• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 13
  • 9
  • 8
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 169
  • 169
  • 40
  • 26
  • 24
  • 20
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Bridging Cognition and Theory: Exploring Modernist Musical Emotion and Understanding Divergent Perspectives in Music Analysis / Bridging Music Cognition and Music Theory

Delle Grazie, Massimo J. January 2023 (has links)
A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science / This thesis examines how emotion is conveyed in music from different eras, and attempts to reconcile differences between psychological and music-theoretical approaches. Chapter 1 introduces the concepts embodied by the two manuscripts within this thesis. Chapters 2 and 3 describe two separate but related complimentary research projects. Chapter 2, entitled “Breaking with Common Practice: Exploring Modernist Musical Emotion”, compares perceived emotion in prelude sets by D. Shostakovich, F. Chopin, and J.S. Bach. This work seeks to clarify the relationship between historic changes in music’s structure and conveyed emotion, particularly in the twentieth century–which remains largely unexplored. Building on previous work, we used commonality analysis to break down the unique and joint contributions of various cues to perceived emotion and provide insight into their changing roles in the twentieth century. The work described in Chapter 3, “Cleaning up our work: Applying decision hygiene to analysis of musical structure”, was inspired by previous attempts in diverse fields (e.g., medicine, judicial sentencing) to resolve unwarranted disagreement, and used a novel procedure to distinguish genuine disagreement from disagreement that is not reflective of true differences of opinion amongst music theorists. Unlike other fields involving judgement, individual theorists’ unique perspectives are valuable. Therefore, rather than forcing inauthentic agreement, our procedure clarified and enhanced individual perspectives in musical analysis. Taken together, the research described in Chapters 2 and 3 bridge the gap between epistemologically different approaches to disseminating musical knowledge–cognition and theory. / Thesis / Master of Science (MSc) / Music’s expressive capabilities has inspired scholarship from psychology, music theory, musicology, and philosophy for centuries. Although research in psychology has produced consensus about how certain musical elements contribute to its emotional meaning, musicological research shows that music’s structure evolved across history. Little research has explored emotional communication in music from the twentieth century, raising important questions about how emotion is conveyed in the music of our time. This oversight may contribute to continuing disagreement between music psychologists and music theorists on how music’s structure affects its perceived meaning. Thus, by bridging the gap between theory and cognition, this thesis aims to: (i) shed light on the role of music’s evolving structure–particularly in the twentieth century–on perceived emotion; and (ii) reduce error in music analysis while preserving valuable differences in theorists’ perspectives through applying a novel method inspired by optimized decision-making procedures.
112

Using a denoising autoencoder for localization : Denoising cellular-based wireless localization data / Brusreducerande autoencoder för platsdata : Brusreducering av trådlös platsdata från mobiltelefoner

Danielsson, Alexander, von Pfaler, Edvard January 2021 (has links)
A denoising autoencoder is a type of neural network which excels at removingnoise from noisy input data. In this project, a denoising autoencoder isoptimized for removing noise from mobile positioning data. The mobilepositioning data with noise is generated specifically for this project. In orderto generate realistic noise, a study in how real world noise looks like is carriedout. The project aims to answer the question: can a denoising autoencoderbe used to remove noise from mobile positioning data? The results showthat using this method can effectively cut the noise in half. In this reportit is mainly analyzed how the amount of hidden layers and respective sizesaffected the performance. It was concluded that the most optimal design forthe autoencoder was a single hidden layer model with multiple more nodes inthe hidden layer than the input and output layer. / En brusreducerande autoencoder är ett sorts neuralt nätverk som är specialiserat för att ta bort brus från indata. I detta projekt optimeras en brusreducerande autoencoder för att ta bort brus från mobilpositioneringsdata. Till projektet skapades helt ny mobilpositioneringsdata med realistiskt brus. Detta gjordes genom att studera hur verkligt brus ser ut och skapa ett program som efterliknar detta. Projektets syfte var att undersöka om en brusreducerande autoencoder kan användas för att ta bort brus från mobilpositioneringsdata. Resultaten visar att metoden kan ta bort ungefär hälften av bruset. I rapporten undersöks och analyseras även hur antalet dolda lager och antalet noder i dessa lager påverkade mängden brus som autoencodern lyckades ta bort. Från de gjorda testerna drogs slutsatsen att den mest optimala designen var en enkel design med ett enda dolt lager som hade betydligt fler noder än input- och outputlagren.
113

Investigation into Offset Streams for Jet Noise Reduction

Mustafa, Mansoor 04 September 2015 (has links)
No description available.
114

Evaluating Noise Reduction In Vehicle Exhaust Systems : Maximum Sound Power and Sensitivity Analysis of Insertion and Transmission Loss

Pang, Zen Fung January 2024 (has links)
Noise reduction in vehicle exhaust systems is crucial for mitigating the adverse health effects of noise from roadside traffic. Improvements to engine exhaust systems could be one avenue to reduce vehicle and roadside noise. Therefore, understanding the insertion loss and transmission loss is of crucial importance as these constitute important metrics for the effectiveness of mufflers in exhaust systems. In addition, knowledge about the maximum emitted sound power is also desirable as it is an important characteristic of the exhaust system affecting the final emitted noise. This study provides an overview of the theoretical underpinnings of the acoustics that model engine exhaust systems, where the maximum sound powers are presented, as well as explores the sensitivity of the insertion and transmission loss to input variables. A sensitivity analysis of the transmission and insertion loss was conducted using data provided by Scania, a large Swedish truck manufacturer, from which it was concluded that the provided transfer matrix exhibit stable behavior. More generally, in face of specific perturbations, if some conditions are meet, the resulting change to the insertion and transmission loss may only be an upwards or downwards translation, or no change at all.
115

Förbättring av fluoroskopibilder / Enhancement of flouroscopy images

Brolund, Hans January 2006 (has links)
<p>Fluoroskopi är benämningen på kontinuerlig röntgengenomlysning av en patient. Eftersom patienten och även läkaren då utsätts för kontinuerlig röntgenstrålning måste strålningsdosen hållas låg, vilket leder till brusiga bilder. Det är därför önskvärt att genom bildbehandling förbättra bilderna. Bildförbättringen måste dock ske i realtid och därför kan inte konventionella metoder användas.</p><p>Detta examensarbete avser att undersöka hur ortogonala s k. derivataoperatorer kan användas för att förbättra läsbarheten av fluoroskopibilder med hjälp av brusundertryckning och kantförstärkning. Derivataoperatorer är separerbara vilket gör dem extremt beräkningsvänliga och lätta att infoga i en skalpyramid. Skalpyramiden ger möjlighet att processa strukturer och detaljer av olika storlek var för sig samtidigt som nedsamplingsmekanismen gör att denna uppdelning inte nämnvärt ökar beräkningsbördan. I den fullständiga lösningen införes också struktur-/brusseparering för att förhindra förstärkning av och undertrycka bidrag från de frekvensband där en pixel domineras av brus.</p><p>Resultaten visar att brus verkligen kan undertryckas medan kanter och linjer bevaras bra eller förstärkes om så önskas. Den riktade filtreringen gör dock att det lätt uppstår maskliknande strukturer i bruset, men detta kan undvikas med rätt parameterinställning av struktur-/brussepareringen. Förhållandet mellan riktad och icke-riktad filtrering är likaledes styrbart via en parameter som kan optimeras med hänsyn till behov och önskemål vid varje tillämpning.</p> / <p>In X-ray technology, fluoroscopy stands for continuous irradiation. For the sake of both patients and doctors the dose has to be kept low, which leads to noisy images and the question of possible enhancement by digital image processing. Since such enhancement has to be done in real-time, most conventional and available methods are unsuitable.</p><p>The purpose of this thesis is to examine how derivative operators can be used to improve fluoroscopy images in terms of noise reduction and edge enhancement. Since the derivative operators are designed as highly separable convolution kernels the image derivatives can be computed very efficiently with a scheme that is readily embedded in a scale-space pyramid. In this pyramid, structures and details of different sizes can be processed separately with optimal parameter settings. In the final solution we also discriminate between structure and noise in order to avoid amplification, even suppress contributions from frequency bands where a certain pixel position is dominated by noise.</p><p>Experimental results show that noise can indeed be suppressed while edges and lines are enhanced. Oriented filtering may induce false structures in areas where only noise is present, something that can be avoided by correcting the parameters in the noise/structure discriminator. The relation between oriented and non-oriented filtering is likewise controllable with a parameter that can be optimized for application dependent needs and desires.</p>
116

Space-time-frequency processing from the analysis of bistatic scattering for simple underwater targets

Anderson, Shaun David 14 August 2012 (has links)
The development of low-frequency SONAR systems, using a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e. when the source and receiver are widely separated, thus allowing multiple viewpoints of a target). Furthermore, time-frequency analysis, in particular Wigner-Ville analysis, takes advantage of the evolution of the time dependent echo spectrum to differentiate a man-made target (e.g. an elastic spherical shell, or cylinder) from a natural one of the similar shape (e.g. a rock). Indeed, key energetic features of man-made objects can aid in identification and classification in the presence of clutter and noise. For example, in a fluid-loaded thin spherical shell, an energetic feature is the mid-frequency enhancement echoes (MFE) that result from antisymmetric Lamb waves propagating around the circumference of the shell, which have been shown to be an acoustic feature useful in this pursuit. This research investigates the enhancement and benefits of bistatic measurements using the Wigner-Ville analysis along with acoustic imaging methods. Additionally, the advantage of joint space-time-frequency coherent processing is investigated for optimal array processing to enhance the detection of non-stationary signals across an array. The proposed methodology is tested using both numerical simulations and experimental data for spherical shells and solid cylinders. This research was conducted as part of the Shallow Water Autonomous Mine Sensing Initiative (SWAMSI) sponsored by ONR.
117

Robust binaural noise-reduction strategies with binaural-hearing-aid constraints: design, analysis and practical considerations

Marin, Jorge I. 22 May 2012 (has links)
The objective of the dissertation research is to investigate noise reduction methods for binaural hearing aids based on array and statistical signal processing and inspired by a human auditory model. In digital hearing aids, wide dynamic range compression (WDRC) is the most successful technique to deal with monaural hearing losses. This WDRC processing is usually performed after a monaural noise reduction algorithm. When hearing losses are present in both ears, i.e., a binaural hearing loss, independent monaural hearing aids have been shown not to be comfortable for most users, preferring a processing that involves synchronization between both hearing devices. In addition, psycho-acoustical studies have identified that under hostile environments, e.g., babble noise at very low SNR conditions, users prefer to use linear amplification rather than WDRC. In this sense, the noise reduction algorithm becomes an important component of a digital hearing aid to provide improvement in speech intelligibility and user comfort. Including a wireless link between both hearing aids offers new ways to implement more efficient methods to reduce the background noise and coordinate processing for the two ears. This approach, called binaural hearing aid, has been recently introduced in some commercial products but using very simple processing strategies. This research analyzes the existing binaural noise-reduction techniques, proposes novel perceptually-inspired methods based on blind source separation (BSS) and multichannel Wiener filter (MWF), and identifies different strategies for the real-time implementation of these methods. The proposed methods perform efficient spatial filtering, improve SNR and speech intelligibility, minimize block processing artifacts, and can be implemented in low-power architectures.
118

A New Method To Determine Optimal Time-Delays Between Switching Of Digital VLSI Circuits To Minimize Power Supply Noise

Srinivasan, G 06 1900 (has links)
Power supply noise, which is the variation in the supply voltage across the on-die supply terminals of VLSI circuits, is a serious performance degrader in digital circuits and mixed analog-digital circuits. In digital VLSI systems, power supply noise causes timing errors such as delays, jitter, and false switching. In microprocessors, power supply noise reduces the maximum operating frequency (FMAX) of the CPU. In mixed analog-digital circuits, power supply noise manifests as the substrate noise and impairs the performance of the analog portion. The decrease in the available noise margin with the decrease in the feature size of transistors in CMOS systems makes the power supply noise a very serious issue, and demands new methods to reduce the power supply noise in sub-micron CMOS systems. In this thesis, we develop a new method to determine optimal time-delays between the switching of input/output (I/O) data buffers in digital VLSI systems that realizes maximum reduction of the power supply noise. We first discuss methods to characterize the distributed nature of the Power Delivery Network (PDN) in the frequency-domain. We then develop an analytical method to determine the optimal delays using the frequency-domain response of the PDN and the supply current spectrum of the buffer units. We explain the mechanism behind the cancellation of the power supply noise by the introduction of optimal buffer-to-buffer delays. We also develop a numerical method to determine the optimal delays and compare it with the analytical method. We illustrate the reduction in the power supply noise by applying the optimal time-delays determined using our methods to two examples of PDN. Our method has great potential to realize maximum reduction of power supply noise in digital VLSI circuits and substrate noise in mixed analog-digital VLSI circuits. Lower power supply noise translates into lower cost and improved performance of the circuit.
119

Breakout Noise From The Coupled Acoustic-Structural HVAC Systems

Venkatesham, Balide 12 1900 (has links)
Noise control in the heating, ventilation and air-conditioning (HVAC) systems is one of the critical design parameters in measuring the occupant comfort. The noise generated by air-handling units propagates through the ducts in the axial as well as transverse direction. Noise radiated in the transverse direction from the duct walls excited by the internal sound field is called the breakout noise. An analytical formulation has been developed in this thesis in order to predict the breakout noise by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The first step in the breakout noise prediction is to calculate the interior acoustic response and flexural vibration displacement of the compliant walls. Dynamic interaction between the internal acoustic subsystem and flexible structural subsystem has been expressed in terms of the modal characteristics of the uncoupled response of the acoustic and structural sub-systems. Solutions of the inhomogeneous wave equation are rearranged in terms of impedance and mobility, and the equations describing the complete system are expressed in terms of matrices, which result in a compact matrix formulation. Examples of the formulation are a rectangular cavity with one flexible wall and a rectangular cavity with four-flexible walls. The formulation is modified to incorporate complex boundary conditions by means of appropriate Green’s functions. It is implemented for flexible wall duct using the modified cavity Green’s function. Another objective of the present investigation is to understand the coupling phenomenon and its effect on the compliant wall vibration displacement. The developed three-dimensional analytical analysis of the breakout noise is convenient to implement on the computer, and also to extend the sub-system level model to the system level model in order to analyze a complex acoustic-structural system for the breakout noise problem. The extent of coupling is calculated using a transfer factor based on the uncoupled natural frequencies of the acoustic and structural subsystems. It is observed from the free vibration analysis that a coupling between the cavity and the flexible panel exists in the vicinity of an uncoupled acoustic natural frequency. If a strong coupling occurs between an acoustic mode and a panel mode, then damping of structural subsystem would control it. The cavity volume changes stiffness of the panel, which in turn affects noise radiation in the stiffness-controlled region. The second step is to calculate the sound power radiated from complaint wall. The wall vibration velocity is a linear combination of the uncoupled flexural modes of the structural subsystem. It is substituted into the Rayleigh integral and Kirchhoff– Helmholtz (KH) integral formulation to predict the sound pressure radiated by the vibrating duct wall. The radiated sound power can be obtained by integrating the acoustic intensity over the surface of the flexible duct wall making use of appropriate expressions for radiation impedance. The radiation impedance terms involve a quadruple integral. Evaluation of this integral is quite complex and poses formidable computational challenges. These have been overcome by means of a co-ordinate transformation. Sound power radiation from flexible walls of the plenum and duct walls has been calculated using an equivalent plate model. Analytical results are corroborated with numerical models. The second part of thesis deals with a one-dimensional model to predict the breakout noise from a thin rectangular duct with different end conditions like anechoic termination, rigid-end termination, and the open-end termination. This model incorporates acoustic reflection effects in the duct internal sound field by using standing wave pattern by means of the transfer matrix approach. A one-dimensional prediction method based on the four-pole parameters has been developed to evaluate the lagged duct performance in terms of the breakout noise reduction. Radiation impedance of a duct is calculated by three different methods: (i) finite line source model (ii) finite cylinder model, and (iii) equivalent plate model based on fundamental bending mode of the duct. It is observed that the proposed model that uses the equivalent plate model for the lagged duct and the line source model for the bare duct is appropriate to predict the transverse insertion loss of the lagging, particularly at the lower frequencies that are of primary interest for reducing the breakout noise of rectangular ducts. The bare duct breakout noise results are compared with those of the corresponding 3-D analytical models. It shows that the one-dimensional model captures the overall mean pattern of breakout noise very well. The third part of the thesis examines the internal acoustic field and thence the transmission loss (TL) of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of the chamber; i.e., the sidewall or the face of the chamber. The four-pole parameters have been expressed in terms of an appropriate Green’s function of a rectangular cavity with homogeneous boundary conditions. A transfer matrix formulation has been developed for the yielding-wall rectangular chambers by considering structural-acoustic coupling. It may be combined readily with the transfer matrices of the other constituent elements upstream and downstream in order to compute the overall transmission loss or insertion loss. Wherever applicable, parametric studies have been conducted to evolve the design guidelines for minimizing the breakout noise from the HVAC ducts, plenums and cavities.
120

Identifiering och utvärdering av växters bullerreducerande förmåga i urban miljö

Claesson, Elin January 2015 (has links)
Trafikbuller är den miljöstörning som påverkar flest människor i Sverige. Studier visar att buller kan påverka människors hälsa genom att orsaka hörselskador, stress, sömnsvårigheter och i förlängningen hjärt- och kärlsjukdomar. Idag byggs städerna i Sverige allt tätare, vilket gör att antalet bullerstörda personer fortsätter att öka. För att dämpa buller används ofta höga och breda bullerskärmar, vilket inte är att föredra i urban miljö. Ny forskning undersöker därför andra alternativ, bland annat hur växter och gröna områden kan verka bullerreducerande. Forskare menar att växter med hjälp av sina stammar, bladverk och substratet de står i kan reducera ljud genom reflektion, absorption och spridning av ljudenergin. Detta examensarbete syftade till att utvärdera olika växtelement ur bullerreducerande synpunkt. Växters bullerreducerande förmåga är något varken akustiker eller landskapsarkitekter generellt sett tar hänsyn till och därför ansågs en kunskapssammanställning ligga i tiden. För att göra detta har en litteraturstudie, två intervjuer samt mätningar på två växtelement utförts. Mätningarna gjordes på häckar längs Luthagsesplanaden i Uppsala och på en fasad med klätterväxter på Norr Mälarstrand i Stockholm. Litteratur- och intervjustudien visade att växtbeklädda bullerbarriärer hade högst potential att reducera buller längs vägar, gröna tak högst potential att reducera buller in på innergårdar och gröna fasader högst potential att dämpa buller på torg. Växter har också möjlighet att osynliggöra ljudkällor, vilket gör att vi upplever ljudet som lägre. Mätningarna visade att häcken på Luthagsesplanaden hade möjlighet att dämpa ljudet precis bakom häcken med upp till 3 decibel (dBA). Minskningen höll sig inte ända in till fasaden vilket tros bero på att det reflekterade ljudet dominerar i gaturummet samt att den avskärmande effekten minskar med ökat avstånd. Höga frekvenser dämpades bäst av häcken med den högsta dämpningen på 18 dBA för frekvensbandet 16000 Hz. Dämpningen av de höga frekvenserna syns även in vid fasaden med en dämpning kring 4-5 dBA. Häcken efterliknades i modelleringsprogrammet CadnaA med den nordiska beräkningsmodellen för vägtrafikbuller, men inget objekt tycktes kunna representera häcken på ett reproducerbart sätt. På Norr Mälarstrand visades ingen signifikant skillnad i varken ljudtrycksnivå eller frekvensfördelning från fasaden med klätterväxter. En dämpning på upp till 4 dBA för frekvenser över 800 Hz kan dock antydas in vid fasaden. Vid modellering av fasaden visades att varken en reflekterande eller en absorberande fasad kunde representera klätterväxterna. / Traffic noise is the environmental problem that affects most people in Sweden. Studies show that noise can affect human health by causing hearing damage, stress, insomnia and cardiovascular disease. Swedish cities today are built increasingly close, increasing the number of people that are affected by noise. Today, the most common way to reduce noise is to use barriers. In towns, this is not preferable and new research brings up other suggestions that can fit into an urban environment. Some studies are investigating how plants can reduce noise. Research has shown that plants by their trunks, foliage and substrate can reduce sound by reflection, absorption and diffusion. This thesis aimed to identify and evaluate various plant elements through a noise abatement perspective. This perspective is something neither acoustician nor landscape architects in general takes into account and was therefore considered useful. To do this, a literature study, two interviews and measurements were made. The measurements were made on hedges along Luthagsesplanaden in Uppsala and on a facade with climbing plants on Norr Mälarstrand in Stockholm. The literature and the interviews showed that vegetated noise barriers had the highest potential to reduce noise along roads, green roofs had the maximum potential to reduce noise in courtyards and green facades had the maximum potential to reduce noise in squares. Plants are also able to hide sound sources, enabling us to perceive the sound as lower. The measurements showed that the hedge were able to lower the sound pressure level up to 3 decibels (dBA). This reduction did not last to the facade, which is believed to be due to reflected sound dominating the street canyon and that the shielding ability decreases with increasing distance. The hedge was able to lower the higher frequencies the most with the maximum attenuation of 18 dBA for the frequency 16000 Hz. The attenuation of high frequencies is also visible close by the facade with attenuation around 4-5 dBA. The hedge were imitated by different elements in the sound modeling program CadnaA with the help of the Nordic calculation model for road traffic noise, but no element seemed to be able to represent the hedge. The measurement at Norr Mälarstrand showed no significant difference in either sound pressure level or frequency distribution by the facade with climbing plants. However, a damping of up to 4 dBA for frequencies above 800 Hz could be hinted from the measurement by the facade. When modeling the same it was shown that neither an absorbing facade nor a reflecting facade could represent the facade with climbing plants.

Page generated in 0.0583 seconds