Spelling suggestions: "subject:"[een] MITIGATION STRATEGY"" "subject:"[enn] MITIGATION STRATEGY""
1 |
Manipulation of the hydrogen pool available in the rumen to reduce methane emissions from ruminants / Manipulation du pool d'hydrogène disponible dans le rumen pour limiter les émissions de méthane par les ruminantsGuyader, Jessie 19 January 2015 (has links)
La réduction des émissions de méthane (CH 4) des ruminants permet de limiter les impacts environnementaux négatifs de leur élevage et d’améliorer leur efficacité digestive. Dans le rumen, le CH 4 est majoritairement produit par les méthanogènes à partir de l’hydrogène (H 2). La disponibilité de l’H 2 pour ces micro-organismes est réduite en limitant sa production par les protozoaires (via un apport de lipides ou extraits de plantes dans la ration) ou en stimulant des voies utilisatrices d’H 2 compétitives à la méthanogenèse (via un apport alimentaire de nitrate). Aucune étude n’a porté sur l’association de stratégies alimentaires jouant à la fois sur la production et l’utilisation d’H 2 pour diminuer les émissions de CH 4 . Notre objectif était de comprendre l’importance des différentes voies métaboliques de l’H 2 dans le rumen. Nous avons émis l’hypothèse que manipuler simultanément la production et l’utilisation de l’H 2 permet une diminution plus importante des émissions de CH 4 plutôt que d’agir sur un seul niveau. Nos résultats expérimentaux ont montré l’additivité de l’association lipides du lin-nitrate sur la méthanogenèse des bovins. Cet effet était persistant mais non bénéfique pour les performances digestives et laitières des animaux. L’association saponine de thé-nitrate n’a pas été efficace pour réduire les émissions de CH 4 car l’effet dépressif de la saponine sur les protozoaires n’a pas été observé. Cette thèse ouvre la possibilité d’étudier le potentiel anti-méthanogène de nouvelles associations de stratégies alimentaires ayant des mécanismes d’action différents dans le rumen. Les conditions d’utilisation de ces stratégies en élevage devront être délimitées, et leur rentabilité prouvée, pour être acceptées par l’éleveur. / Reduction of methane (CH 4) emissions from ruminants may limit the negative environmental impacts of their breeding and may improve their digestive efficiency. In the rumen, CH 4 is mainly produced by methanogens from hydrogen (H 2). Hydrogen availability for these micro-organisms is reduced by limiting its production by protozoa (via lipids or plants extracts supplementation in diets) or by stimulating pathways competing with methanogenesis for H 2 consumption (via nitrate supplementation in diets). No study tested association of dietary strategies acting on both H 2 production and consumption to reduce CH 4 emissions. Our objective was to understand the importance of the different H 2 metabolic pathways in the rumen. We assumed that simultaneous manipulation of H 2 production and consumption reduces CH 4 emissions to a higher extent than acting on a single pathway. Our experimental results showed the additive CH 4 -mitigating effect of the association lipids from linseed-nitrate supplemented to bovine. This effect was persistent but not beneficial for digestive and lactating performances of animals. The association tea saponin-nitrate was not efficient to reduce CH 4 emissions, as the depressive effect of saponin towards protozoa has not been observed. This PhD thesis opens the possibility to study the anti-methanogenic potential of new association of dietary strategies having different mechanisms of action in the rumen. Conditions of use of these strategies at the breeding scale will have to be delineated, and their cost effectiveness proved to be accepted by farmers.
|
2 |
Air pollution in Iran: The current status and potential solutionsTaghizadeh, F., Mokhtarani, B., Rahmanian, Nejat 26 May 2023 (has links)
Yes / Air pollution has been integrated into global challenges over the last few years due to its negative impact on the health of human beings, increasing socio-economic risks and its contribution to climate change. This study attempts to evaluate the current status of Iran's air pollution with regard to the sources of emissions, control policies, as well as the health and climate consequences that have resulted through available data from monitoring stations reported in the literature, official documents and previous published papers. Many large cities in Iran surpass the permissible concentration of air pollutants, particularly particulate matter, sulfur dioxide, black carbon and ozone. Although regulations and policies are in place and enormous efforts are being made to address air pollution issues in the country, implementation and enforcement are not as effective as they could be. The significant challenges may be regarded as the inefficiency of regulation and supervision systems, the lack of air quality monitoring systems and technology, particularly in industrial cities rather than Tehran as well as the lack of continual feedback and investigations on the efficiency of regulation. Providing such an up-to-date report can bring opportunities for international collaboration, which is essential in addressing the air pollution worldwide. We suggest that a way forward could be more focused on conducting systematic reviews using scientometric methods to show an accurate picture and trend in air pollution and its association in Iran, implementing an integrated approach for both climate change and air pollution issues, collaborating with international counterparts to share knowledge, tools, and techniques.
|
3 |
Strategic Mitigation of Digital Rebound Effect in Organisations : A study from multiple stakeholder perspectivesNguyen, Trang Anh, Nsonga Jr., Samuel January 2024 (has links)
Research Background: There is a growing focus on the sustainability implications of digitalisation in research, industry and politics. While digitalisation offers economic benefits and potential environmental solutions, it also brings unintended consequences known as rebound effects. These effects, amplified by the widespread impact of digitalisation on economies and societies, have drawn attention to the need for mitigation strategies. However, current research primarily focuses on defining and studying rebound effects rather than on mitigation. Existing mitigation strategies mainly involve fiscal and policy measures, but alternative approaches that address underlying principles are needed. Further research is crucial for exploring effective strategies to mitigate rebound effects caused by digitalisation. Research Purpose: This thesis aims to identify mitigation strategies for the digital rebound effect employed by companies by understanding the contributing factors to this complex phenomenon. Method: A qualitative method was used to investigate strategies for companies to mitigate the digital rebound effect amid digitalisation and sustainability concerns. Through exploratory research, we aimed to comprehensively understand underlying factors, mitigation strategies and associated challenges. Semi-structured remote interviews were chosen for data collection to provide detailed insights. Purposive sampling was employed to identify suitable participants for the research topic. Our analysis and presentation of empirical findings followed an abductive approach. Conclusion: Our framework, based on Bohnsack et al. (2021) model, delves into the unintended consequences of digital technology by incorporating stakeholder perspectives. Key contributing factors include personal challenges and resource-related issues. Addressing these factors requires fostering a learning culture and technical competence. Mitigation strategies in the thesis focus on the firm and individual levels. Stakeholder involvement is crucial for effective problem-solving. Our framework aligns with stakeholder theory, enhancing understanding and mitigation of digital rebound effects.
|
4 |
Pack Rust Identification and Mitigation Strategies for Steel BridgesChintan Hitesh Patel (5930783) 03 January 2019 (has links)
<div>Pack rust or crevice corrosion is a type of localized corrosion. When a metal is in contact with a metal, or even non-metal, the metal starts to corrode, and rust starts to pack in between the surfaces. When signicant development of pack rust occurs, it can cause overstressing of bolts and rivets causing them to fail, and it can bend connecting plates and member elements thus reducing their buckling capacity. Thus it is important to mitigate the formation and growth of pack rust in bridges. This study was conducted to determine if pack rust occurs frequently and thereby may pose a problem in the state of Indiana. The study is divided into three primary tasks.The rst part of the study involves understanding the parameters involved in the initiation process of crevice corrosion and post-initiation crevice corrosion process. The second part of the study involves reviewing existing mitigation strategies and repair procedures used by state DOTs. The third part of the study involves identifying steel bridges with pack rust in Indiana. Analyses were performed on the data collected from Indiana bridges that have pack rust. This involved nding the components and members of bridges which are most aected by pack rust and nding parameters which in uence the formation of pack rust. Pack rust in the steel bridges were identied using the INDOT inspection reports available through BIAS system. The study revealed that good maintenance practices helped in reducing pack rust formation. The study identied locations on steel bridges which have a high probability towards pack rust formation. A mitigating strategy possessing qualities which can show promising results is identied.</div>
|
5 |
The carbon footprint caused by the oversizing of building service systems : A case study of an NHS Hospital / Klimatavtrycket som orsakas av överdimensioneringen av system för byggnadstjänster : En fallstudie av ett NHS sjukhusHein, Maria January 2020 (has links)
Energy usage in buildings is a main contributor to CO2 emissions and in order for the EU to reach the 2050 goal of carbon-neutrality, there is a great need to improve the energy efficiency in buildings, particularly commercial buildings that often are substantially overdesigned. Excess margins in the design process of building services result in an oversizing of these systems which has great environmental impacts, divided up as the operational and embodied carbon footprints. The heating and cooling system of an NHS Hospital in southern England was studied and modelled in order to identify whether the system was overdesigned and to quantify the oversizing’s carbon footprint, which was the aim of the study. The cooling system of the NHS Hospital was determined potentially oversized and the focus of the thesis was therefore on the cooling system. It included the chillers that provide cooling, and the associated adiabatic coolers that provide heat rejection, as well as the affiliated pumps. The carbon footprint of this system was quantified, based on the operational energy use, the current grid carbon factor, environmental performance evaluations of units, observations and assumptions, and its cooling capacity was compared to the demand of the hospital. An optimised alternative was developed through analysis of the current system and its capacity, and the demand at the site, as well as based on the learnings of the background research. The system was designed to consist of smaller chillers and a reduced pumping system, to more correctly match the cooling demand. The optimised system was also modelled, its capacity compared to the demand, and its carbon footprint quantified. A future estimation of the two systems’ carbon footprints was calculated for year 2035, based on a projected grid carbon factor. The systems’ setups and carbon footprints were then compared for the current and projected scenarios, and the results discussed, also in regard to mitigation strategies that could lead to a reduction of oversizing and lower the environmental impacts. The results indicate that the yearly carbon footprint difference for the current scenario was approximately 539 tonnes CO2 eq, which was 43% greater than the optimised system’s carbon footprint. Whereas the yearly difference for the projected scenario was estimated to approximately 562 tonnes CO2eq, which was 752% greater than the optimised system’s carbon footprint in a possible future. This demonstrates the great environmental impact caused by the oversizing of cooling systems. The current system’s embodied carbon footprint was estimated to 3.3% of the total carbon footprint for the current scenario, and 4.8% for the projected scenario. Whereas the optimised system’s embodied carbon footprint was estimated to 1.5% for the current scenario, and 8.6% for the projected scenario. This demonstrates the large share of the embodied carbon footprint of the current, oversized system, compared to the optimised system that is sized more correctly for the cooling demand. Furthermore, it shows the anticipated raised proportion of the embodied carbon footprint of a product or system’s total future carbon footprint, since it increases for both the systems with time. The elevated share of the embodied carbon footprint in the future raises the need to address this factor and make it a priority. The key to a correctly sized system that meets the demand was determined to be precise calculations of the requirements and the elimination of excess margins that lack quantifiable justification. This results in an improved environmental performance where the system operates at its optimum level. The stakeholders’ involvement and influence throughout a transparent design process with clear communication, and incentives that provide financial aid to appropriately sized systems, as well as environmental impact evaluations of products, among others, are essential factors with major influence on the outcome. These elements are considered crucial for the reduction of the excess carbon footprint caused by the oversizing of building service systems. / Byggnaders energianvändning är en markant bidragande faktor till koldioxidutsläppen, och för att EU ska kunna nå målet att vara klimatneutral år 2050 finns det ett stort behov av att förbättra energieffektiviteten i byggnader, särskilt kommersiella byggnader som ofta är väsentligt överdesignade. Överskottsmarginaler i designprocessen av byggnadstjänster resulterar i en överdimensionering, som har en enorm miljöpåverkan, vilken delas upp som det operativa och det inneslutna klimatavtrycket. Studiens syfte var att studera och modellera värme- och kylsystemet på ett sjukhus i södra England för att identifiera om systemet var överdimensionerat, och för att kvantifiera dess klimatavtryck. Sjukhusets kylsystem bedömdes vara potentiellt överdimensionerat och studiens fokus var därför på kylsystemet. Det inkluderade kylarna som ger kylning och de anknutna adiabatiska kylarna som ger värmebortförsel, samt de tillhörande pumparna. Klimatavtrycket för systemet kvantifierades, baserat på den operativa energianvändningen, den nuvarande koldioxidfaktorn för elnätet, miljöutvärderingar av enheter, observationer och antaganden, och dess kylkapacitet jämfördes med sjukhusets behov. Ett optimerat alternativ utvecklades genom analys av det nuvarande systemet och dess kapacitet, och behovet på platsen, samt baserat på lärdomarna i litteraturforskningen. Systemet var utformat för att bestå av mindre kylare och ett reducerat pumpsystem för att bättre matcha kylbehovet. Även det optimerade systemet modellerades, dess kapacitet jämfördes med behovet, och dess klimatavtryck kvantifierades. En framtida uppskattning av de två systemens klimatavtryck beräknades för år 2035, baserat på en prognostiserad koldioxidfaktor för elnätet. Systemens uppsättningar och klimatavtryck jämfördes för de nuvarande och framtida scenarierna, resultaten diskuterades sedan, även med avseende på mildringsstrategier som kan leda till en reducering av överdimensionering och minskad miljöpåverkan. Resultaten indikerar att den årliga skillnaden i klimatavtrycket för det nuvarande scenariot var cirka 539 ton koldioxidekvivalenter, vilket var 43% större än det optimerade systemets klimatavtryck. Medan den årliga skillnaden i klimatavtrycket för det framtida scenariot uppskattades till cirka 562 ton koldioxidekvivalenter, vilket var 752% större än det optimerade systemets klimatavtryck i en eventuell framtid. Detta visar på den stora miljöpåverkan som orsakas av överdimensionerade kylsystem. Det nuvarande systemets inneslutna klimatavtryck beräknades till 3.3% av det totala klimatavtrycket för det nuvarande scenariot, och 4.8% för det framtida scenariot. Medan det optimerade systemets inneslutna klimatavtryck för det nuvarande scenariot var 1.5%, och 8.6% för det framtida scenariot. Detta demonstrerar den stora andelen inneslutet klimatavtryck i det nuvarande systemet, jämfört med det optimerade systemet som är bättre anpassat för kylbehovet. Dessutom visar det som förväntat den ökade andelen inneslutet klimatavtryck för en produkts eller ett systems totala klimatavtryck i framtiden, eftersom båda systemens inneslutna klimatavtryck visade på en framtida ökning. Den framtida ökade andelen inneslutet klimatavtryck väcker behovet av att itu med denna växande faktor och göra den till en prioritering. Nyckeln till ett system med korrekt storlek, vars kapacitet möter behovet, bestämdes vara exakta beräkningar av kraven och frånvaron av överskottsmarginaler som saknar kvantifierbar motivering. Detta resulterar i en förbättrad miljöprestanda där systemet fungerar på sin optimala nivå. Berörda parters engagemang och inflytande genom en transparent designprocess med tydlig kommunikation, och incitament som ger ekonomiskt stöd till system av korrekt dimensionering, samt miljökonsekvensbedömningar av produkter, är några av de viktigaste faktorerna med stort inflytande på slutresultatet. Dessa element bedöms vara avgörande för att minska överskottet av klimatavtrycket som orsakas av en överdimensionering av byggnadstjänster.
|
6 |
Cost-benefit analysis of mitigation of outages caused by squirrels on the overhead electricity distribution systemsMalve, Priyanka January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Anil Pahwa / Unpredictable power outages due to environmental factors such as lighting, wind, trees, and animals, have always been a concern for utilities because they are often unavoidable. This research aims to study squirrel-related outages by modeling past real-life outage data and provide the optimal result which would assist utilities in increasing electric system reliability. This research is a novel approach to benchmark system performance in order to identify areas and durations with higher than expected outages. The model is illustrated with seven years (2005-2011) of animal-related outage data and 14 years of weather data (1998-2011) for four cities in Kansas, used as training data to predict future outages. The past data indicates that the number of outages on any day varies with the seasons and weather conditions on that day. The prediction is based on a Bayesian Model using conditional probability table, which is calculated based on training data. Since future weather conditions are unknown and random, Monte Carlo Simulation is used with the past 14 years of weather data to create different yearly scenarios. These scenarios are then used with the models to predict expected outages. Multiple runs of Monte Carlo analysis provide a probability distribution of expected outages. Further work discusses about cost-to-benefit analysis of implementation of outage mitigation methods. The analysis is performed by considering different combinations of outage reduction and mitigation levels. In this research, eight cases of outage reduction and nine cases of mitigation levels are defined. The probability of benefit is calculated by a statistical approach for every combination. Several optimal strategies are constructed using the probability values and outage history. The outcomes are compared with each other to propose the most beneficial outage mitigation strategy. This research will immensely assist utilities in reducing the outages due to squirrels more effectively with higher benefits and therefore improve reliability of the electricity supply to consumers.
|
7 |
Understanding the Clean Development Mechanism and its dual aims : the case of China's projectsSun, Qie January 2011 (has links)
Having been running for over 10 years, the Clean Development Mechanism (CDM) is considered an innovative and successful mitigation initiative. CDM has the dual aims of helping industrialised countries achieve compliance with their emission limitation and reduction commitments in a cost-effective way, while simultaneously assisting developing countries in sustainable development. This thesis does a comprehensive analysis of the dual aims of CDM and is intended to assist in discussions about the post-2012 regime regarding CDM. To analyse the aim of assisting mitigation in a cost-effective way, the prices of certified emission reductions (CERs) on the international carbon market was studied and the provision of CDM was tested by comparing the amount of CERs with the mitigation commitments of the Annex I countries. It was found that CDM plays an important role in maintaining the international carbon price at a low level and that the total amount of CERs alone had already reached up to 52.70% of the entire mitigation commitments of industrialized countries by the end of 2010 and was continuing to grow before 2012. A theoretical analysis of the impacts of CDM showed that CDM has a double mitigation effect in both developing countries and industrialised countries, without double counting at present. A quantitative evaluation of the effects of China’s CDM projects on China’s total emissions showed that the contribution of CDM projects to limiting total emissions is small due to the dominance of fossil fuels, but CDM’s role in stimulating renewable energy is significant, e.g. about 11% of hydropower and 93% of wind power was generated by CDM projects in 2010. The results provide strong evidence in support of CDM’s contribution under the current Kyoto Protocol mitigation regime. To analyse the aim of promoting sustainable development in developing countries, popular methods such as checklist, Multi-Criteria Analysis (MCA) and Cost-Benefit Analysis (CBA) were reviewed, a CBA of co-benefits of China’s CDM projects was carried out, and the Analytic Hierarchy Process (AHP) method was applied in an experimental study. The results showed that every method has its own advantages and problems. In other words, neither the CBA of co-benefits nor the AHP method alone is able to assess sustainable development in a completely satisfactory way. Currently, a bottom-up approach through engaging local stakeholders in CDM design and approval, combining a mandatory monitoring and evaluation of co-benefits, could be more effective for safeguarding local sustainable development than any consolidated standards. The future of the CDM is still unclear mainly due to uncertainties about the post-2012 regime. This thesis shows that there is more than sufficient reason for CDM to continue after 2012. Industrialised countries in general should make more substantial efforts to reduce their domestic emissions rather than blaming developing countries. For developing countries, learning from the CDM projects and further applying the knowledge, technology and experiences to their domestic development agenda could be more valuable than the present CER revenues. CDM can be an important starting point for developing countries to gradually make incremental greenhouse gas (GHG) reduction and limitation efforts. / QC 20110817
|
8 |
[pt] ANÁLISE DA DINÂMICA NÃO LINEAR DE UMA BANCADA EXPERIMENTAL DE UMA COLUNA DE PERFURAÇÃO COM VIBRAÇÃO TORCIONAL INDUZIDA POR ATRITO / [en] NONLINEAR DYNAMIC ANALYSIS OF DRY FRICTION-INDUCED TORSIONAL VIBRATION IN A DRILL-STRING EXPERIMENTAL SET-UPBRUNO CESAR CAYRES ANDRADE 01 November 2018 (has links)
[pt] Os últimos leilões do pré-sal para exploração e produção de petróleo e gás no Brasil indicam que as operações de perfuração se tornarão mais intensas nos próximos anos. O processo de perfuração rotativo é amplamente utilizado para alcançar os reservatórios de petróleo e devido à relação diâmetro/comprimento do sistema de perfuração, o modo de vibração torcional está presente em quase todos os processos de perfuração, podendo chegar a um estado crítico indesejável: o fenômeno de stick-slip. Com o intuito de
abordar este problema, o modo torcional é isolado e o stick-slip é observado em uma coluna de perfuração em escala reduzida completamente instrumentada. Durante o stick-slip, outro torque pode ser aplicado em uma posição intermediária da bancada de teste. O modelo matemático de parâmetros concentrados é obtido e o modelo é comparado com dados experimentais com o propósito de verificar se o modelo matemático representa o aparato experimental. Uma análise de estabilidade é feita usando o modelo validado com o objetivo de identificar soluções estáveis do sistema. Com isso, observou-se que existe uma faixa do parâmetro de bifurcação na qual soluções de equilíbrio e periódicas estáveis coexistem. Para uma dada situação de stick-slip na faixa de biestabilidade, duas estratégias de mitigação de vibração torcional foram consideradas e consistiram em impor perturbações no sistema por meio do torque na posição intermediária da bancada de teste: (i) torques aplicados apenas contra a direção de movimento do sistema, e (ii) torques aplicados em ambas as direções. As estratégias foram testadas numericamente e apresentaram eficiência de tal modo que o stick-slip foi completamente mitigado: as energias do sistema e o trabalho gerado pelo torque intermediário aplicado foram comparados com o propósito de avaliar
a factibilidade e razoabilidade da estratégia. Experimentalmente, o sistema continuou a oscilar, porém apresentou uma significante redução na fase de stick mesmo com limitações de aplicações de torque. / [en] The latter round bids of the pre-salt for exploration and production of oil and natural gas in Brazil indicate the drilling operations will become more intense in coming years. The rotational drilling process is largely
used to reach the oil reservoirs and because of diameter-to-length ratio of the drilling system, torsional vibration mode is present in most all drilling processes and may reach an undesired severe stage: the stick-slip phenomenon. In order to address this problem, the torsional vibration mode is isolated and the stick-slip is observed in a fully instrumented drill-string experimental set-up in this work. During this phenomenon, another torque may be applied on an intermediate position of the test bench. The lumped parameter mathematical model is obtained and it is compared to experimental data to validate whether the mathematical model represents the experimental apparatus. A stability analysis is performed using the validated mathematical model in order to identify stable solutions of the system. Therewith, one observed that there is a range of the bifurcation parameter in which stable equilibrium and periodic solutions may coexist. For a given stick-slip situation in bi-stability range, two mitigation strategies of torsional vibration were considered which consisted of imposing perturbations in the system via torques on the intermediate
position of the test bench: (i) torques applied only against the direction of motion of the system, and (ii) torques applied in both directions. The strategies were tested numerically and presented eficiency so that the stickslip was completely mitigated: the energies of the system and the work created by the intermediate torque were compared in order evaluate the feasibility and reasonableness of the strategy. Experimentally, the system continued to oscillate, however it presented a significant reduction of stick
phase even with limitations of torque applications.
|
Page generated in 0.0491 seconds