• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 38
  • 31
  • 11
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 334
  • 57
  • 51
  • 46
  • 45
  • 43
  • 42
  • 34
  • 34
  • 32
  • 30
  • 28
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

A Physically Based Pipeline for Real-Time Simulation and Rendering of Realistic Fire and Smoke / En fysiskt baserad rörledning för realtidssimulering och rendering av realistisk eld och rök

He, Yiyang January 2018 (has links)
With the rapidly growing computational power of modern computers, physically based rendering has found its way into real world applications. Real-time simulations and renderings of fire and smoke had become one major research interest in modern video game industry, and will continue being one important research direction in computer graphics. To visually recreate realistic dynamic fire and smoke is a complicated problem. Furthermore, to solve the problem requires knowledge from various areas, ranged from computer graphics and image processing to computational physics and chemistry. Even though most of the areas are well-studied separately, when combined, new challenges will emerge. This thesis focuses on three aspects of the problem, dynamic, real-time and realism, to propose a solution in form of a GPGPU pipeline, along with its implementation. Three main areas with application in the problem are discussed in detail: fluid simulation, volumetric radiance estimation and volumetric rendering. The weights are laid upon the first two areas. The results are evaluated around the three aspects, with graphical demonstrations and performance measurements. Uniform grids are used with Finite Difference (FD) discretization scheme to simplify the computation. FD schemes are easy to implement in parallel, especially with ComputeShader, which is well supported in Unity engine. The whole implementation can easily be integrated into any real-world applications in Unity or other game engines that support DirectX 11 or higher.
332

Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR)

Ivan, Lucian 31 August 2011 (has links)
A high-order central essentially non-oscillatory (CENO) finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of hyperbolic and elliptic systems of conservation laws on body- fitted multi-block mesh. The spatial discretization of the hyperbolic (inviscid) terms is based on a hybrid solution reconstruction procedure that combines an unlimited high-order k-exact least-squares reconstruction technique following from a fixed central stencil with a monotonicity preserving limited piecewise linear reconstruction algorithm. The limited reconstruction is applied to computational cells with under-resolved solution content and the unlimited k-exact reconstruction procedure is used for cells in which the solution is fully resolved. Switching in the hybrid procedure is determined by a solution smoothness indicator. The hybrid approach avoids the complexity associated with other ENO schemes that require reconstruction on multiple stencils and therefore, would seem very well suited for extension to unstructured meshes. The high-order elliptic (viscous) fluxes are computed based on a k-order accurate average gradient derived from a (k+1)-order accurate reconstruction. A novel h-refinement criterion based on the solution smoothness indicator is used to direct the steady and unsteady refinement of the AMR mesh. The predictive capabilities of the proposed high-order AMR scheme are demonstrated for the Euler and Navier-Stokes equations governing two-dimensional compressible gaseous flows as well as for advection-diffusion problems characterized by the full range of Peclet numbers, Pe. The ability of the scheme to accurately represent solutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth solution content (i.e., shocks and other discontinuities) is shown for a range of problems. Moreover, the ability to perform mesh refinement in regions of smooth but under-resolved and/or non-smooth solution content to achieve the desired resolution is also demonstrated.
333

Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR)

Ivan, Lucian 31 August 2011 (has links)
A high-order central essentially non-oscillatory (CENO) finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of hyperbolic and elliptic systems of conservation laws on body- fitted multi-block mesh. The spatial discretization of the hyperbolic (inviscid) terms is based on a hybrid solution reconstruction procedure that combines an unlimited high-order k-exact least-squares reconstruction technique following from a fixed central stencil with a monotonicity preserving limited piecewise linear reconstruction algorithm. The limited reconstruction is applied to computational cells with under-resolved solution content and the unlimited k-exact reconstruction procedure is used for cells in which the solution is fully resolved. Switching in the hybrid procedure is determined by a solution smoothness indicator. The hybrid approach avoids the complexity associated with other ENO schemes that require reconstruction on multiple stencils and therefore, would seem very well suited for extension to unstructured meshes. The high-order elliptic (viscous) fluxes are computed based on a k-order accurate average gradient derived from a (k+1)-order accurate reconstruction. A novel h-refinement criterion based on the solution smoothness indicator is used to direct the steady and unsteady refinement of the AMR mesh. The predictive capabilities of the proposed high-order AMR scheme are demonstrated for the Euler and Navier-Stokes equations governing two-dimensional compressible gaseous flows as well as for advection-diffusion problems characterized by the full range of Peclet numbers, Pe. The ability of the scheme to accurately represent solutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth solution content (i.e., shocks and other discontinuities) is shown for a range of problems. Moreover, the ability to perform mesh refinement in regions of smooth but under-resolved and/or non-smooth solution content to achieve the desired resolution is also demonstrated.
334

Fully linear elliptic equations and semilinear fractionnal elliptic equations

Chen, Huyuan 10 January 2014 (has links)
Cette thèse est divisée en six parties. La première partie est consacrée à l'étude de propriétés de Hadamard et à l'obtention de théorèmes de Liouville pour des solutions de viscosité d'équations aux dérivées partielles elliptiques complètement non-linéaires avec des termes de gradient, ... / This thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term ...

Page generated in 0.025 seconds