reliable assessment of the in-situ stresses must be carried out considering a field (global) scale of the problem and the presence of major structures in the overburden. The proposed stability analysis is carried out in three stages. Firstly, a global finite element analysis is employed to evaluate the in-situ stresses at a global scale considering the geometry of a salt body. Secondly, the global scale in-situ stresses are introduced in a local model, that we call substructure, by using two proposed stress transfer techniques called the Inverse Distance Weighted Technique (IDWT) and the Stress Gradient Technique (SGT). We define Substructure as a set of points forming a section or a complete trajectory of an oil well. Finally, optimal mud weights are calculated combining numerical stress results with analytical elastic equations. These two stress transfer techniques are also proposed to be used to transfer stresses to submodels inside a global model domain for submodeling wellbore stability purposes. The term submodel is defined as a finite element mesh with a smaller size relative to the size of the global model.
108

Fluid Flow in Fractured Rocks: Analysis and Modeling

He, Xupeng 05 1900 (has links)
The vast majority of oil and gas reserves are trapped in fractured carbonate reservoirs. Most carbonate reservoirs are naturally fractured, with fractures ranging from millimeter- to kilometer-scale. These fractures create complex flow behaviors which impact reservoir characterization, production performance, and, eventually, total recovery. As we know, bridging the gas from plug to near-wellbore, eventually to field scales, is a persisting challenge in modeling Naturally Fractured Reservoirs (NFRs). This dissertation will focus on assessing the fundamental flow mechanisms in fractured rocks at the plug scale, understanding the governing upscaling parameters, and ultimately, developing fit-for-purpose upscaling tools for field-scale implementation. In this dissertation, we first focus on the upscaling of rock fractures under the laminar flow regime. A novel analytical model is presented by incorporating the effects of normal aperture, roughness, and tortuosity. We then investigate the stress-dependent hydraulic behaviors of rock fractures. A new and generalized theoretical model is derived and verified by a dataset collected from public experimental resources. In addition, an efficient coupled flow-geomechanics algorithm is developed to further validate the proposed analytical model. The physics of matrix-fracture interaction and fluid leakage is modeled by a high-resolution, micro-continuum approach, called extended Darcy-Brinkman-Stokes (DBS) equations. We observe the back-flow phenomena for the first time. Machine learning is then implemented into our traditional upscaling work under complex physics (e.g., initial and Klinkenberg effects). We finally consolidate the lab-scale upscaling tools and scale them up to the field scale. We develop a fully coupled hydro-mechanical model based on the Discrete-Fracture Model (DFM) in fractured reservoirs, in which we incorporate localized effects of fracture roughness at the field-scale.
109

Mathematical and Statistical Investigation of Steamflooding in Naturally Fractured Carbonate Heavy Oil Reservoirs

Shafiei, Ali 25 March 2013 (has links)
A significant amount of Viscous Oil (e.g., heavy oil, extra heavy oil, and bitumen) is trapped in Naturally Fractured Carbonate Reservoirs also known as NFCRs. The word VO endowment in NFCRs is estimated at ~ 2 Trillion barrels mostly reported in Canada, the USA, Russia, and the Middle East. To date, contributions to the world daily oil production from this immense energy resource remains negligible mainly due to the lack of appropriate production technologies. Implementation of a VO production technology such as steam injection is expensive (high capital investment), time-consuming, and people-intensive. Hence, before selecting a production technology for detailed economic analysis, use of cursory or broad screening tools or guides is a convenient means of gaining a quick overview of the technical feasibility of the various possible production technologies applied to a particular reservoir. Technical screening tools are only available for the purpose of evaluation of the reservoir performance parameters in oil sands for various thermal VO exploitation technologies such as Steam Assisted Gravity Drainage (SAGD), Cyclic Steam Stimulation (CSS), Horizontal well Cyclic steam Stimulation (HCS), and so on. Nevertheless, such tools are not applicable for VO NFCRs assessment without considerable modifications due to the different nature of these two reservoir types (e.g., presence and effects of fracture network on reservoir behavior, wettability, lithology, fabric, pore structure, and so on) and also different mechanisms of energy and mass transport. Considering the lack of robust and rapid technical reservoir screening tools for the purpose of quick assessment and performance prediction for VO NFCRs under thermal stimulation (e.g., steamflooding), developing such fast and precise tools seems inevitable and desirable. In this dissertation, an attempt was made to develop new screening tools for the purpose of reservoir performance prediction in VO NFCRs using all the field and laboratory available data on a particular thermal technology (vertical well steamflooding). Considering the complex and heterogeneous nature of the NFCRs, there is great uncertainty associated with the geological nature of the NFCRs such as fracture and porosity distribution in the reservoir which will affect any modeling tasks aiming at modeling of processes involved in thermal VO production from these types of technically difficult and economically unattractive reservoirs. Therefore, several modeling and analyses technqiues were used in order to understand the main parameters controlling the steamflooding process in NFCRs and also cope with the uncertainties associated with the nature of geologic, reservoir and fluid properties data. Thermal geomechanics effects are well-known in VO production from oil sands using thermal technologies such as SAGD and cyclic steam processes. Hence, possible impacts of thermal processes on VO NFCRs performance was studied despite the lack of adequate field data. This dissertation makes the following contributions to the literature and the oil industry: Two new statistical correlations were developed, introduced, and examined which can be utilized for the purpose of estimation of Cumulative Steam to Oil Ratio (CSOR) and Recovery Factor (RF) as measures of process performance and technical viability during vertical well steamflooding in VO Naturally Fractured Carbonate Reservoirs (NFCRs). The proposed correlations include vital parameters such as in situ fluid and reservoir properties. The data used are taken from experimental studies and also field trials of vertical well steamflooding pilots in viscous oil NFCRs reported in the literature. The error percentage for the proposed correlations is < 10% for the worst case and contains fewer empirical constants compared with existing correlations for oil sands. The interactions between the parameters were also considered. The initial oil saturation and oil viscosity are the most important predictive factors. The proposed correlations successfully predicted steam/oil ratios and recovery factors in two heavy oil NFCRs. These correlations are reported for the first time in the literature for this type of VO reservoirs. A 3-D mathematical model was developed, presented, and examined in this research work, investigating various parameters and mechanisms affecting VO recovery from NFCRs using vertical well steamflooding. The governing equations are written for the matrix and fractured medium, separately. Uncertainties associated with the shape factor for the communication between the matrix and fracture is eliminated through setting a continuity boundary condition at the interface. Using this boundary condition, the solution method employed differs from the most of the modeling simulations reported in the literature. A Newton-Raphson approach was also used for solving mass and energy balance equations. RF and CSOR were obtained as a function of steam injection rate and temperature and characteristics of the fractured media such as matrix size and permeability. The numerical solution clearly shows that fractures play an important role in better conduction of heat into the matrix part. It was also concluded that the matrix block size and total permeability are the most important parameters affecting the dependent variables involved in steamflooding. A hybrid Artificial Neural Network model optimized by co-implementation of a Particle Swarm Optimization method (ANN-PSO) was developed, presented, and tested in this research work for the purpose of estimation of the CSOR and RF during vertical well steamflooding in VO NFCRs. The developed PSO-ANN model, conventional ANN models, and statistical correlations were examined using field data. Comparison of the predictions and field data implies superiority of the proposed PSO-ANN model with an absolute average error percentage < 6.5% , a determination coefficient (R2) > 0.98, and Mean Squared Error (MSE) < 0.06, a substantial improvement in comparison with conventional ANN model and empirical correlations for prediction of RF and CSOR. This indicates excellent potential for application of hybrid PSO-ANN models to screen VO NFCRs for steamflooding. This is the first time that the ANN technique has been applied for the purpose of performance prediction of steamflooding in VO NFCRs and also reported in the literature. The predictive PSO-ANN model and statistical correlations have strong potentials to be merged with heavy oil recovery modeling softwares available for thermal methods. This combination is expected to speed up their performance, reduce their uncertainty, and enhance their prediction and modeling capabilities. An integrated geological-geophysical-geomechanical approach was designed, presented, and applied in the case of a NFCR for the purpose of fracture and in situ stresses characterization in NFCRs. The proposed methodology can be applied for fracture and in situ stresses characterization which is beneficial to various aspects of asset development such as well placement, drilling, production, thermal reservoir modeling incorporating geomechanics effects, technology assessment and so on. A conceptual study was also conducted on geomechanics effects in VO NFCRs during steamflooding which is not yet well understood and still requires further field, laboratory, and theoretical studies. This can be considered as a small step forward in this area identifying positive potential of such knowledge to the design of large scale thermal operations in VO NFCRs.
110

Mathematical and Statistical Investigation of Steamflooding in Naturally Fractured Carbonate Heavy Oil Reservoirs

Shafiei, Ali 25 March 2013 (has links)
A significant amount of Viscous Oil (e.g., heavy oil, extra heavy oil, and bitumen) is trapped in Naturally Fractured Carbonate Reservoirs also known as NFCRs. The word VO endowment in NFCRs is estimated at ~ 2 Trillion barrels mostly reported in Canada, the USA, Russia, and the Middle East. To date, contributions to the world daily oil production from this immense energy resource remains negligible mainly due to the lack of appropriate production technologies. Implementation of a VO production technology such as steam injection is expensive (high capital investment), time-consuming, and people-intensive. Hence, before selecting a production technology for detailed economic analysis, use of cursory or broad screening tools or guides is a convenient means of gaining a quick overview of the technical feasibility of the various possible production technologies applied to a particular reservoir. Technical screening tools are only available for the purpose of evaluation of the reservoir performance parameters in oil sands for various thermal VO exploitation technologies such as Steam Assisted Gravity Drainage (SAGD), Cyclic Steam Stimulation (CSS), Horizontal well Cyclic steam Stimulation (HCS), and so on. Nevertheless, such tools are not applicable for VO NFCRs assessment without considerable modifications due to the different nature of these two reservoir types (e.g., presence and effects of fracture network on reservoir behavior, wettability, lithology, fabric, pore structure, and so on) and also different mechanisms of energy and mass transport. Considering the lack of robust and rapid technical reservoir screening tools for the purpose of quick assessment and performance prediction for VO NFCRs under thermal stimulation (e.g., steamflooding), developing such fast and precise tools seems inevitable and desirable. In this dissertation, an attempt was made to develop new screening tools for the purpose of reservoir performance prediction in VO NFCRs using all the field and laboratory available data on a particular thermal technology (vertical well steamflooding). Considering the complex and heterogeneous nature of the NFCRs, there is great uncertainty associated with the geological nature of the NFCRs such as fracture and porosity distribution in the reservoir which will affect any modeling tasks aiming at modeling of processes involved in thermal VO production from these types of technically difficult and economically unattractive reservoirs. Therefore, several modeling and analyses technqiues were used in order to understand the main parameters controlling the steamflooding process in NFCRs and also cope with the uncertainties associated with the nature of geologic, reservoir and fluid properties data. Thermal geomechanics effects are well-known in VO production from oil sands using thermal technologies such as SAGD and cyclic steam processes. Hence, possible impacts of thermal processes on VO NFCRs performance was studied despite the lack of adequate field data. This dissertation makes the following contributions to the literature and the oil industry: Two new statistical correlations were developed, introduced, and examined which can be utilized for the purpose of estimation of Cumulative Steam to Oil Ratio (CSOR) and Recovery Factor (RF) as measures of process performance and technical viability during vertical well steamflooding in VO Naturally Fractured Carbonate Reservoirs (NFCRs). The proposed correlations include vital parameters such as in situ fluid and reservoir properties. The data used are taken from experimental studies and also field trials of vertical well steamflooding pilots in viscous oil NFCRs reported in the literature. The error percentage for the proposed correlations is < 10% for the worst case and contains fewer empirical constants compared with existing correlations for oil sands. The interactions between the parameters were also considered. The initial oil saturation and oil viscosity are the most important predictive factors. The proposed correlations successfully predicted steam/oil ratios and recovery factors in two heavy oil NFCRs. These correlations are reported for the first time in the literature for this type of VO reservoirs. A 3-D mathematical model was developed, presented, and examined in this research work, investigating various parameters and mechanisms affecting VO recovery from NFCRs using vertical well steamflooding. The governing equations are written for the matrix and fractured medium, separately. Uncertainties associated with the shape factor for the communication between the matrix and fracture is eliminated through setting a continuity boundary condition at the interface. Using this boundary condition, the solution method employed differs from the most of the modeling simulations reported in the literature. A Newton-Raphson approach was also used for solving mass and energy balance equations. RF and CSOR were obtained as a function of steam injection rate and temperature and characteristics of the fractured media such as matrix size and permeability. The numerical solution clearly shows that fractures play an important role in better conduction of heat into the matrix part. It was also concluded that the matrix block size and total permeability are the most important parameters affecting the dependent variables involved in steamflooding. A hybrid Artificial Neural Network model optimized by co-implementation of a Particle Swarm Optimization method (ANN-PSO) was developed, presented, and tested in this research work for the purpose of estimation of the CSOR and RF during vertical well steamflooding in VO NFCRs. The developed PSO-ANN model, conventional ANN models, and statistical correlations were examined using field data. Comparison of the predictions and field data implies superiority of the proposed PSO-ANN model with an absolute average error percentage < 6.5% , a determination coefficient (R2) > 0.98, and Mean Squared Error (MSE) < 0.06, a substantial improvement in comparison with conventional ANN model and empirical correlations for prediction of RF and CSOR. This indicates excellent potential for application of hybrid PSO-ANN models to screen VO NFCRs for steamflooding. This is the first time that the ANN technique has been applied for the purpose of performance prediction of steamflooding in VO NFCRs and also reported in the literature. The predictive PSO-ANN model and statistical correlations have strong potentials to be merged with heavy oil recovery modeling softwares available for thermal methods. This combination is expected to speed up their performance, reduce their uncertainty, and enhance their prediction and modeling capabilities. An integrated geological-geophysical-geomechanical approach was designed, presented, and applied in the case of a NFCR for the purpose of fracture and in situ stresses characterization in NFCRs. The proposed methodology can be applied for fracture and in situ stresses characterization which is beneficial to various aspects of asset development such as well placement, drilling, production, thermal reservoir modeling incorporating geomechanics effects, technology assessment and so on. A conceptual study was also conducted on geomechanics effects in VO NFCRs during steamflooding which is not yet well understood and still requires further field, laboratory, and theoretical studies. This can be considered as a small step forward in this area identifying positive potential of such knowledge to the design of large scale thermal operations in VO NFCRs.

Page generated in 0.0312 seconds