• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 8
  • 8
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 14
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

QUENCH PROTECTION STUDIES OF MAGNESIUM DIBORIDE SUPERCONDUCTING MAGNETS FOR MRI APPLICATIONS

Poole, Charles Randall 01 June 2018 (has links)
No description available.
72

Kinetics of Chlorination of the Pesticide Aldicarb in Drinking Water

CLINTON, CAROL 19 September 2008 (has links)
No description available.
73

An investigation into different phosphate glass processing routes and the role of phosphate glass in dental collagen-based scaffolds / Une étude des différentes voies de traitement du verre de phosphaté et du rôle du verre de phosphate dans les échafaudages à base de collagène dentaire

Farano, Vincenzo 04 October 2018 (has links)
This thesis concerns the development of a new series of Sr-doped phosphate-based glasses for biomedical applications. Such glasses in powder form are envisaged to have applications in novel composite restorations where the following is achievable: dentin cell-mediated bioremineralization, dental pulp regeneration and as carrier for therapeutics or antibacterial ions.The initial aim was to produce soluble porous phosphate glasses using the sol-gel method (phosphate-alkoxide based sol-gel process). Knowing the effect that the variation of Ca content has on the dissolution properties of the glass, a series of glasses where Ca was progressively increased at the expense of Na was produced. The structure of the prepared samples was probed by XRD, XRF and FTIR to confirm the successful synthesis of the target phosphate-based glass compositions. After that a promising methodology was established, attempts were made to replace Ca with Sr. Different Sr sources were used without success due to the difficulty to fully dissolve those precursors in the sol-gel mixture. Subsequently, the issue of the toxicity of some precursors and solvents used in the sol-gel procedure was recognised. To overcome this obstacle, efforts were made to replace the toxic precursor chemicals with safer ones. Nevertheless, due to the low solubility of some new precursors and the low reactivity of others, the sol-gel process did not proceed in a predictable and reproducible fashion. At this stage, the sol-gel route was put aside, and two alternative soft and water-based chemical approaches were experimented: the precipitation method and the coacervation process. The first one was found to be unsuitable for our needs for two main reasons: 1) the presence of Na in the composition generated a crystalline material (instead of a glassy amorphous one); 2) the Ca/P ratio of our composition fell in the range of crystalline phase by using this method. In addition, the yield was really low. The second method (coacervation process) was a complete success. The glassy nature of the materials obtained was proved by XRD and XRF and the surface features were tested by BET and SEM. The process was retained for a while as the preferred synthesis route and both the scale-up effect and the possibility to add Sr were analysed. The production scale of the material was increased by 5 times and different Sr sources were tested to find the best one. XRD and XRF analysis proved both the success of the scale-up and the incorporation of the Sr in glass composition / This thesis concerns the development of a new series of Sr-doped phosphate-based glasses for biomedical applications. Such glasses in powder form are envisaged to have applications in novel composite restorations where the following is achievable: dentin cell-mediated bioremineralization, dental pulp regeneration and as carrier for therapeutics or antibacterial ions.The initial aim was to produce soluble porous phosphate glasses using the sol-gel method (phosphate-alkoxide based sol-gel process). Knowing the effect that the variation of Ca content has on the dissolution properties of the glass, a series of glasses where Ca was progressively increased at the expense of Na was produced. The structure of the prepared samples was probed by XRD, XRF and FTIR to confirm the successful synthesis of the target phosphate-based glass compositions. After that a promising methodology was established, attempts were made to replace Ca with Sr. Different Sr sources were used without success due to the difficulty to fully dissolve those precursors in the sol-gel mixture. Subsequently, the issue of the toxicity of some precursors and solvents used in the sol-gel procedure was recognised. To overcome this obstacle, efforts were made to replace the toxic precursor chemicals with safer ones. Nevertheless, due to the low solubility of some new precursors and the low reactivity of others, the sol-gel process did not proceed in a predictable and reproducible fashion. At this stage, the sol-gel route was put aside, and two alternative soft and water-based chemical approaches were experimented: the precipitation method and the coacervation process. The first one was found to be unsuitable for our needs for two main reasons: 1) the presence of Na in the composition generated a crystalline material (instead of a glassy amorphous one); 2) the Ca/P ratio of our composition fell in the range of crystalline phase by using this method. In addition, the yield was really low. The second method (coacervation process) was a complete success. The glassy nature of the materials obtained was proved by XRD and XRF and the surface features were tested by BET and SEM. The process was retained for a while as the preferred synthesis route and both the scale-up effect and the possibility to add Sr were analysed. The production scale of the material was increased by 5 times and different Sr sources were tested to find the best one. XRD and XRF analysis proved both the success of the scale-up and the incorporation of the Sr in glass composition
74

Spectroscopic and Kinetic Investigation of the Catalytic Mechanism of Tyrosine Hydroxylase

Eser, Bekir Engin 2009 December 1900 (has links)
Tyrosine Hydroxylase (TyrH) is a pterin-dependent mononuclear non-heme iron oxygenase. TyrH catalyzes the hydroxylation reaction of tyrosine to dihydroxyphenylalanine (DOPA). This reaction is the first and the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. The active site iron in TyrH is coordinated by the common facial triad motif, 2-His-1-Glu. A combination of kinetic and spectroscopic techniques was applied in order to obtain insight into the catalytic mechanism of this physiologically important enzyme. Analysis of the TyrH reaction by rapid freeze-quench Mossbauer spectroscopy allowed the first direct characterization of an Fe(IV) intermediate in a mononuclear nonheme enzyme catalyzing aromatic hydroxylation. Further rapid kinetic studies established the kinetic competency of this intermediate to be the long-postulated hydroxylating species, Fe(IV)O. Spectroscopic investigations of wild-type (WT) and mutant TyrH complexes using magnetic circular dichroism (MCD) and X-ray absorption spectroscopy (XAS) showed that the active site iron is 6-coordinate in the resting form of the enzyme and that binding of either tyrosine or 6MPH4 alone does not change the coordination. However, when both tyrosine and 6MPH4 are bound, the active site becomes 5-coordinate, creating an open site for reaction with O2. Investigation of the kinetics of oxygen reactivity of TyrH complexes in the absence and presence of tyrosine and/or 6MPH4 indicated that there is a significant enhancement in reactivity in the 5-coordinate complex in comparison to the 6-coordinate form. Similar investigations with E332A TyrH showed that Glu332 residue plays a role in directing the protonation of the bridged complex that forms prior to the formation of Fe(IV)O. Rapid chemical quench analyses of DOPA formation showed a burst of product formation, suggesting a slow product release step. Steady-state viscosity experiments established a diffusional step as being significantly rate-limiting. Further studies with stopped-flow spectroscopy indicated that the rate of TyrH reaction is determined by a combination of a number of physical and chemical steps. Investigation of the NO complexes of TyrH by means of optical absorption, electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) techniques revealed the relative positions of the substrate and cofactor with respect to NO, an O2 mimic, and provided further insight into how the active site is tuned for catalytic reactivity upon substrate and cofactor binding.
75

Thermalisation and Relaxation of Quantum Systems / Thermalisation et relaxation des systèmes quantiques

Wald, Sascha Sebastian 28 September 2017 (has links)
Cette thèse traite la dynamique hors équilibre des systèmes quantiques ouverts couplés à un réservoir externe. Un modèle spécifique exactement soluble, le modèle sphérique, sert comme exemple paradigmatique. Ce modèle se résout exactement en toute dimension spatiale et pour des interactions très générales. Malgré sa simplicité technique, ce modèle est intéressant car ni son comportement critique d’équilibre ni celui hors équilibre est du genre champ moyen. La présentation débute avec une revue sur la mécanique statistique des transitions de phases classique et quantique, et sur les propriétés du modèle sphérique. Sa dynamique quantique ne se décrit point à l’aide d’une équation de Langevin phénoménologique. Une description plus complète à l’aide de la théorie de l’équation de Lindblad est nécessaire. Les équations de Lindblad décrivent la relaxation d’un système quantique vers son état d’équilibre. En tant que premier exemple, le diagramme de phases dynamique d’un seul spin sphérique quantique est étudié. Réinterprétant cette solution en tant qu’une approximation champ moyen d’un problème de N corps, le diagramme de phases quantique est établi et un effet « congeler en réchauffant » quantique est démontré. Ensuite, le formalisme de Lindblad est généralisé au modèle sphérique quantique de N particules: primo, la forme précise de l’équation de Lindblad est obtenue des conditions que (i) l’état quantique d’équilibre exacte est une solution stationnaire de l’équation de Lindblad et (ii) dans le limite classique, l’équation Langevin de mouvement est retrouvée. Secundo, le modèle sphérique permet la réduction exacte du problème de N particules à une seule équation intégro-différentielle pour le paramètre sphérique. Tertio, en résolvant pour le comportement asymptotique des temps longs de cette équation, nous démontrons que dans la limite semi-classique, la dynamique quantique effective redevient équivalente à une dynamique classique, à une renormalisation quantique de la température T près. Quarto, pour une trempe quantique profonde dans la phase ordonnée, nous démontrons que la dynamique quantique dépend d’une manière non triviale de la dimension spatiale. L’émergence du comportement d’échelle dynamique et des corrections logarithmiques est discutée en détail. Les outils mathématiques de cette analyse sont des nouveaux résultats sur le comportement asymptotique de certaines fonctions hypergéométriques confluentes en deux variables / This study deals with the dynamic properties of open quantum systems far from equilibrium in d dimensions. The focus is on a special, exactly solvable model, the spherical model (SM), which is technically simple. The analysis is of interest, since the critical behaviour in and far from equilibrium not of mean-field type. We begin with a résumé of the statistical mechanics of phase transitions and treat especially the quantum version of the SM. The quantum dynamics (QD) of the model cannot be described by phenomenological Langevin equation and must be formulated with Lindblad equations.First we examine the dynamic phase diagram of a single spherical quantum spin and interpret the solution as a mean-field approximation of the N-body problem. Hereby, we find a quantum mechanical ‘freezing by heating’ effect. After that, we extend the formalism to the N-body problem, determining first the form of the Lindblad equation from consistency conditions. The SM then allows the reduction to a single integro-differential equation whose asymptotic solution shows, that the effective QD in the semi-classical limit is fully classical. For a deep quench in the ordered phase, we show that the QD strongly and non-trivially depends on d and derive the dynamic scaling behaviour and its corrections. The mathematical tools for this analysis are new results on the asymptotic behaviour of certain confluent hypergeometric functions in two variables
76

Formation des microstructures dans la fonte à graphite spheroïdal aux premiers instants de la solidification / Microstructure formation of spheroidal graphite cast iron at the very begining of solidification

Wang, Shuyan 28 November 2012 (has links)
Les conditions thermiques et le traitement du métal liquide pour la coulée centrifuge des tuyaux de canalisation permettent d'obtenir une solidification sous forme de graphite sphéroïdal sur l'ensemble de l'épaisseur. Il est parfois observé en peau des zones solidifiant selon le mode blanc qui peuvent induire des différences de réponses métallurgiques problématiques. La caractérisation de tuyaux de différents diamètres montre qu'une compétition entre la croissance de l'eutectique métastable et la germination et croissance de l'eutectique stable existe dès le tout début de la solidification. Pour préciser les conditions thermiques de cette compétition un dispositif de chute de goute sur substrat a été utilisé pour lequel la solidification rapide et dirigée se déroule avec mesure de l?évolution de la température aux premiers moments de la solidification (t<200 ms). La caractérisation des microstructures à l'état brut de coulée et après traitement thermique a montré que ce dispositif permettait de reproduire les conditions thermiques de la peau des tuyaux et de figer la structure précurseur de celle obtenue par coulée centrifuge. Un modèle physique décrivant les premiers instants de la solidification sous très fort gradient thermique d'une fonte inoculée et traitée au Mg est présenté, prenant en compte la cinétique de germination et croissance des nodules de graphite en compétition avec la solidification de l'eutectique métastable. La comparaison entre les résultats du modèle et les caractérisations microstructurales permet de préciser les scénarios de formation des microstructures en découplant l'influence du gradient thermique et de la vitesse de solidification / The thermal conditions and the treatment of the liquid metal for centrifugal casting of pipes lead to the solidification of the melt in the form of spheroidal graphite (SG) iron throughout the thickness. However it is sometimes observed zones that are solidified within the white mode (eutectic austenite / cementite) mainly in the skin of the product. These areas lead to differences which could be problematic. Further characterization of the microstructure of pipes shows that competition between the nucleation and growth of stable and metastable eutectic growth exists from the beginning of solidification. To clarify the thermal conditions of this competition an experimental device has been used. Liquid metal droplet fall on a cold substrate. Rapid directionnal solidification occurs and the temperature evolution of the lower surface of the droplet is recorded during the very first moment of solidification (< 200 ms). Characterization of droplet microstructures obtained in as-cast state and after heat treatment showed that the device is able to froze the solidified microstructure in an earlier stage of formation than in the as cast pipe. A physical model describing the first instants of the solidification under very high thermal gradient of a cast iron which is inoculated and treated with Mg is presented, taking into account the kinetics of nucleation and growth of graphite nodules in competition with the solidification of the metastable eutectic. The comparison between the calcluated results and microstructural characterizations allows to specify microstructures devlopment scenarios by decoupling the influence of the thermal gradient and solidification rate
77

MULTISCALE MULTIPHYSICS THERMO-MECHANICAL MODELING OF AN MGB<sub>2</sub> BASED CONDUCTION COOLED MRI MAGNET SYSTEM

Amin, Abdullah Al 01 February 2018 (has links)
No description available.
78

SPECTROSCOPIC STUDIES ON ACTIVE METALLO-ß-LACTAMASES

Aitha, Mahesh Kumar 27 August 2015 (has links)
No description available.
79

Investigation of trace components in autothermal gas reforming processes

Muritala, Ibrahim Kolawole 10 January 2018 (has links) (PDF)
Trace component analysis in gasification processes are important part of elemental component balances in order to understand the fate of these participating compounds in the feedstock. Residual traces in the raw synthesis gas after quench could bring about the poisoning of catalysts and corrosion effects on plant facilities. The objective of this work is to investigate the effects of quenching operation on the trace components during test campaigns of the autothermal non-catalytic reforming of natural gas (Gas-POX) mode in the HP POX (high pressure partial oxidation) test plant. In order to achieve this, Aspen Plus simulation model of the quench chamber of the HP POX test plant was developed to re-calculate the quench chamber input amount of different trace compounds from their output amount measured during test points of the Gas-POX campaigns. Variation in quench water temperatures from 130 °C to 220 °C and pH value of quench water as well as the resulting variation in Henry´s and Dissociation constant of the traces (CO2, H2S, NH3 and HCN) changed the distribution of traces calculated in the quench water. The formation of traces of organic acid (formic acid and acetic acid) and traces of BTEX, PAHs and soot in the quench water effluent were discussed. The discrepancies between equilibrium constant and reaction quotient (non-equilibrium or real) for the formation of NH3 and HCN at the exit of the gasifier were discussed. The assessment of the results in this work should lead to the improvement in the understanding of trace components and concepts that could be employed to influence their formation and reduction.
80

Investigation of trace components in autothermal gas reforming processes

Muritala, Ibrahim Kolawole 07 April 2017 (has links)
Trace component analysis in gasification processes are important part of elemental component balances in order to understand the fate of these participating compounds in the feedstock. Residual traces in the raw synthesis gas after quench could bring about the poisoning of catalysts and corrosion effects on plant facilities. The objective of this work is to investigate the effects of quenching operation on the trace components during test campaigns of the autothermal non-catalytic reforming of natural gas (Gas-POX) mode in the HP POX (high pressure partial oxidation) test plant. In order to achieve this, Aspen Plus simulation model of the quench chamber of the HP POX test plant was developed to re-calculate the quench chamber input amount of different trace compounds from their output amount measured during test points of the Gas-POX campaigns. Variation in quench water temperatures from 130 °C to 220 °C and pH value of quench water as well as the resulting variation in Henry´s and Dissociation constant of the traces (CO2, H2S, NH3 and HCN) changed the distribution of traces calculated in the quench water. The formation of traces of organic acid (formic acid and acetic acid) and traces of BTEX, PAHs and soot in the quench water effluent were discussed. The discrepancies between equilibrium constant and reaction quotient (non-equilibrium or real) for the formation of NH3 and HCN at the exit of the gasifier were discussed. The assessment of the results in this work should lead to the improvement in the understanding of trace components and concepts that could be employed to influence their formation and reduction.:List of Figures vii List of Tables xii List of Abbreviations and Symbols xiii 1 Introduction 1 1.1 Background 1 1.2 Objective of the Work 4 1.3 Overview of the Work 5 2 Process and test conditions 6 2.1 HP POX test plant 6 2.2 Test campaign procedure 8 2.2.1 Gas-POX operating parameter range 8 2.2.2 Gas-POX experiments 9 2.2.3 Net reactions of partial oxidation 9 2.3 Gaseous feedstock characterization 11 2.3.1 Natural gas feedstock composition 11 2.4 Analytical methods for gaseous products 12 2.4.1 Hot gas sampling 12 2.4.2 Raw synthesis gas analysis after quench 13 2.5 Aqueous phase product analysis 14 2.5.1 Molecularly dissolved trace compounds and their ions trace analysis 14 2.5.2 Other trace analysis 15 2.6 Limit of accuracy in measurement systems 15 2.7 Summary 17 3 Simulation and methods 18 3.1 Test points calculation of the HP POX test campaign 18 3.1.1 Aspen Plus model for HP POX quench water system 19 3.2 Gas-POX 201 VP1 quench water system model simulation by Aspen Plus 23 3.2.1 Measured and calculated input parameters 23 3.2.2 Calculated sensitivity studies of species and their distribution for test point (VP1) 24 3.3 Used calculation tools related to the work 25 3.3.1 VBA in Excel 25 3.3.2 Python as interface between Aspen Plus and Microsoft Excel 26 3.3.3 Aspen Simulation Workbook 27 3.4 Summary 29 4 Trace components in quench water system 30 4.1 Physico-chemical parameters of quench water 31 4.1.1 Quench water pH adjustment 32 4.1.2 Henry constant 34 4.1.3 Dissociation constant 35 4.1.4 Organic acids in quench water 38 4.2 Carbon dioxide (CO2) 39 4.2.1 Results of sensitivity study: quench water temperature variation effects on CO2 41 4.2.2 Results of sensitivity study: quench water pH variation influence on CO2 42 4.3 Nitrogen compounds 43 4.3.1 Ammonia (NH3) 44 4.3.2 Results of sensitivity study: quench water temperature variation effects on NH3 46 4.3.3 Results of sensitivity study: quench water pH variation influence on NH3 47 4.3.4 Hydrogen Cyanide (HCN) 48 4.3.5 Results of sensitivity study: quench water temperature variation effects on HCN 50 4.3.6 Results of sensitivity study: quench water pH variation influence on HCN 50 4.4 Sulphur compounds: H2S 51 4.4.1 Results of sensitivity study: quench water temperature variation effects on H2S 53 4.4.2 Results of sensitivity study: quench water pH variation influence on H2S 54 4.5 Summary 55 5 Organic acids trace studies in quench water 57 5.1 Organic acids interaction with ammonia compounds in the quench water 57 5.2 Formic acid 62 5.2.1 Trace of formic acid in quench water 64 5.3 Acetic acid 67 5.3.1 Trace of acetic acid in quench water 69 5.4 Summary 72 6 Temperature approach studies for NH3 and HCN formation in gasifier 74 6.1 Nitrogen compounds: NH3 and HCN 74 6.2 Ammonia (NH3) formation in the gasifer 77 6.3 Hydrogen cyanide (HCN) formation in the gasifier 79 6.4 Discrepancies between back-calculated reaction quotients and equilibrium constants of the NH3 formation 81 6.4.1 Case 1: calculated equilibrium distribution between N2, NH3 and HCN 81 6.4.2 Case 2: calculated equilibrium distribution between NH3 and HCN 83 6.5 Summary 84 7 Traces of BTEX, PAHs and soot in quench water 86 7.1 Quench water behaviour 87 7.2 BTEX compounds 88 7.2.1 BTEX in quench water effluent 90 7.3 PAH compounds 93 7.3.1 PAHs in quench water effluent 95 7.4 Soot formation 99 7.4.1 Soots in quench water effluent 101 7.5 Summary 102 8 Summary and outlook 103 Bibliography 106 9 Appendix 135 List of Figures Figure 2.1: HP POX test plant main facility components and material flow courtesy of [Lurgi GmbH, 2008] 6 Figure 2.2: Simplified scheme of HP POX plant (including quench system) [Lurgi GmbH, 2008] 7 Figure 2.3: Overview of reactions of methane 10 Figure 3.1: Simplified scheme for HP POX quench water system 18 Figure 3.2: Aspen Plus flow diagrams of simulated HP POX quench water system 19 Figure 3.3: Integration of information and functions in VBA via Microsoft Excel to Aspen Plus model 25 Figure 3.4: Integration of information and functions in Python via Microsoft Excel to Aspen Plus model 26 Figure 3.5: ASW enables Excel users to rapidly run scenarios using the underlying rigorous models to analyze plant data, monitor performance, and make better decisions. 27 Figure 4.1: Vapour-liquid equilibria system of CO2, H2S, NH3, HCN and organic acids in the quench water and extended mechanisms according to [Kamps et al., 2001], [Alvaro et al., 2000], [Kuranov et al., 1996], [Xia et al., 1999] and [Edwards et al., 1978]. 30 Figure 4.2: HP POX quench water system with pH regulator for sensitivity studies 34 Figure 4.3: Henry´s constant for CO2, H2S, NH3 and HCN derived from [Edwards et al., 1978] for CO2, [Alvaro et al., 2000] for NH3, [Kamps et al., 2001] for H2S, and [Rumpf et al., 1992] for HCN 35 Figure 4.4: Dissociation constants for CO2, H2S, NH3, HCN and H2O derived from [Alvaro et al., 2000], [Kamps et al., 2001], and [Edwards et al., 1978] 37 Figure 4.5: The flow of CO2 in the quench water cycle (test point VP1). 40 Figure 4.6: Calculated quench water temperature variation and effects on CO2 distribution 42 Figure 4.7: Calculated influence of pH regulation and effects on CO2 distribution 43 Figure 4.8: The flow of NH3 in the quench water cycle (test point VP1). 46 Figure 4.9: Calculated quench water temperature variation and effects on NH3 distribution 47 Figure 4.10: Calculated influence of pH regulation and effects on NH3 distribution 48 Figure 4.11: The flow of HCN in the quench water cycle (test point VP1). 49 Figure 4.12: Calculated quench water temperature variation and effects on HCN distribution 50 Figure 4.13: Calculated influence of pH regulation and effects on HCN distribution 51 Figure 4.14: The flow of H2S in the quench water cycle (test point VP1) 53 Figure 4.15: Calculated quench water temperature variation and effects on H2S distribution 54 Figure 4.16: Calculated influence of pH regulation and effects on H2S distribution 55 Figure 5.1: Aspen Plus back-calculated (real) formic acid concentration, quench water temperature and the calculated equilibrium formic acid concentration against back-calculated (real) ammonia concentration for the 47 test points (using amongst others sampled HCOO- and NH4+ values according to Table 2.6). 59 Figure 5.2: Aspen plus back-calculated (real) formic acid concentration, back-calculated (real) ammonia concentration and the calculated equilibrium formic acid concentration against quench water temperature for the 47 test points (using amongst others sampled HCOO- and NH4+ values according to Table 2.6). 60 Figure 5.3: Aspen plus back-calculated (real) acetic acid concentration, quench water temperature and the calculated equilibrium acetic acid concentration against back-calculated (real) ammonia concentration for the 47 test points. 61 Figure 5.4: Aspen plus back-calculated (real) acetic acid concentration, back-calculated (real) ammonia concentration and the calculated equilibrium acetic acid concentration against quench water temperature for the 47 test points. 62 Figure 5.5: Concentration of formic acid (Aspen plus calculated m_eq and back-calculted m_real) formation in the quench and quench water temperature for the 47 test points. 64 Figure 5.6: Concentration of formic acid (Aspen plus calculated m_eq and back-calculted m_real) in the quench against quench water temperature for the 47 test points (as in Fig.5.2). 65 Figure 5.7: Comparison between formic acid equilibrium constant (Keq), reaction quotient (Kreal) and the quench water temperature for the 47 test points. 66 Figure 5.8: Comparison between formic acid equilibrium constant (Keq) and reaction quotient (Kreal) against quench water temperatures for the 47 test points. 67 Figure 5.9: Concentration of acetic acid (Aspen plus calculated m_eq and back-calculted m_real) in the quench and quench water temperature for the 47 test points. 69 Figure 5.10: Concentration of acetic acid (Aspen plus calculated m_eq and back-calculted m_real) in the quench against quench water temperature for the 47 test points (as in Fig.5.4). 70 Figure 5.11: Comparison between acetic acid equilibrium constant (Keq), reaction quotient (Kreal) and the quench water temperature for the 47 test points. 71 Figure 5.12: Comparison between acetic acid equilibrium constant (Keq) and reaction quotient (Kreal) against quench water temperatures for the 47 test points. 72 Figure 6.1: Mole fraction of gas compoents in the hot gas outlet out of gasifier against hot gas temperature for the 47 test points 76 Figure 6.2: Calculated reaction quotient (Q) and equlibrium constant (Keq) for NH3 against hot gas temperature for the 47 test points (see Fig. 9.10 in Appendix) 77 Figure 6.3: NH3 temperature approach against hot gas temperature for the 47 test points (see Fig. 9.11 in Appendix) 78 Figure 6.4: Calculated reaction quotient (Q) and equlibrium constant (Keq) for HCN against hot gas temperature for the 47 test points (see Fig. 9.13 in Appendix) 79 Figure 6.5: HCN temperature approach against hot gas temperature for the 47 test points (see Fig. 9.14 in Appendix) 80 Figure 6.6: Comparison between calculated real and equilibrium hot gas N2, NH3 and HCN mol fractions against their respective hot gas temperature (case 1). 82 Figure 6.7: Relations between back-calculated real and equilibrium hot gas N2, NH3 and HCN mol fractions (for chemical equilibrium according to equations (6.1) and (6.4)) against their respective hot gas temperature (see Case 1, Section 6.4.1, and Fig. 6.6) 82 Figure 6.8: Comparison between calculated real and equilibrium hot gas HCN mol fraction against their respective hot gas temperature (case 2). 83 Figure 6.9: Relations between back-calculated real and equilibrium hot gas HCN mol fractions, and change in NH3 mol fractions (for chemical equilibrium according to equation (6.4)), against their respective hot gas temperature (see. Case 2, Section 6.4.2 and Fig. 6.7) 84 Figure 6.10 Comparison between NH3 and HCN formation (mole fraction) calculated equilibrium constant (Keq) and calculated reaction quotient (Q), N2 consumption and hot gas temperatures for the 47 test points (case 1 and case 2). 85 Figure 7.1: HP POX test plant quench water system 88 Figure 7.2: Traces of BTEX measured in the Gas-POX 203 – 207 quench water effluent sample. 91 Figure 7.3: Individual component of BTEX measured in the Gas-POX 203 – 207 quench water effluent sample. 92 Figure 7.4: (a) Alkyl radical decomposition and (b) C1 and C2 hydrocarbons oxidation mechanism [Warnatz et al., 2000] 93 Figure 7.5: Recombination of C3H3 to form benzene 94 Figure 7.6: The Diels - Alder reaction for the formation of PAHs 95 Figure 7.7: Amount of PAHs that were detected in Gas-POX 203 – 207 test points quench water effluent samples. 97 Figure 7.8: Distribution of PAH compounds in Gas-POX 203 – 207 quench water effluent samples. 98 Figure 7.9: Some steps in soot formation [McEnally et al., 2006]. 99 Figure 7.10: Illustration of soot formation path in homogenous mixture [Bockhorn et al., 1994] 100 Figure 9.1: Aspen flow sheet set up for HP POX quench system GasPOX 201 VP1 (simplified and extension of Fig. 3.2, organic acids not taken into account). Tabulated values are given in Table 9.11. 135 Figure 9.2: Comparison between the Henry´s constant profiles: Aspen Plus (markers) and Literatures (solid lines) ([Edwards et al., 1978] for CO2, [Alvaro et al., 2000] for NH3, [Kamps et al., 2001] for H2S, and [Rumpf et al., 1992] for HCN as it can be seen in Fig. 4.3) 137 Figure 9.3: Henry´s constant profiles derived from literatures ([Edwards et al., 1978] for CO2, [Alvaro Pérez-Salado et al., 2000] for NH3, [Kamps et al., 2001] for H2S, and [Rumpf et al., 1992] for HCN as it can be seen in Fig. 4.3) 137 Figure 9.4: Comparison between the dissociation constant profiles: Aspen Plus (markers) and Literatures (solid or dashed lines) [Alvaro et al., 2000], [Kamps et al., 2001], and [Edwards et al., 1978] as in Fig.4.4. 138 Figure 9.5: Dissociation constant profiles derived from literatures [Kamps et al., 2001], and [Edwards et al., 1978] as in Fig.4.4. 138 Figure 9.6: Calculated pH values, temperature range and species 139 Figure 9.7: Aspen Plus flow sheet setup for organic acid compounds calculations (GasPOX 201 VP1, see also Table 9.12) 142 Figure 9.8: Aspen Plus flow sheet setup for nitrogen compounds calculations (GasPOX 201 VP1, see also Table 9.12, organic acids are taken into account in the aqueous streams of the quench system) 145 Figure 9.9: Yield of ammonia in gasifier (calculated real) and hot gas temperature against the 47 test points 146 Figure 9.10: Kreal or reaction quotient for ammonia formation in the gasifier against the 47 test points. 146 Figure 9.11: Temperature approach studies for ammonia and the 47 test points 147 Figure 9.12: Yield of HCN from the gasifier (calculated real and equilibrium) and hot gas temperature and the 47 test points 147 Figure 9.13: Comparison between equilibrium constant and reaction quotient for HCN and 47 test points 148 Figure 9.14: Temperature approach studies for HCN and the 47 test points 148 Figure 9.15: Comparison among equilibrium constants of reactions against temperature, T [°C] 149 Figure 9.16: Comparison among equilibrium constants of reactions against temperature, 1/T [1/K] 150 List of Tables Table 2.1: Outline of Gas-POX mode operating parameter range 8 Table 2.2: Outline of test runs operating mode and parameters of chosen test campaigns 9 Table 2.3: Natural gas feedstock compositions 12 Table 2.4: Product synthesis gas analysis method (hot gas before quench) [Brüggemann, 2010] 12 Table 2.5: Analysis methods for raw synthesis gas [Brüggemann, 2010] 13 Table 2.6: Analysis methods for aqueous phase products [Brüggemann, 2010] 14 Table 2.7: Relative accuracy for the measured value for temperature, pressure and flow of each feed and product stream [Meyer, 2007] and [Brüggemann, 2010] 17 Table 3.1: Description of blocks used in Aspen Plus simulation. 20 Table 3.2: HP POX test plant quench water cycle parameters Gas-POX 201 VP1* 23 Table 3.3: pH regulator parameters 24 Table 4.1: Organic acids distribution in streams for VP1 based on calculation from Aspen Plus. 38 Table 4.2: The distribution of CO2 and its ions in all the streams 40 Table 4.3: The distribution of NH3 and its ions in all the streams 45 Table 4.4: The distribution of HCN and its ions in all the streams 49 Table 4.5: The distribution of H2S and its ions in all the streams 52 Table 7.1: Relative sooting tendency [Tesner et al., 2010] 101 Table 9.1: Natural gas feed analysis method [Brüggemann, 2010] 135 Table 9.2: pH scale with examples of solution [NALCO 2008] 136 Table 9.3: Gas-POX test campaigns and with designated serial numbers 140 Table 9.4: Summary of correlation coefficient (r) from Figures in Chapter 5 144 Table 9.5: Comparison among reactions temperatures and heat of reactions 149 Table 9.6: Content of BTEX compounds in Gas-POX quench water samples 151 Table 9.7: BTEX in quench water effluent samples results 152 Table 9.8: Content of PAH compounds in Gas-POX quench water samples 157 Table 9.9: PAHs in quench water effluent samples results 160 Table 9.10: Soot in quench water effluent samples results 169 Table 9.11: Aspen Plus flow sheet setup stream details (GasPOX 201 VP1, according to Fig.3.2 and Fig.9.1, organic acids not taken into account) 170 Table 9.12: Aspen Plus flow sheet setup for organic acid and nitrogen compounds calculations for GasPOX 201 VP1 (according to Figures 9.7 and 9.8, organic acids are taken into account) 174

Page generated in 0.0535 seconds