• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 34
  • 31
  • 14
  • 11
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 264
  • 72
  • 37
  • 27
  • 26
  • 26
  • 24
  • 22
  • 21
  • 19
  • 18
  • 17
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Mass spectrometry of synthetic polysiloxanes : from linear models to plasma-polymer networks / Spectrométrie de masse de polysiloxanes synthétiques : des modèles linéaires à la structure en réseau des plasma-polymères

Fouquet, Thierry 14 December 2012 (has links)
Contrairement aux méthodes de polymérisation par voie humide, la « plasma-polymérisation » de précurseurs siliconés (typiquement l'hexaméthyldisiloxane) fournit des couches minces peu solubles, considérées comme riches en chaines courtes et ramifiées, structures cycliques et réticulées, à mi-chemin entre un poly(diméthylsiloxane) (PDMS) et une silice. Ces caractéristiques confèrent des propriétés barrières, électriques ou mécaniques uniques aux substrats traités mais sont autant de difficultés pour leur analyse par spectrométrie de masse. La caractérisation fine d'un plasma polymère serait pourtant d'autant plus utile qu'elle permettrait – indirectement – de proposer ou de valider des mécanismes d'activation et d'oligomérisation du précurseur en phases plasma et solide, connaissance essentielle s'il en est pour la maîtrise des caractéristiques d'un dépôt. Cependant, l'interprétation de données MS/MS en vue de relier un comportement dissociatif à des caractéristiques structurales nécessite l'établissement préalable de règles de fragmentation à partir de modèles pertinents. En l'absence d'étalons plasma-polymère de structure contrôlée, il s'agit donc d'explorer différents modèles potentiels afin d'établir des relations structure/fragmentation pour comprendre les données MS/MS obtenues pour des échantillons réels. Ces études contribueront d'ailleurs à enrichir la littérature sur la fragmentation de polymères siliconés, très réduite en comparaison de polymères à chaine carbonée.A partir des données obtenues depuis les parties solubles de plasma-polymères, les comportements MS/MS d'un ensemble de polymères de référence dument choisis ont été explorés et explicités. / This thesis work aimed at describing the molecular and structural composition of silicon-based plasma-polymers (ppHMDSO) by mass spectrometry. Deposited under a micro-discharge regime at atmospheric pressure, these plasma-polymers exhibit a very low solubility in common solvents, assigned to their highly cross-linked structures, and are hence not easily amenable to ionization. Moreover, structural information cannot be readily deduced from fragmentation data obtained from species extractable from the studied thin films due to the lack of appropriate rules to understand dissociation of the observed gas-phase ions. This research work has thus consisted of developing an analytical strategy to address both of these challenging issues.Owing to the very limited number of articles dealing with tandem mass spectrometry of silicon-containing oligomers, mechanistic investigations were performed on the collision-induced decomposition of selected polymer standards holding different end-groups, expected to be relevant to characterize oligomers suspected to be present in the soluble part of the ppHMDSO samples. Focusing on ammonium adducts, fragmentation routes have first been established for symmetric poly(dimethylsiloxane) (PDMS) polymers holding trimethylsilyl, hydride, or methoxy terminations. POSS molecules were also investigated to understand the influence of cross-linked structures on PDMS adduct dissociation. Some discrepancies between MS/MS spectra of the standards and of the analytes were evidenced, assigned to random branching which could not be modeled by any commercially available compounds.
242

Development of nanostructured and bioactive surfaces onto ceramic substrates

Carvalho, Ângela Marisa Pereira January 2011 (has links)
Tese de mestrado. Engenharia Biomédica. Faculdade de Engenharia. Universidade do Porto. 2011
243

Etude des propriétés électriques des élastomères silicones utilisés pour l'isolation électrique

Nguyen, Duc Hoang 28 November 2005 (has links) (PDF)
Les élastomères silicones sont déjà largement utilisés dans l'isolation électrique extérieure grâce à la bonne tenue aux contraintes climatiques et à la hydrophobicité. Ils commencent aujourd'hui à être utilisés dans l'isolation volumique pour des applications haute tension. L'objectif de cette thèse était d'analyser plus profondément les propriétés diélectriques et électriques, peu connues, dans ces polymères.<br />L'originalité de ces études porte sur la gamme importante de température étudiée (100-430K), la mesure des propriétés diélectriques dans des très basses fréquences (10-4Hz–1MHz), la mesure de charges d'espace par un dispositif de type ‘onde de pression' et la mesure de courants faibles (jusqu'à 50fA). Deux familles d'élastomères silicones ont été étudiées : des RTV et des LSR comportant des charges de renfort de silice. L'évolution de ces propriétés lorsque ces matériaux sont soumis à des contraintes électrothermiques (16 kV/mm à 353K) pendant un an est également menée. <br />Des comportements classiquement observés dans les polymères ont été identifiés comme l'injection de charges d'espace, de type Schottky. Cependant, des comportements plus spécifiques ont été identifiés : (i) des courants de conduction sub-linéaires, (ii) des courants de dépolarisation qui s'inversent et qui présentent une réponse chaotique, (iii) des réponses diélectriques de type loi de puissance fractionnelle, (iv) de la dispersion dans les basses fréquences après vieillissement. Ces comportements particuliers sont principalement attribués à des effets d'électrode bloquante et des mécanismes de conduction dans les clusters présents aux interfaces PDMS–silice.<br />L'étude en spectroscopie diélectrique dans les très basses fréquences s'est avérée être un outil précieux de caractérisation de l'ensemble de ces phénomènes.
244

Etudes de systèmes microfluidiques : agrégation de particules, électrocinétique linéaire, analyse de protéines

Brunet, Edouard 20 September 2004 (has links) (PDF)
Après deux chapitres introductifs, ce manuscrit est divisé en trois parties independantes. (I) Nous étudions l'influence du cisaillement sur l'agrégation de particules paramagnétiques soumises à un champ magnétique parallèle à l'écoulement. Nous montrons que les chaines formées croissent linéairement suivant un modèle utilisant l'équation de Smoluchovsky. (II) Une étude théorique est menée afin d'étendre aux situations expérimentales rencontrées en microfluidique les relations décrivant les phénomènes électrocinétiques. Les symétries entre courant d'écoulement et électroosmose sont démontrées. L'approximation de couche de Debye fine est appliquée au courant d'écoulement puis utilisée pour décrire les structures des courants électriques et hydrodynamiques dans des géométries modèles. (III) Un système d'analyse de protéines est présenté, permettant l'identification d'un mélange de protéines. Il comporte un étage de séparation électrophorétique suivi d'une digestion enzymatique.
245

Microscale Tools for Sample Preparation, Separation and Detection of Neuropeptides / Mikroskaliga verktyg för provpreparering, separation och detektion av neuropeptider

Dahlin, Andreas January 2005 (has links)
<p>The analysis of low abundant biological molecules is often challenging due to their chemical properties, low concentration and limited sample volumes. Neuropeptides are one group of molecules that fits these criteria. Neuropeptides also play an important role in biological functions, which makes them extra interesting to analyze. A classic chemical analysis involves sampling, sample preparation, separation and detection. In this thesis, an enhanced solid supported microdialysis method was developed and used as a combined sampling- and preparation technique. In general, significantly increased extraction efficiency was obtained for all studied peptides. To be able to control the small sample volumes and to minimize the loss of neuropeptides because of unwanted adsorption onto surfaces, the subsequent analysis steps were miniaturized to a micro total analysis system (µ-TAS), which allowed sample pre-treatment, injection, separation, manipulation and detection. </p><p>In order to incorporate these analysis functions to a microchip, a novel microfabrication protocol was developed. This method facilitated three-dimensional structures to be fabricated without the need of clean room facilities. </p><p>The sample pre-treatment step was carried out by solid phase extraction from beads packed in the microchip. Femtomole levels of neuropeptides were detected from samples possessing the same properties as microdialysates. The developed injection system made it possible to conduct injections from a liquid chromatographic separation into a capillary electrophoresis channel, which facilitated for advanced multidimensional separations. An electrochemical sample manipulation system was also developed. In the last part, different electrospray emitter tip designs made directly from the edge of the microchip substrate were developed and evaluated. The emitters were proven to be comparable with conventional, capillary based emitters in stability, durability and dynamic flow range. Although additional developments remain, the analysis steps described in this thesis open a door to an integrated, on-line µ-TAS for neuropeptides analysis in complex biological samples.</p>
246

Microfluidics in Surface Modified PDMS : Towards Miniaturized Diagnostic Tools

Thorslund, Sara January 2006 (has links)
<p>There is a strong trend in fabricating <i>miniaturized total analytical systems</i>, µTAS, for various biochemical and cell biology applications. These miniaturized systems could e.g. gain better separation performances, be faster, consume less expensive reagents and be used for studies that are difficult to access in the macro world. Disposable µTAS eliminate the risk of carry-over and can be fabricated to a low cost.</p><p>This work focused on the development of µTAS modules with the intentional use for miniaturized diagnostics. Modules for blood separation, desalting, enrichment, separation and ESI-MS detection were successfully fabricated. Surface coatings were additionally developed and evaluated for applications in µTAS with complex biological samples. The first heparin coating could be easily immobilized in a one-step-process, whereas the second heparin coating was aimed to form a hydrophilic surface that was able to draw blood or plasma samples into a microfluidic system by capillary forces. </p><p>The last mentioned heparin surface was further utilized when developing a chip-based sensor for performing CD4-count in human blood, an important marker to determine the stage of an HIV-infection.</p><p>All devices in this work were fabricated in PDMS, an elastomeric polymer with the advantage of rapid and less expensive prototyping of the microfabricated master. It was shown that PDMS could be considered as the material of choice for future commercial µTAS. The devices were intentionally produced using a low grade of fabrication complexity. It was however demonstrated that even with low complexity, it is possible to integrate several functional chip modules into a single microfluidic device.</p>
247

A Study of Microfluidic Reconfiguration Mechanisms Enabled by Functionalized Dispersions of Colloidal Material for Radio Frequency Applications

Goldberger, Sean A. 2009 May 1900 (has links)
Communication and reconnaissance systems are requiring increasing flexibility concerning functionality and efficiency for multiband and broadband frequency applications. Circuit-based reconfiguration mechanisms continue to promote radio frequency (RF) application flexibility; however, increasing limitations have resulted in hindering performance. Therefore, the implementation of a "wireless" reconfiguration mechanism provides the required agility and amicability for microwave circuits and antennas without local overhead. The wireless reconfiguration mechanism in this thesis integrates dynamic, fluidic-based material systems to achieve electromagnetic agility and reduce the need for "wired" reconfiguration technologies. The dynamic material system component has become known as electromagnetically functionalized colloidal dispersions (EFCDs). In a microfluidic reconfiguration system, they provide electromagnetic agility by altering the colloidal volume fraction of EFCDs - their name highlights the special considerations we give to material systems in applied electromagnetics towards lowering loss and reducing system complexity. Utilizing EFCDs at the RF device-level produced the first circuit-type integration of this reconfiguration system; this is identified as the coaxial stub microfluidic impedance transformer (COSMIX). The COSMIX is a small hollowed segment of transmission line with results showing a full reactive loop (capacitive to inductive tuning) around the Smith chart over a 1.2 GHz bandwidth. A second microfluidic application demonstrates a novel antenna reconfiguration mechanism for a 3 GHz microstrip patch antenna. Results showed a 300 MHz downward frequency shift by dielectric colloidal dispersions. Magnetic material produced a 40 MHz frequency shift. The final application demonstrates the dynamically altering microfluidic system for a 3 GHz 1x2 array of linearly polarized microstrip patch antennas. The parallel microfluidic capillaries were imbedded in polydimethylsiloxane (PDMS). Both E- and H-plane designs showed a 250 MHz frequency shift by dielectric colloidal dispersions. Results showed a strong correlation between decreasing electrical length of the elements and an increase of the volume fraction, causing frequency to decrease and mutual coupling to increase. Measured, modeled, and analytical results for impedance, voltage standing wave ratio (VSWR), and radiation behavior (where applicable) are provided.
248

Microfluidics in Surface Modified PDMS : Towards Miniaturized Diagnostic Tools

Thorslund, Sara January 2006 (has links)
There is a strong trend in fabricating miniaturized total analytical systems, µTAS, for various biochemical and cell biology applications. These miniaturized systems could e.g. gain better separation performances, be faster, consume less expensive reagents and be used for studies that are difficult to access in the macro world. Disposable µTAS eliminate the risk of carry-over and can be fabricated to a low cost. This work focused on the development of µTAS modules with the intentional use for miniaturized diagnostics. Modules for blood separation, desalting, enrichment, separation and ESI-MS detection were successfully fabricated. Surface coatings were additionally developed and evaluated for applications in µTAS with complex biological samples. The first heparin coating could be easily immobilized in a one-step-process, whereas the second heparin coating was aimed to form a hydrophilic surface that was able to draw blood or plasma samples into a microfluidic system by capillary forces. The last mentioned heparin surface was further utilized when developing a chip-based sensor for performing CD4-count in human blood, an important marker to determine the stage of an HIV-infection. All devices in this work were fabricated in PDMS, an elastomeric polymer with the advantage of rapid and less expensive prototyping of the microfabricated master. It was shown that PDMS could be considered as the material of choice for future commercial µTAS. The devices were intentionally produced using a low grade of fabrication complexity. It was however demonstrated that even with low complexity, it is possible to integrate several functional chip modules into a single microfluidic device.
249

A Study of Microfluidic Reconfiguration Mechanisms Enabled by Functionalized Dispersions of Colloidal Material for Radio Frequency Applications

Goldberger, Sean A. 2009 May 1900 (has links)
Communication and reconnaissance systems are requiring increasing flexibility concerning functionality and efficiency for multiband and broadband frequency applications. Circuit-based reconfiguration mechanisms continue to promote radio frequency (RF) application flexibility; however, increasing limitations have resulted in hindering performance. Therefore, the implementation of a "wireless" reconfiguration mechanism provides the required agility and amicability for microwave circuits and antennas without local overhead. The wireless reconfiguration mechanism in this thesis integrates dynamic, fluidic-based material systems to achieve electromagnetic agility and reduce the need for "wired" reconfiguration technologies. The dynamic material system component has become known as electromagnetically functionalized colloidal dispersions (EFCDs). In a microfluidic reconfiguration system, they provide electromagnetic agility by altering the colloidal volume fraction of EFCDs - their name highlights the special considerations we give to material systems in applied electromagnetics towards lowering loss and reducing system complexity. Utilizing EFCDs at the RF device-level produced the first circuit-type integration of this reconfiguration system; this is identified as the coaxial stub microfluidic impedance transformer (COSMIX). The COSMIX is a small hollowed segment of transmission line with results showing a full reactive loop (capacitive to inductive tuning) around the Smith chart over a 1.2 GHz bandwidth. A second microfluidic application demonstrates a novel antenna reconfiguration mechanism for a 3 GHz microstrip patch antenna. Results showed a 300 MHz downward frequency shift by dielectric colloidal dispersions. Magnetic material produced a 40 MHz frequency shift. The final application demonstrates the dynamically altering microfluidic system for a 3 GHz 1x2 array of linearly polarized microstrip patch antennas. The parallel microfluidic capillaries were imbedded in polydimethylsiloxane (PDMS). Both E- and H-plane designs showed a 250 MHz frequency shift by dielectric colloidal dispersions. Results showed a strong correlation between decreasing electrical length of the elements and an increase of the volume fraction, causing frequency to decrease and mutual coupling to increase. Measured, modeled, and analytical results for impedance, voltage standing wave ratio (VSWR), and radiation behavior (where applicable) are provided.
250

Fluidic Tuning of a Four-Arm Spiral-Based Frequency Selective Surface

Wells, Elizabeth Christine 2011 May 1900 (has links)
Frequency selective surfaces (FSSs) provide a variety of spatial filtering functions, such as band-pass or band-stop properties in a radome or other multilayer structure. This filtering is typically achieved through closely-spaced periodic arrangements of metallic shapes on top of a dielectric substrate (or within a stack of dielectric materials). In most cases, the unit cell size, its shape, the substrate parameters, and the inter-element spacing collectively impact the response of the FSS. Expanding this design space to include reconfigurable FSSs provides opportunities for applications requiring frequency agility and/or other properties. Tuning can also enable operation over a potentially wider range of frequencies and can in some cases be used as a loading mechanism or quasi-ground plane. Many technologies have been considered for this type of agility (RF MEMS, PIN diodes, etc.). This includes the recent use of microfluidics and dispersions of nanoparticles, or fluids with controllable dielectrics, which have entered the design space of numerous other EM applications including stub-tuners, antennas, and filters. In this work they provide a material based approach to reconfiguring an FSS. An FSS based on a four-arm spiral with tunable band-stop characteristics is presented in this work. A thin colloidal dispersion above each element provides this tuning capability. The radial expansion and contraction of this dispersion, as well as the variable permittivity of the dispersion, are used to load each element individually. This design incorporates thin fluidic channels within a PDMS layer below the substrate leading to individual unit cells that provide a closed pressure-driven subsystem that contains the dispersion. With the capability to individually control each cell, groups of cells can be locally altered (individually or in groups) to create gratings and other electromagnetically agile features across the surface or within the volume of a radome or other covering. Simulations and measurements of an S-band tunable design using colloidal Barium Strontium Titanate dispersed Silicone oil are provided to demonstrate the capability to adjust the stop-band characteristics of the FSS across the S-band.

Page generated in 0.0512 seconds