• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 22
  • 10
  • 9
  • 8
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 221
  • 221
  • 221
  • 60
  • 45
  • 44
  • 37
  • 35
  • 33
  • 27
  • 27
  • 26
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Elektrochemische und strukturelle Untersuchungen von Li3Cr2(PO4)3 als Hochvoltkathodenmaterial in Lithiumionenbatterien

Herklotz, Markus 20 December 2013 (has links)
Ziel dieser Arbeit war es, das LISICON Li3Cr2(PO4)3 als einen Kandidaten für Hochvoltkathodenmaterialien eingehend zu charakterisieren. Dabei lag der Schwerpunkt auf den strukturellen in situ Untersuchungen mittels Synchrotronstrahlung und der Aufdeckung etwaiger limitierender Prozesse. Für diese Arbeit wurde der neue Messplatz P02.1 an der Synchrotronstrahlungsquelle PETRA III, DESY Hamburg für in situ Batterieuntersuchungen evaluiert. In Abhängigkeit von der 2D-Detektorposition können maximale q-Bereiche von bis zu 35 Å-1 oder instrumentelle Auflösungen bis zu 0,0055 Å-1 erzielt werden. Hervorzuheben ist außerdem die zeitliche Auflösung von minimal 130 ms je Diffraktogramm. Mittels galvanostatischen Messungen eines Li3Cr2(PO4)3-haltigen Komposits (80 % (w/w) Aktivmaterial) konnten zwei Lade- und ein Entlademaximum zwischen 4,7 V und 4,9 V vs. Li+/Li nachgewiesen werden. Jedoch beträgt die Coulomb-Effizienz lediglich 60 % (bei 60 mAh/g oxidativer Ladungsmenge). Eine maximale Coulomb-Effizienz von ca. 80 % wurde bei niedrigeren Temperaturen um den Gefrierpunkt gemessen. Neben strukturellen Änderungen ist eine Elektrolytzersetzung nicht auszuschließen, wobei eine mittels XPS nachgewiesene Grenzschicht zwischen Kathode und Elektrolyt diesen vor einer übermäßigen Reaktion zu schützen scheint. Erstmalig ließ sich mittels der Photoelektronenspektroskopie das aktive Redoxpaar Cr4+/Cr3+ in einer Phosphatmatrix nachweisen. Wie die in situ Untersuchungen zeigen, scheint dies mit der Bildung von Chrom-Sauerstoff-Doppelbindungen einherzugehen. Sowohl sich gegenläufig entwickelnde transständige Chromsauerstoffabstände als auch die Verringerung der Phosphorbesetzungszahlen sind starke Indizien für diese neuartige oktaedrische Koordination des Chroms. Diese als sehr stabil einzuschätzende Chromylverbindung, eine nachgewiesene stark anisotrope Kontraktion der Einheitszelle und mittels REM erkennbare Risse in den aktiven LISICON-Kristalliten werden als Hauptursachen für die relativ geringe De- und Reinterkalierbarkeit von Lithium in die Struktur des hier untersuchten Li3Cr2(PO4)3 angesehen.:I Einleitung und Grundlagen 1 Einleitung 2 Theoretische Grundlagen 2.1 Elektrochemische Grundlagen 2.1.1 Prinzip und Elektrodenmaterialien einer Lithiumionenbatterie 2.1.2 Grundlegende elektrochemische Gesetze und Größen 2.1.3 Elektrochemische Methoden 2.2 Strukturmodellverfeinerung 2.2.1 Lage und Intensität von Bragg-Reflexen 2.2.2 Rietveld-Methode 2.2.3 Profilfunktion 2.2.4 Fehlerbetrachtung 2.2.5 Beschränkung verfeinerter Parameter II Untersuchte Materialien und experimentelle Aufbauten 3 Die monokline Struktur und Eigenschaften von Li3Cr2(PO4)3 4 Charakterisierungsmethoden und experimentelle Aufbauten 4.1 Elektrochemie 4.2 Photoelektronenspektroskopie 4.3 Rasterelektronenmikroskopie III Evaluierung eines neuen in situ-Diffraktionsmessplatzes 5 Strahlquellen zur in situ-Charakterisierung von Batteriematerialien 5.1 Vom Labordiffraktometer zum Synchrotron 5.2 Messplätze am DESY Hamburg 6 Aufbau des in situ-Messplatzes an der Beamline P02.1 6.1 Diffraktometer und Zellhalter 6.2 Entwicklung einer neuen in situ-Messzelle 6.3 Programme zum Auswerten von 2D-Diffraktogrammen 7 Leistungsfähigkeit des in situ-Messplatzes an der Beamline P02.1 7.1 Elektrochemische Funktionalität des neuen Zelldesigns 7.2 In situ-Synchrotron-Pulver-Diffraktion mit dem neuen Messaufbau 7.3 Beiträge zum Untergrund 7.4 Zeitauflösung und Diffraktogrammqualität 7.5 Detektierbarer q- bzw. 2 -Bereich 7.6 Instrumentelle Auflösung IV Untersuchungen am System Li3Cr2(PO4)3 8 Elektrochemisches Verhalten von Li3Cr2(PO4)3 8.1 Einfluss der Ladeschlussspannung und des Lithiumumsatzes 8.2 Einfluss des Lade- bzw. Entladestroms 8.3 Einfluss der Temperatur 9 Photoelektronenspektroskopische Charakterisierung der Chrom-Valenzzustände 9.1 Spektren des Ausgangszustands und Energiekalibrierung 9.2 Charakterisierung der oxidierten Zustände 10 Rasterelektronenmikroskopische Morphologieuntersuchungen 10.1 REM-Aufnahmen des Ausgangszustands 10.2 REM-Aufnahmen des oxidierten Zustands 10.3 Diskussion zur kritischen Kristallitgröße 11 In situ-Strukturuntersuchung 11.1 Elektrochemisches Verhalten in der in situ-Zelle 11.2 Strukturmodell des Ausgangszustands 11.3 Strukturmodellauswahl für die oxidierten Zustände 11.4 Entwicklung der Gitterparameter 11.5 Entwicklung der Atomkoordinaten und Besetzungszahlen 11.6 Mikrostrukturausbildung und Gleitebenen V Zusammenfassung und Ausblick / Aim of this work is the investigation of a compound of the LISICON family Li3Cr2(PO4)3 as a high voltage cathode material in lithium ion batteries. This thesis focuses on the monitoring of structural fatigue mechanisms using synchrotron radiation. A new in situ experimental setup at the beamline P02.1 (PETRA III, DESY Hamburg) was evaluated. In dependence on the 2D detector position either a q-range of 35 Å-1 or an instrumental resolution of 0.0055 Å-1 were determined. A time resolution of 130 ms per diffractogram with still outstanding signal statistics shall be pointed out. By galvanostatic cycling of a Li3Cr2(PO4)3-composite (80 % (w/w) active material) partially reversible redox behavior at 4.7 V and 4.9 V vs. Li+/Li was demonstrated. A coulombic efficiency of 60 % (at 60 mAh/g oxidative charge amount) was measured at room temperature. It can be increased to 80 % at 0 °C. Electrolyte decomposition has to be considered as one possible reason for the limited electrochemical reversibility. A solid electrolyte interface, which was proven by XPS measurements, seems to protect the electrolyte against further decomposition. For the first time, the active redox pair Cr4+/Cr3+ in a phosphate matrix was proven by XPS. Most likely this behavior is accompanied by the formation of chromium-oxygen double bonds, as derived from the in situ synchrotron XRD data. Both an opposing trend in trans-positioned chromium-oxygen bond distances and the less occupied phosphorus positions give strong hints on this octahedral coordination of chromium. The chromyl group is estimated as strong bond and therewith the strongly anisotropic contraction of the unit cell and the formation of visible cracks (as found REM) in the active crystals are indicated as further reasons for the limited electrochemical reversibility for Li-intercalation and deintercalation of the investigated Li3Cr2(PO4)3.:I Einleitung und Grundlagen 1 Einleitung 2 Theoretische Grundlagen 2.1 Elektrochemische Grundlagen 2.1.1 Prinzip und Elektrodenmaterialien einer Lithiumionenbatterie 2.1.2 Grundlegende elektrochemische Gesetze und Größen 2.1.3 Elektrochemische Methoden 2.2 Strukturmodellverfeinerung 2.2.1 Lage und Intensität von Bragg-Reflexen 2.2.2 Rietveld-Methode 2.2.3 Profilfunktion 2.2.4 Fehlerbetrachtung 2.2.5 Beschränkung verfeinerter Parameter II Untersuchte Materialien und experimentelle Aufbauten 3 Die monokline Struktur und Eigenschaften von Li3Cr2(PO4)3 4 Charakterisierungsmethoden und experimentelle Aufbauten 4.1 Elektrochemie 4.2 Photoelektronenspektroskopie 4.3 Rasterelektronenmikroskopie III Evaluierung eines neuen in situ-Diffraktionsmessplatzes 5 Strahlquellen zur in situ-Charakterisierung von Batteriematerialien 5.1 Vom Labordiffraktometer zum Synchrotron 5.2 Messplätze am DESY Hamburg 6 Aufbau des in situ-Messplatzes an der Beamline P02.1 6.1 Diffraktometer und Zellhalter 6.2 Entwicklung einer neuen in situ-Messzelle 6.3 Programme zum Auswerten von 2D-Diffraktogrammen 7 Leistungsfähigkeit des in situ-Messplatzes an der Beamline P02.1 7.1 Elektrochemische Funktionalität des neuen Zelldesigns 7.2 In situ-Synchrotron-Pulver-Diffraktion mit dem neuen Messaufbau 7.3 Beiträge zum Untergrund 7.4 Zeitauflösung und Diffraktogrammqualität 7.5 Detektierbarer q- bzw. 2 -Bereich 7.6 Instrumentelle Auflösung IV Untersuchungen am System Li3Cr2(PO4)3 8 Elektrochemisches Verhalten von Li3Cr2(PO4)3 8.1 Einfluss der Ladeschlussspannung und des Lithiumumsatzes 8.2 Einfluss des Lade- bzw. Entladestroms 8.3 Einfluss der Temperatur 9 Photoelektronenspektroskopische Charakterisierung der Chrom-Valenzzustände 9.1 Spektren des Ausgangszustands und Energiekalibrierung 9.2 Charakterisierung der oxidierten Zustände 10 Rasterelektronenmikroskopische Morphologieuntersuchungen 10.1 REM-Aufnahmen des Ausgangszustands 10.2 REM-Aufnahmen des oxidierten Zustands 10.3 Diskussion zur kritischen Kristallitgröße 11 In situ-Strukturuntersuchung 11.1 Elektrochemisches Verhalten in der in situ-Zelle 11.2 Strukturmodell des Ausgangszustands 11.3 Strukturmodellauswahl für die oxidierten Zustände 11.4 Entwicklung der Gitterparameter 11.5 Entwicklung der Atomkoordinaten und Besetzungszahlen 11.6 Mikrostrukturausbildung und Gleitebenen V Zusammenfassung und Ausblick
192

Heat transfer in ordered porous media with application to batteries

Moosavi, Amin January 2023 (has links)
Environmental concerns, resource depletion, energy security, technological advancements, and global policies are just a few of the variables influencing the global energy perspective. In the case of technological advancement, lithium batteries play a key role in the development of a more sustainable energy infrastructure. The high energy density and long lifespan of lithium batteries make them ideal for usage in a broad range of applications, such as portable electronics, electric vehicles, and grid-scale energy storage for renewable energy sources. However, there are certain possible concerns regarding the safe operation and performance of lithium batteries, most of which are associated with the temperature sensitivity of lithium batteries. Hence, battery thermal management systems are an essential component of a battery package for regulating the temperature level in lithium batteries to avoid the aging process, poor performance, and safety issues.   Many studies have been conducted to develop battery thermal management systems with improved cooling performance. Within this framework, Paper A in this licentiate thesis considers how the design of a lithium battery cell may be improved to reduce the thermal load on the thermal management system. An analytical model based on the integral transform technique is developed to accurately and efficiently predict the thermal behavior of a cylindrical lithium battery cell. Following model validation, the thermal behavior of cylindrical lithium-ion battery cells with different jelly-roll layers and can sizes are compared. The results demonstrate that 21700 cylindrical battery cells outperform other types of cylindrical battery cells in terms of thermal performance. Furthermore, the thermally optimal thicknesses for positive active material, negative active material, positive current collector, and negative current collector are 180, 34, 21, and 20 um, respectively. After learning about design considerations to reduce thermal issues in lithium-ion battery cells and developing a proper tool for further studies, the focus was set on the flow behavior surrounding a cylindrical battery cell in an air-based cooling system. The cooling system under consideration is a wall-bounded cross-flow heat exchanger, the most common air-based cooling system for battery applications. Despite the importance of the cooling system in battery safety, few studies have been conducted to investigate the thermo-flow characteristics of wall-bounded cross-flow heat exchangers. Hence, in the battery research field, it is common to estimate the performance of wall-bounded cross-flow heat exchangers using the thermal characteristics of free cross-flow heat exchangers due to their geometrical similarities. In Paper B, this assumption is scrutinized by comparing the thermo-fluid characteristics of free and wall-bounded cross-flow heat exchangers. According to the results, flow through both heat exchangers shows almost similar thermo-fluid behavior in areas sufficiently far from the bounding walls. A turbulence model study suggests that the k-kl-omega transition model is a time-efficient and reliable turbulence model for capturing thermo-fluid characteristics in such heat exchangers. Moreover, it is observed that the two different heat exchangers have an almost identical area-averaged heat transfer rate despite the local changes in Nusselt number along the height of cells. This finding shows that it is possible to do two-dimensional simulations for applications that only require an area-averaged heat transfer rate on the battery cells. The findings in Paper A and Paper B may be used to investigate the cooling performance of a battery thermal management system with a practical design. Hence, in Paper C, a comprehensive yet simplified model is developed that can be used to study the thermal field of lithium battery cells in a large-scale air-based battery thermal management system. The model consists of the CFD model derived in Paper B, which predicts the flow behavior around cells in the inner region of the battery package, and the analytical model described in Paper A, which determines the thermal field within the battery cells. The area-averaged heat transfer coefficient interconnects the models, and a system of equations is employed to estimate the row-to-row variation of the thermal field. The model is employed to assess the effect of transverse and longitudinal pitch ratios on the thermal performance of an air-based battery thermal management system used in a hybrid electric vehicle.
193

Redistributive Non-Dissipative Battery Balancing Systems with Isolated DC/DC Converters: Theory, Design, Control and Implementation

McCurlie, Lucas January 2016 (has links)
Energy storage systems with many Lithium Ion battery cells per string require sophisticated balancing hardware due to individual cells having manufacturing inconsistencies, different self discharge rates, internal resistances and temperature variations. For capacity maximization, safe operation, and extended lifetime, battery balancing is required. Redistributive Non-Dissipative balancing further improves the pack capacity and efficiency over a Dissipative approach where energy is wasted as heat across shunt resistors. Redistribution techniques dynamically shuttle charge to and from weak cells during operation such that all of the stored energy in the stack is utilized. This thesis identifies and develops different balancing control methods. These methods include a unconstrained optimization problem using a Linear Quadratic Regulator (LQR) and a constrained optimization problem using Model Predictive Control (MPC). These methods are benchmarked against traditional rule based (RB) balancing. The control systems are developed using MATLAB/Simulink and validated experimentally on a multiple transformer individual cell to stack topology. The implementation uses a DC2100A Demo-board from Linear Technology with bi-directional flyback converters to transfer the energy between the cells. The results of this thesis show that the MPC control method has the highest balancing efficiency and minimum balancing time. / Thesis / Master of Applied Science (MASc)
194

Life Cycle Assessment of Lightweight Electric Motorbikes : Case Study - RIDECAKE / Livscykelbedömning av lätta elektriska motorcyklar : Fallstudie - Ridecake

Englert, Savitri Visvanathan January 2023 (has links)
The electric vehicle segments of companies have broadened, and their sales have increased in the past decade. The electric motorcycle sector is growing fast, with improved technology on electric powertrains, increased ranges, charging speeds, and infrastructure. Parallel to the increased sales, the electric battery sector is advancing rapidly, thereby lowering the environmental impacts of these vehicles. The competitive adventure sports sector also benefits from using electric powertrains with their incredible power-to-weight ratio and instant torque. The benefits of using electric vehicles over conventional ones can be seen during the use phase, with zero tailpipe emissions and clean, silent riding.   However, with the expansion of the electric motorcycle sector rolling out new technologies and models, there are uncertainties about whether the overall lifecycle has reduced impacts on the environment. Finding and improving the most sustainable model(s) or solution(s) implies scrutinizing the effects of these motorcycles on the environment, which is the goal of CAKE 0 Emission AB, a Swedish lightweight electric motorbike manufacturer.   The current project will assess the potential environmental impacts of Kalk&, an off-road electric motorcycle model certified for on-road use, designed, and manufactured by CAKE 0 Emission AB. For this purpose, Attributional Life Cycle Assessment was chosen as the method to study the impact of one whole motorbike over a lifetime of 500 battery charging cycles, used by a hypothetical example user in Stockholm, Sweden. The potential environmental impacts are focused on 12 categories using the ReCiPe Midpoint (H) method.   As expected from an electric vehicle, the results show that the impacts mainly stem from the manufacturing phase of the motorbike. The hotspots in the manufacturing phase arise from producing the battery, the electric motor, and the electrical components like lights, the charger, and cables. The materials used for construction that have a high share of impact are Copper and Aluminium. Another environmental hotspot is the casting manufacturing process. Within the vehicle use phase, the impact of using solar energy in Sweden for charging the batteries is not immediately intuitive and has shown to be higher than the Swedish electricity board mix; the results argue that the choice of electricity is vital in reducing emissions. Transporting the vehicle overseas by ship instead of by flight decreases emissions by about 82% to 97% within the various impact categories.   A sensitivity scenario was created for a hypothetical user in Barcelona, Spain, to better understand the influence of the selected lifetime and user behavior on the impacts. The results indicate that using an additional battery and thereby increasing the lifetime of the vehicle shows a 34% decrease in emissions per km driven within the lifetime of the motorcycle. Lastly, it is recommended whenever possible to source the numerous components of the vehicle closer to the assembly unit to reduce the transportation impacts incurred from transoceanic freight. / Företagens elfordonssegment har breddats och deras försäljning har ökat under det senaste decenniet. Den elektriska motorcykelsektorn växer snabbt, med förbättrad teknik på elektriska drivlinor, ökade räckvidder, laddningshastigheter och infrastruktur. Parallellt med den ökade försäljningen går elbatterisektorn snabbt framåt, vilket minskar miljöpåverkan från dessa fordon. Den konkurrensutsatta äventyrssportsektorn drar också nytta av att använda elektriska drivlinor med deras otroliga kraft-till-vikt-förhållande och omedelbara vridmoment. Fördelarna med att använda elfordon framför konventionella kan ses under användningsfasen, med noll avgasutsläpp och ren, tyst körning.  Men med expansionen av elmotorcykelsektorn som rullar ut nya tekniker och modeller, finns det osäkerheter om huruvida den övergripande livscykeln har minskat miljöpåverkan. Att hitta och förbättra de mest hållbara modellerna eller lösningarna innebär att man granskar dessa motorcyklars effekter på miljön, vilket är målet för CAKE 0 Emission AB, en svensk lättviktstillverkare av elmotorcykel.  Det aktuella projektet kommer att bedöma de potentiella miljöeffekterna av Kalk&, en terrängmodell av elektrisk motorcykel certifierad för användning på väg, designad och tillverkad av CAKE 0 Emission AB. För detta ändamål valdes Attributional Life Cycle Assessment som metoden för att studera effekten av en hel motorcykel under en livstid på 500 batteriladdningscykler, som används av en hypotetisk exempelanvändare i Stockholm, Sverige. Den potentiella miljöpåverkan är fokuserad på 12 kategorier med hjälp av metoden ReCiPe Midpoint (H).  Som förväntat av ett elfordon visar resultaten att effekterna huvudsakligen härrör från motorcykelns tillverkningsfas. Hotspots i tillverkningsfasen uppstår från att producera batteriet, elmotorn och de elektriska komponenterna som lampor, laddare och kablar. De material som används för konstruktion som har en hög andel av påverkan är koppar och aluminium. En annan miljömässig hotspot är tillverkningsprocessen för gjutning. Inom fordonsanvändningsfasen är effekten av att använda solenergi i Sverige för att ladda batterierna inte direkt intuitiv och har visat sig vara högre än den svenska elkortsmixen; resultaten talar för att valet av el är avgörande för att minska utsläppen. Att transportera fordonet utomlands med fartyg istället för med flyg minskar utsläppen med cirka 82% till 97% inom de olika påverkanskategorierna.  Ett känslighetsscenario skapades för en hypotetisk användare i Barcelona, Spanien, för att bättre förstå inverkan av den valda livslängden och användarbeteendet på effekterna. Resultaten indikerar att användning av ett extra batteri och därmed ökad livslängd på fordonet visar en 34% minskning av utsläppen per körd km under motorcykelns livslängd. Slutligen rekommenderas det när det är möjligt att köpa de många komponenterna i fordonet närmare monteringsenheten för att minska transportpåverkan från transoceanisk frakt.  Note: The abstract has been translated to Swedish from English using Google Translate
195

Temperature Optimization and Internal Chemical Changes on Cathode Material During Solution Discharge Step in Lithium-Ion Battery Recycling / Temperaturoptimering och inre kemiska förändringar på katodmaterial under lösningsurladdningssteget vid återvinning av litiumjonbatteri

Karli, Berfu January 2021 (has links)
Sammanfattning på svenska: I nutiden, forskning och innovationer båda från akademi och industri försätter för att minska effekterna från klimatförändring. Ett av många viktiga område där utvecklingen fortsätter är litiumjonbatterier (LIB). På grund av den ökade energiförbrukningen i många områden (främst transporter) har ökat fossila bränsleförbrukningar och orsakat behovet av energi att lagras mer. Samhället kan inte bara fokusera på global miljövänlig batteriproduktion för att lösa detta problem. Samtidigt är det nödvändigt att koncentrera på hur man utvärderas begagnade batterierna som vi redan har. Återvinning av litiumjonbatterier har därför börjat få en ökad betydelse. Utmaningar för batteri återvinning är energi kravet för steg på processen och andra processer kan orsaka att skadliga ämnen släpps ut i naturen. Därför är det mycket viktigt att veta hur ett batteri påverkas av interna och externa förändringar från första till sista steget i återvinning och hur detta kommer att påverka de andra stegen. Detta examensarbete fokuserar på lösningsbaserade urladdningssteget i LIB-återvinning och syftar till att hitta den optimal temperatur genom att utforska möjliga förändringar som observerats på katodmaterialet. Inom ramen för projektet planerades temperaturoptimeringsstudien att göras genom att kombinera kemiska förändringar både inom och utanför batteriet i lösningsurladdningen. Detta är med en diskussion om särskilt fokus på att uppnå en hållbar återhämtning och kvaliteten på katodmaterialet. / In today's world, where global warming is felt in every sense, Research & Development (R&D) studies are continuing rapidly both in companies and in research networks to minimize its effects. One of the most important areas where developments continue is on lithium-ion batteries (LIBs). The increased energy consumption in many areas (mainly transportation), has increased fossil fuel consumption and caused the need for energy to be stored more. In this sense, focusing on only global-environmentally friendly battery production is insufficient to solve this problem. At the same time, it is necessary to concentrate on how to evaluate the used batteries that we already have. Therefore, lithium-ion battery recycling has begun to gain importance. Challenges for battery recycling are that some of the processes require energy inputs and others can generate harmful substances that require containment. Therefore, it is very important to know how a battery is affected by internal and external changes from the first to the last stage of recycling and how this will affect the other stages. This master thesis focuses on the solution discharge step in LIB recycling and aims to find the optimum temperature range for the discharge step of LIB recycling by exploration of the possible changes observed on the cathode material. In the scope of the project, the temperature optimization study was done by combining the chemical changes both inside and outside of the battery in the solution discharge. This is with a discussion of a particular focus on achieving a sustainable recovery and the quality of cathode material.
196

A Lithium-ion Test Cell for Characterization of Electrode Materials and Solid Electrolyte Interphase

Goel, Ekta 03 May 2008 (has links)
The research discussed is divided into two parts. The first part discusses the background work involved in preparation of the Li-ion cell testing stage. This includes the preparation of anodes using the doctor blade and a calendar mill, electrolyte preparation, test cell assembly, the Li-ion test cell design, and experiments performed to troubleshoot the cell. The second part deals with the cell testing experiments. Li-ion batteries are amongst the most promising rechargeable battery technology because of their high capacity and low weight. Current research aims at improving the anode quality to increase the capacity. The experiments discussed evaluate the traditional anode materials like SFG44 graphite and conducting grade graphite against the novel ones– and tin oxide (SnO2) based and carbon encapsulated tin based anodes. The solid electrolyte interphase formed on each anode was analyzed to understand the initial capacity fade leading to conditioning of the cell thus stabilizing its performance.
197

Aging Propagation Modeling and State-of-Health Assessment in Advanced Battery Systems

Cordoba Arenas, Andrea Carolina January 2013 (has links)
No description available.
198

Nanostructured Materials for Energy Applications

Li, Yanguang 08 September 2010 (has links)
No description available.
199

Fast deep discharging using a controllable load as pretreatment for EV battery recycling : A study on efficacy, speed, and safety / Snabb djupurladdning med en kontrollerbar belastning som förbehandling för återvinning av batterier i elbilar : En studie av effektivitet, hastighet och säkerhet

Van Genechten, Lucas January 2023 (has links)
In response to the present and projected growth of the EV industry, the development of a large-scale, reliable and efficient lithium-ion battery recycling sector is vital to ensure circularity of the embedded valuable metals and ensure overall sustainability of the technology. One of the main recycling procedures under development is based on hydrometallurgy. As a pretreatment step before lithium-ion batteries can undergo this process, they have to be deactivated to prevent uncontrolled release of the contained electrical energy. This deactivation step is often performed by deep discharging batteries to 0.0 V, instead of the usual lower cut-off around 3.0 V. Usually, deep discharging is performed by connection to resistors or through submersion in a salt solution. However, due to the discharge current derating proportionally to the terminal voltage, this procedure can be quite slow, especially if considerable rebound voltages are to be prevented. This work explores the feasibility of a faster discharge procedure in terms of discharge speed, effectiveness, and safety. The proposed procedure entails deep discharging at constant current using a controllable load, followed by applying an external short-circuit immediately. The C-rate during constant current discharging is varied to study its effects. The short-circuit is applied at a terminal voltage of 0.0 V or 1.0 V. The safety of both process steps is assessed experimentally. The main safety risks that are reviewed are the temperature rise and subsequent risk of thermal runaway, as well as the risk of electrolyte leakage due to pressure increase and swelling. In the experimental work, two types of large format prismatic NMC811 cells are deep discharged starting from an SoC of 0%. The experiments are limited to single cells. It is found that an additional 4% of additional capacity is available in the deep discharging region for a stationary cell at 0% SoC. The risk of thermal runaway is assessed as low based on the temperature measurements and a literature review. To investigate the rise in pressure, the thickness of all cells are measured, and the in situ pressure is measured for three samples. The risk for electrolyte leakage is assessed as low. The rebound voltage and cell thickness are followed up to one week after the discharge procedure. After a short-circuit of 30 minutes, the rebound voltage of all cells is near 2.0 V, but a slightly longer short circuit duration would be necessary to reliably achieve this threshold. The total procedure time is much shorter than those of alternative discharge procedures, while still remaining safe. / Som svar på den nuvarande och förväntade tillväxten inom elbilsindustrin är utvecklingen av en storskalig, tillförlitlig och effektiv återvinningssektor för litiumjonbatterier avgörande för att säkerställa cirkularitet för de inbäddade värdefulla metallerna och säkerställa teknikens övergripande hållbarhet. En av de viktigaste återvinningsmetoderna som är under utveckling baseras på hydrometallurgi. Som ett förbehandlingssteg innan litiumjonbatterier kan genomgå denna process måste de avaktiveras för att förhindra okontrollerad frisättning av den elektriska energi som de innehåller. Detta deaktiveringssteg utförs ofta genom djupurladdning av batterierna till 0.0 V, istället för den vanliga lägre gränsen runt 3.0 V. Vanligtvis utförs djupurladdning genom anslutning till resistorer eller genom nedsänkning i en saltlösning. Eftersom urladdningsströmmen avtar proportionellt mot terminalspänningen kan denna procedur dock vara ganska långsam, särskilt om man vill förhindra stora återkopplingsspänningar. I detta arbete undersöks genomförbarheten av en snabbare urladdningsprocedur när det gäller urladdningshastighet, effektivitet och säkerhet. Det föreslagna förfarandet innebär djupurladdning vid konstant ström med en kontrollerbar belastning, följt av omedelbar applicering av en extern kortslutning. C-hastigheten under urladdning med konstant ström varieras för att studera dess effekter. Kortslutningen appliceras vid en terminalspänning på 0.0 V eller 1.0 V. Säkerheten för båda processtegen bedöms experimentellt. De huvudsakliga säkerhetsriskerna som granskas är temperaturökningen och den efterföljande risken för termisk rusning, samt risken för elektrolytläckage på grund av tryckökning och svullnad. I det experimentella arbetet djupurladdas två typer av prismatiska NMC811-celler i storformat från en SoC på 0%. Experimenten är begränsade till enstaka celler. Det visade sig att ytterligare 4% kapacitet finns tillgänglig i djupurladdningsområdet för en stationär cell vid 0% SoC. Risken för termisk urladdning bedöms som låg baserat på temperaturmätningarna och en litteraturgenomgång. För att undersöka tryckökningen mäts tjockleken på alla celler och in situ-trycket mäts för tre prover. Risken för elektrolytläckage bedöms som låg. Återkopplingsspänningen och cellernas tjocklek följs upp upp till en vecka efter urladdningsproceduren. Efter en kortslutning på 30 minuter är returspänningen för alla celler nära 2.0 V, men en något längre kortslutningstid skulle vara nödvändig för att tillförlitligt uppnå detta tröskelvärde. Den totala tiden för proceduren är mycket kortare än för alternativa urladdningsprocedurer, samtidigt som den fortfarande är säker.
200

Revêtement en LiAlO2 sur des particules d’un matériau d’électrode positive LiNi0,6Mn0,2Co0,2O2 pour batterie aux ions lithium

Touag, Ouardia 05 1900 (has links)
Des progrès dans les batteries aux ions lithium sont en cours de développement afin de répondre, entre autres, à la demande croissante des hautes densités d'énergie et de puissance pour le réseau électrique et en particulier pour l'application dans les véhicules électriques. Ces derniers remplacent écologiquement les véhicules à moteur à combustion interne et leurs succès est principalement dû à leur efficacité énergétique supérieure, à leurs faibles coûts d'exploitation et à leur profil respectueux de l'environnement par rapport aux véhicules à essence. Parmi les différents matériaux de cathode, les composés d'intercalation LiNixMnyCo1-x-yO2 (NMC) sont les meilleurs candidats pour des applications dans les batteries aux ions lithium à hautes performances. Des efforts sont en cours pour mettre en oeuvre des matériaux cathodiques à base de NMC riches en nickel pour répondre aux besoins environnementaux et énergétiques. Aussi séduisants soient-ils, ces matériaux de cathode présentent certains inconvénients liés à une forte réactivité, notamment à l'interface avec l'électrolyte. Pour contourner ces problèmes, des modifications de surface sont étudiées comme des solutions accessibles pour protéger le matériau actif et améliorer ses performances. Bien que diverses chimies et stratégies de revêtement soient publiées dans la littérature, notre approche consistant à combiner la synthèse et la modification de surface du matériau actif en une étape est aussi simple qu'efficace. Le présent manuscrit porte sur l’étude de ce composé. Deux méthodes de revêtement de surface ont été étudiées et leur matériau revêtu résultant a été comparé au matériau non revêtu. Après une caractérisation détaillée de ces matériaux, des études électrochimiques ont été menées afin d’évaluer leurs performances. Enfin, notre NMC622 revêtu de LiAlO2 en une seule étape s'est avéré efficace pour contrer la dégradation de la capacité du NMC et pour améliorer la stabilité structurelle des particules, améliorant ainsi leur cycle de vie. / Advances in lithium-ion batteries are being developed in order to meet, among other things, the increasing demand for high energy and power densities for the electric power grid and especially for application in electric vehicles. The latter are a green replacement for internal combustion engine vehicles, and their success is mostly due to their higher energy efficiency, low operating costs and eco-friendliness compared to gasoline-powered vehicles. Among various cathode materials, LiNixMnyCo1-x-yO2 (NMC) intercalation compounds are the best candidates for applications in high performance lithium-ion batteries. Efforts are underway to implement nickel-rich NMC-based cathode materials to meet environmental and energy needs. As appealing as they are, these cathode materials present certain drawbacks associated with high reactivity, especially at the interface with the electrolyte. To circumvent these issues, surface modifications are investigated as accessible solutions to protect the active material and enhance its performance. Although various coating chemistries and strategies are published in the literature, our approach of combining synthesis and surface modification of the active material in a single pot is as simple as it is efficient. The following manuscript will be covering the study of this material. Two methods of surface coating were studied, and their resulting coated material was compared to the uncoated material. After a detailed characterization of these materials, electrochemical studies were carried out to evaluate their performance. Finally, our resulting one pot LiAlO2- coated NMC622 has shown to be effective in counteracting NMC capacity degradation and improving the structural stability of the particles, thereby improving their cycle- life.

Page generated in 0.0354 seconds