Spelling suggestions: "subject:"[een] SOLAR CELL"" "subject:"[enn] SOLAR CELL""
441 |
EXPLORING THE POTENTIAL OF LOW-COST PEROVSKITE CELLS AND IMPROVED MODULE RELIABILITY TO REDUCE LEVELIZED COST OF ELECTRICITYReza Asadpour (9525959) 16 December 2020 (has links)
<div>The manufacturing cost of solar cells along with their efficiency and reliability define the levelized cost of electricity (LCOE). One needs to reduce LCOE to make solar cells cost competitive compared to other sources of electricity. After a sustained decrease since 2001 the manufacturing cost of the dominant photovoltaic technology based on c-Si solar cells has recently reached a plateau. Further reduction in LCOE is only possible by increasing the efficiency and/or reliability of c-Si cells. Among alternate technologies, organic photovoltaics (OPV) has reduced manufacturing cost, but they do not offer any LCOE gain because their lifetime and efficiency are significantly lower than c-Si. Recently, perovskite solar cells have showed promising results in terms of both cost and efficiency, but their reliability/stability is still a concern and the physical origin of the efficiency gain is not fully understood.</div><div><br></div>In this work, we have collaborated with scientists industry and academia to explain the origin of the increased cell efficiency of bulk solution-processed perovskite cells. We also explored the possibility of enhancing the efficiency of the c-Si and perovskite cells by using them in a tandem configuration. To improve the intrinsic reliability, we have investigated 2D-perovskite cells with slightly lower efficiency but longer lifetime. We interpreted the behavior of the 2D-perovskite cells using randomly stacked quantum wells in the absorber region. We studied the reliability issues of c-Si modules and correlated series resistance of the modules directly to the solder bond failure. We also found out that finger thinning of the contacts at cell level manifests as a fake shunt resistance but is distinguishable from real shunt resistance by exploring the reverse bias or efficiency vs. irradiance. Then we proposed a physics-based model to predict the energy yield and lifetime of a module that suffers from solder bond failure using real field data by considering the statistical nature of the failure at module level. This model is part of a more comprehensive model that can predict the lifetime of a module that suffers from more degradation mechanisms such as yellowing, potential induced degradation, corrosion, soiling, delamination, etc. simultaneously. This method is called forward modeling since we start from environmental data and initial information of the module, and then predict the lifetime and time-dependent energy yield of a solar cell technology. As the future work, we will use our experience in forward modeling to deconvolve the reliability issues of a module that is fielded since each mechanism has a different electrical signature. Then by calibrating the forward model, we can predict the remaining lifetime of the fielded module. This work opens new pathways to achieve 2030 Sunshot goals of LCOE below 3c/kWh by predicting the lifetime that the product can be guaranteed, helping financial institutions regarding the risk of their investment, or national laboratories to redefine the qualification and reliability protocols.<br>
|
442 |
Polymer intercalation of chemically bath deposited iron sulphide and nickel sulphide thin filmsMolete, Puleng Alina January 2017 (has links)
M. Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / In chemical bath deposition (CBD) method, deposition of metal chalcogenide semiconducting thin films occurs due to substrate maintained in contact with a dilute chemical bath containing metal and chalcogenide ions. Semiconducting nickel sulphide (NiS) and iron sulphide (FeS) thin films have been prepared on a glass substrate by varying the deposition parameters such as the concentration of solutions, deposition time, temperature and pH. Multi-layered thin films were deposited on glass substrate and the spin-cast conductive polymer, poly (3.4-ethylenedioxythiopene) polystyrene sulfonate (PEDOT: PSS) was intercalated. The characterization of the films was carried out using UV-Vis spectroscopy, scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD).
Single layer nickel sulphide was deposited at room temperature, pH 10 and the deposition period of 3 hours, triethanolamine was used as the complexing agent. Iron sulphide was deposited for 6 hours at 70 °C with the pH of 2.5 using EDTA as a complexing agent. Generally the iron and nickel sulphide were prepared from their respective nickel or iron salt and the thiourea or thiosulfate as a source of sulphide ions in solution. SEM and AFM results show that the FeS film is evenly coated and has uniform grain size with the roughness of ~22.4 nm and thickness of ~23.8 nm. The optical absorption analysis of FeS showed the band gap energy of ~2.9 eV which blue shifted from the bulk. The EDX analysis confirms the compositions of iron and sulphur in FeS films. XRD pattern showed amorphous films for both FeS and NiS thin films due to the amorphous nature of the glass substrate. The optical data of NiS film were analysed and exhibited the band gap energy of ~3.5 eV and ~3.3 eV for successive ionic layer adsorption and reaction (SILAR), which is the modified CBD, both blue shifted from the bulk. The films were observed to have thickness value of ~35.7 nm and ~2.3 nm SILAR with the roughness of ~112.5 nm and ~35.4 nm SILAR from AFM results. SEM confirmed the uniformly distributed film presented by AFM analysis. The chemical composition of Ni and S were confirmed by EDX spectra. The PEDOT: PSS was intercalated between the FeS as the first layer and NiS as the top layer which gave the thickness of ~18.7 nm and roughness of ~115.2 nm from AFM analysis. PEDOT: PSS acted as a passive layer that protects and stabilize the FeS layer and NiS as the third active layer which enhanced the optical absorption of the film when using SILAR method for solar application.
|
443 |
Herstellung, Charakterisierung und Modellierung dünner aluminium(III)-oxidbasierter Passivierungsschichten für Anwendungen in der PhotovoltaikBenner, Frank 25 October 2016 (has links) (PDF)
Hocheffiziente Solarzellen beruhen auf der exzellenten Oberflächenpassivierung, die minimale Rekombinationsverluste gewährleistet. Innerhalb des letzten Jahrzehnts wurde Al2O3 in der Photovoltaikindustrie zum bevorzugten Material für p-leitendes Si. Unterschiedliche Abscheidetechnologien erreichten Passivierungen mit effektiven Minoritätsladungsträgerlebensdauern nahe der AUGER–Grenze. Die ausgezeichnete Passivierungswirkung von Al2O3wird zwei Effekten zugeschrieben: Einerseits werden Si−SiO2-grenzflächennahe Rekombinationszentren passiviert, wenn Wasserstoff, beispielsweise aus der Al2O3-Schicht, offene Bindungen absättigt. Bedingt durch die hohe Konzentration intrinsischer negativer Ladungen an der SiO2-Grenzfläche weist Al2O3 andererseits einen charakteristischen Feldeffekt auf. Das resultierende elektrische Feld hält Elektronen von Oberflächenrekombinationszentren fern. Negative Ladungen im Al2O3 werden generell als fest bezeichnet. Allerdings hat Al2O3 zusätzlich eine hohe Dichte an Haftstellen, die von Elektronen besetzt werden können. Die Dichte negativer Ladungen im Al2O3-Passivierungsschichten hängt vom elektrischen Feld und der Bestrahlungsintensität ab.
Ziel dieser Arbeit ist die systematische Untersuchung dielektrischer Passivierungsschichtstapel für die Anwendung auf Si-Solarzellen. Der Qualität und Dicke der SiO2-Grenzschicht kommt in diesem Kontext eine besondere Rolle zu, da sie Ladungsträgertunneln ermöglicht. Der Elektronentransport ist eine Funktion der Oxiddicke und das Optimum zwischen Ladungseinfang und -haltung liegt bei etwa 2 nm SiO2. Vier relevante Al2O3-Abscheidetechnologien werden untersucht: Atomlagenabscheidung, Kathodenzerstäubung, Sprühpyrolyse und Rotationsbeschichtung, wobei die erstgenannte dominiert. Es werden Nanolaminate verglichen, die aus Al2O3 und TiO2, HfO2 oder SiO2 mit subnanometerdicken Zwischenschichten bestehen. Während letztgenannte die Oberflächenrekombination nicht vermindern, beeinflussen TiO2- und HfO2-Nanolaminate die Passivierungswirkung. Ein dynamisches Wachstumsmodell, das initiale und stationäre Wachstumsraten der beteiligten Metalloxide berücksichtigt, beschreibt die physikalischen Parameter. Schichtsysteme mit 0,2 % TiO2 oder 7 % HfO2 sind konventionellen Al2O3-Schichten überlegen. In beiden Fällen überwiegt die veränderte Feldeffekt- der chemischen Passivierung, die mit einer Grenzflächenzustandsdichte von maximal 5·1010 eV−1·cm−2 unverändert auf hohem Niveau verbleibt. Die Ladungsdichte beider Schichtsysteme wird entweder über die Änderung ihrer Polarität der festen Ladungen oder der Fähigkeit zum Ladungseinfang bestimmt. Das Tunneln von Elektronen wird durch ein mathematisches Modell erklärt, dass eine bewegliche Ladungsfront innerhalb der Oxidschicht beschreibt. / High-efficiency solar cells rely on excellent passivation of the surface to ensure minimal recombination losses. In the last decade, Al2O3 became the material of choice for p-type Si in the photovoltaic industry. A remarkable surface passivation with effective minority carrier lifetimes close to the AUGER–limit was demonstrated with different deposition techniques. The excellent passivation effect of Al2O3 is attributed to two effects: Firstly, recombination centers at the Si−SiO2 interface get chemically passivated when hydrogen, for instance from the Al2O3 layer, saturates dangling bonds. Secondly, Al2O3 presents an outstanding level of field effect passivation due to its high concentration of intrinsic negative charges close to the SiO2 interface. The generated electrical field effectively repels electrons from surface recombination centers. Negative charges in Al2O3 are generally termed fixed charges. However, Al2O3 incorporates a high density of trap sites, too, that can be occupied by electrons. It was shown that the negative charge density in Al2O3 passivation layers depends on the electrical field and on the illumination intensity.
The goal of this work is to systematically investigate dielectric passivation layer stacks for application on Si solar cells. The SiO2 interface quality and thickness plays a major role in this context, enabling or inhibiting carrier tunneling. Since the electron transport is a function of the oxide thickness, the balance between charge trapping and retention is achieved with approximately 2 nm of SiO2. Additionally, four relevant Al2O3 deposition techniques are compared: atomic layer deposition, sputtering, spray pyrolysis and spin–on coating, whereas the former is predominant. Using its flexibility, laminates comprising of Al2O3 and TiO2, HfO2 or SiO2 with subnanometer layers are compared. Although the latter do not show decreased surface recombination, nanolaminates with TiO2 and HfO2 contribute to the passivation. Their physical properties are described with a dynamic growth model that considers initial and steady–state growth rates for the involved metal oxides. Thin films with 0.2 % TiO2 or 7 % HfO2 are superior to conventional Al2O3 layers. In both cases, the modification of the field effect prevails the chemical effect, that is, however, virtually unchanged on a very high level with a density of interface traps of 5·1010 eV−1·cm−2 and below. The density of charges in both systems is changed via modifying either the polarity of intrinsic fixed charges or the ability of trapping charges within the layers. The observations of electron tunneling are explained by means of a mathematical model, describing a charging front, which moves through the dielectric layer.
|
444 |
Polyaniline-Oxyde de Titane : un composite pour la récolte et le stockage d’énergie / Polyaniline-Titanium Oxide : a Composite for Energy Harvesting and StorageIbrahim, Michael 05 December 2011 (has links)
Cette thèse est divisée en trois parties. La première traite la synthèse de la polyaniline (PANI), un polymère conducteur de trou, utilisé dans plusieurs applications. En variant les quantités du monomère et de l’oxydant tout en fixant leur rapport molaire à 1:1,25, et en ajoutant de l’oxyde de magnésium, des aiguilles et des nouvelles structures semblables aux échinides sont formées. Le mécanisme de formation des structures unidimensionnelles est expliqué à l’aide de la théorie des multicouches. La deuxième partie est consacrée à la fabrication des monocouches photovoltaïques à faible coût en se basant sur le principe de fonctionnement des cellules à pigment photosensible (en anglais DSSC, Dye-Sensitized Solar Cell). En 1991, Grätzel a réintroduit l’effet photo-électrochimique en développant la première DSSC, une des cellules solaire troisième génération, formée d’un film de TiO2 (photo-anode) pigmenté à l’aide d’un colorant et d’un électrolyte qui sert à régénérer le pigment oxydé. Malgré leur faible coût, les DSSCs font face à de nombreux problèmes tels que le coût élevé du pigment, la fuite de l’électrolyte, la sublimation du couple I-/I3- à travers I2, etc. Afin de résoudre ces problèmes, des monocouches photovoltaïques ont été développées. Des composites formés de PANI et TiO2 sont la base de ces dispositifs nouvelle génération. La polymérisation in-situ de l’aniline en présence des nanoparticules de TiO2 conduit à une forte interaction entre la PANI et les particules de TiO2 où une structure « core (TiO2)/shell (PANI) » existe dans le composite. Dans le dispositif photovoltaïque basé sur le composite PANI-TiO2, PANI est considérée comme pigment à la photo-anode et comme poly-électrolyte plus profondément dans le composite. En plus, des textiles fabriqués utilisant ces composites photo-génèrent une tension de 0,6 V et un courant de 1 A/m2 lorsque l’éthanol est injecté dans le dispositif. Une nouvelle architecture a été développée qui sert à améliorer la performance de la cellule et en même temps stocker l’énergie pour des utilisations ultérieures. La dernière partie est consacrée à la fabrication des DSSCs basées sur les pigments naturels. L’anthocyane, un pigment naturel halochromique responsable de la couleur rouge dans les plantes, a été extrait du chou rouge et utilisé pour pigmenter les films de TiO2. Cette propriété se traduit par la fabrication des DSSCs de différentes couleurs et comportement photovoltaïque. Avec un pH égal à 0, une Vco et une Jcc de 520 mV et 185 μA/cm2 sont respectivement obtenues prouvant la possibilité d’utiliser le chou rouge comme source de pigment à très faible coût des DSSCs. / This thesis is divided in three parts. The first one deals with the synthesis of polyaniline (PANI), a hole conducting polymer, used in many applications. By varying the quantities of the monomer and the oxidant while fixing the molar ratio at 1:1.25, and by adding magnesium oxide, novel echinoid-like and PANI needles were formed. The formation mechanism of the 1D structures is explained using the multi-layer theory. The second section is devoted for the fabrication of low cost single-layered photovoltaic devices based on the working principle of dye-sensitized solar cells (DSSCs). In 1991, Grätzel reintroduced the photo-electrochemical effect by developing the first DSSC, one of the third generation solar cells, formed of a TiO2 film (photoanode) sensitized using a dye and an electrolyte regenerating the excited dye. Despite their low cost, DSSCs face many problems such as the high cost of the dye, leaking of the electrolyte, sublimation of the I-/I3- through I2, etc. To solve these problems a single layer photovoltaic device has been developed. Composites formed of PANI, and TiO2 are the basis of the new generation photovoltaics. The in-situ polymerization of aniline inside a titania solution results in a strong interaction between PANI and TiO2 particles where a core (TiO2)/shell (PANI) structure exists inside the composite. In the single-layered photovoltaic device based on PANI-TiO2 composite, PANI is considered as sensitizer at the photoanode and as polyelectrolyte deeper inside the composite layer. In addition, textiles fabricated using such composites generated a voltage of 0.6 V and a current of 1 A/m2 when ethanol is injected in the solar cell. A new architecture has been developed to enhance the performance of the device and at the same time to store the converted energy for later use. The final part is devoted to the fabrication of DSSCs based on natural dyes. Anthocyanin; a halochromic natural dye responsible for the red color in plants, extracted from red cabbage was used to sensitize TiO2 films. This property results in the fabrication of DSSCs with different colors and photovoltaic behavior. At a pH equal to 0, a Voc and Jsc of 520 mV and 185 μA/cm2 were respectively recorded proving the possibility of using red cabbages as a very low cost dye source for DSSCs.
|
445 |
Intégration de nanostructures plasmoniques au sein de dispositifs photovoltaïques organiques : étude numérique et expérimentale.Vedraine, Sylvain 26 October 2012 (has links)
Les cellules solaires en couches minces permettent de produire de l'énergie à bas-coût et sans émission de gaz à effet de serre. Dans le but de réaliser des dispositifs toujours plus performants, nous étudions l'impact de l'intégration de nanostructures métalliques (NSs) au sein de cellules solaires organiques (CSO). Ces NSs peuvent alors générer des effets diffusifs et des résonances issues de plasmons de surface. A l'aide d'un modèle numérique FDTD, nous démontrons que l'ingénierie plasmonique peut servir à augmenter l'absorption dans le matériau photoactif tout en limitant l'énergie perdue sous forme de chaleur dans les NSs. L'influence de paramètres opto-géométriques de structures associant matériaux organiques et effets plasmoniques est étudiée (diamètre, position des particules dans la couche et période du réseau de particules sphériques). Expérimentalement, des NSs d'argent ont été réalisées par évaporation sous vide puis intégrées dans des couches organiques. Nous avons mesuré une exaltation de l'absorption optique dans la gamme spectrale utile à la photo-conversion. Trois architectures différentes de CSO plasmonique ont été fabriquées et caractérisées par MEB, TEM et ToF-SIMS, puis modélisées, permettant d'identifier des verrous technologiques et de proposer des pistes d'amélioration. Nous avons aussi intégré des NSs au sein d'un empilement transparent et conducteur de type oxyde/métal/oxyde, dans le but de remplacer l'électrode classique en oxyde d'indium et d'étain d'une CSO. Le rôle de chaque couche de l'empilement sur le comportement optique de l'électrode est discuté. Les épaisseurs des couches d'une électrode de type ZnO/Ag/ZnO ont été optimisées. / Thin-film solar cells are able to produce low-cost energy without greenhouse gas emissions. In order to increase devices performance, we investigate the impact of metallic nanostructures (NSs) integrated in organic solar cells (OSC). These NSs can generate scattering effects and surface plasmon resonances. Using FDTD modeling, we demonstrate that plasmon engineering can be used to increase light absorption in a photoactive material while minimizing the energy lost as heat in the NSs. The influence of opto-geometrical parameters of plasmonic structures in organic material is investigated (diameter, position of particles in the layer and period of spherical particles array). Experimentally, silver NSs are deposited by evaporation and incorporated into an organic layer. We measured an optical absorption enhancement in the spectral range useful for photo-conversion. Three different architectures of plasmonic OSC are fabricated and characterized by SEM, TEM and ToF-SIMS, then modeled, allowing us to identify some technological obstacles and to propose possible improvements. We also integrated NSs inside a transparent and conductive multilayer stack composed of oxide/metal/oxide, in the aim of replacing the traditional indium tin oxide electrode of a OSC. The role of each layer of the stack on the electrode optical behavior is discussed. Layers thicknesses of a ZnO/Ag/ZnO electrode were optimized.
|
446 |
Non-stoichiometric Cu–In–S@ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cellsRaevskaya, Alexandra, Rosovik, Oksana, Kozytskiy, Andriy, Stroyuk, Oleksandr, Dzhagan, Volodymyr, Zahn, Dietrich R. T. 06 March 2017 (has links) (PDF)
A direct “green” aqueous synthesis of mercapto acetate-stabilized copper indium sulfide (CIS) nanoparticles (NPs) and core/shell CIS@ZnS NPs of a varied composition under ambient conditions and a temperature lower than 100 °C is reported. The CIS@ZnS NPs can be anchored to the surface of nanocrystalline FTO/TiO2 films without additional purification or ligand exchange steps yielding visible-light-sensitive heterostructures ready for using as photoanodes in the liquid-junction solar cells. The highest photoelectrochemical activity in a three-electrode cell was demonstrated by a TiO2/CIS@ZnS heterostructure with atomic Cu : In : S and Zn : Cu ratios of 1 : 5 : 10 and 1 : 1. The optimized TiO2/CIS@ZnS photoanodes were tested in two-electrode solar cells with aqueous polysulfide electrolyte and TiO2/Cu2S heterostructures produced by a photo-assisted method as counter-electrodes. Under illumination by a 30 mW cm−2 xenon lamp, the optimized cells showed the average light conversion efficiency of 8.15%, the average open-circuit voltage of −0.6 V and the average fill factor of 0.42. The cells revealed excellent stability and reproducibility of photoelectrochemical parameters with around one percent variation of the light conversion efficiency around an average value for six identical solar cells. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
447 |
Nanostructures plasmoniques de type coeur-coquille métal-diélectrique pour cellules photovoltaïques organiques / Core-shell metal-dielectric plasmonic nanostructures for organic photovoltaic cellsN'Konou, Kokou Kekeli David 18 April 2018 (has links)
L'une des approches pour améliorer les performances des cellules solaires organiques, sans augmenter l'épaisseur de la couche photoactive, consiste à incorporer des nanoparticules (NPs) métalliques dans cette couche ou à proximité pour bénéficier de la diffusion de la lumière incidente ou de résonances de plasmons de surface localisés. Cependant, ces NPs métalliques peuvent engendrer des recombinaisons des porteurs de charges électriques, créer des court-circuits ou favoriser l'extinction des excitons au contact du métal. Une solution est alors de protéger ces NPs métalliques par un revêtement diélectrique (coquille ou couche fine). L'objectif de cette thèse est d'étudier l'influence de nanostructures de type cœur–coquille (métal-diélectrique) sur les performances optiques et photoélectriques de cellules solaires organiques, à l'aide de modélisations numériques et de réalisations expérimentales. Dans un premier temps, une étude numérique prédictive, basée sur une modélisation par méthode FDTD, nous a permis d'analyser l'influence de paramètres architecturaux et opto-géométriques sur les propriétés optiques de cellules solaires plasmoniques. Par la suite, nous avons synthétisé et caractérisé des nanosphères (NSs) avec un cœur métallique en argent ou en or recouverts d'une fine coquille de silice. L'incorporation de NSs Ag@SiO2 synthétisées (voie humide) ou de NPs Ag/SiO2 déposées par évaporation (voie sèche) dans des cellules solaires à architecture inverse ont permis d'augmenter le photocourant de 12% ou de 18% respectivement par rapport à la cellule de référence (sans NSs). / One of the approaches to improve the organic solar cells performance without increasing the thickness of the photoactive layer is to incorporate metallic nanoparticles (NPs) in this layer or in its proximity to have benefited from light scattering or localized surface plasmon resonance effects. However, these NPs can generate charge carriers recombination, short circuits or exciton quenching due to the contact with the metal. A solution is then to coat these MNPs with a dielectric (thin shell or layer) to protect them. The objective of this thesis is to study the influence of metaldielectric coreshell nanostructures on the optical and photoelectric performances of organic solar cells, by using numerical modeling and experiments. First, a predictive numerical analysis by FDTD modeling allowed us to optimize the influence of architectural and optogeometric parameters on optical properties of plasmonic organic solar cells. Silver or gold core nanospheres (NSs) coated with a thin silica shell were synthesized and characterized. Finally, the integration of chemically synthesized Ag@SiO 2 NSs (wet process) or Ag/SiO 2 NPs deposited by evaporation (dry process) in inverted organic solar cells has increased the photocurrent by 12% or 18%, respectively, compared to the reference cell(without NSs).
|
448 |
Influência das interfaces TiO2/Corante, TiO2/eletrólito e rutilo/anatase sobre a eficiência de fotoconversão das células de gratzel / Role of TiO2/dye, TiO2/electrolyte and anatase/rutile interfaces on the photoconversion efficiency of gratzel cellsGuimarães, Robson Raphael 30 March 2016 (has links)
Nesta tese visamos o entendimento aprofundado dos processos e mecanismos que influenciam a performance de células solares sensibilizadas por corante (DSCs), particularmente a influência das interfaces TiO2/corante, TiO2/eletrólito e rutilo/anatase, assim contribuindo para obter dispositivos eficientes. Nesse sentido, foi investigada a influência das propriedades eletrônicas do novo corante [Ru(dcbpyH2)2(tmtH2)]Cl associadas às transições de transferência de carga MLCT e LMCT sobre a eficiência de fotoinjeção e fotoconversão de energia solar nas DSCs. Por meio da aplicação das espécies isoladas (Bu4N)3[Ru(dcbpy)2(tmtH2)], (Bu4N)4[Ru(dcbpy)2(tmtH)] e (Bu4N)5[Ru(dcbpy)2(tmt)] em DSCs, foram demonstradas as contribuições de duas bandas MLCTs e uma LMCT para a fotoconversão de energia, que foram reveladas por deconvolução dos espectros de fotoação. Além disso, aquelas espécies apresentaram valores de eficiência global corrigidos pela quantidade de corante adsorvido no TiO2 maiores do que o corante N719, indicando que os novos corantes de rutênio têm potencial de aplicação como fotossensibilizadores de células solares. Também foi investigado o mecanismo do efeito sinérgico observado em misturas de rutilo e de anatase por meio do estudo das contribuições dos processos de recombinação e de difusão de elétrons nos filmes mesoporosos mistos de TiO2 sobre a performance das DSCs, em função da distribuição daqueles nanocristais em diferentes proporções, confirmadas por microscopia Raman confocal. A impedância das interfaces/junções presentes nas DSCs foi caracterizada por espectroscopia de impedância eletroquímica (EIS) para determinação de parâmetros fundamentais como capacitância química, resistência de difusão, resistências de recombinação, coeficiente de difusão, tempo de vida e comprimento de difusão dos elétrons dos filmes mistos de TiO2. As características I x V das células solares, ou seja, os parâmetros de eficiência global (η), densidade de corrente de curto-circuito (Jsc), voltagem de circuito-aberto (Voc) e fator de preenchimento (FF) foram relacionados com os parâmetros de impedância e o grau de homogeneidade das misturas de nanopartículas de rutilo e de anatase. Em particular, foi demonstrado o papel fundamental das propriedades de difusão de elétrons nos filmes mistos de TiO2 para o aumento da performance das DSCs. Os estudos de simulação dos espectros de impedância de filmes mistos não homogêneos de TiO2 comercial Aldrich mostraram que o coeficiente de difusão de elétrons desses materiais apresenta um máximo na região de 15% de rutilo e 85% anatase, coincidindo com o máximo de eficiência das DSCs de mesma composição. De fato, diferenças sutis nas contribuições da capacitância química e resistência de difusão foram responsáveis pelo aumento do coeficiente de difusão das DSCs baseadas em filmes mistos não homogêneos de TiO2. Por outro lado, quando foi aumentada a área de contato entre as nanopartículas de anatase e de rutilo, foi observado um aumento da capacitância química e tempo de vida dos elétrons nos filmes mistos homogêneos de TiO2. Estes foram atribuídos ao aumento da eficiência de transferência de elétrons entre os nanocristais de rutilo e de anatase, que diminuiram a recombinação de elétrons e promoveram a estabilização de cargas na banda de condução do TiO2. / The understanding of the detailed mechanism and processes that influence the performance of dye-sensitized solar cells (DSCs), particularly the influence of TiO2/dye, TiO2/electrolyte and rutile/anatase interfaces, thus contributing to increase the efficiency of that devices, is the main goal of this thesis. Accordingly, we investigated the influence of the electronic properties of the new dye [Ru(dcbpyH2)2(tmtH2)]Cl associated the MLCT and LMCT charge transfer transitions on the efficiency of photoinjection and solar energy photoconversion in DSCs. The species (Bu4N)3[Ru(dcbpy)2(tmtH2)], (Bu4N)4[Ru(dcbpy)2(tmtH)] and (Bu4N)5[Ru(dcbpy)2(tmt)] were isolated and used in DSCs, revealing the contributions of two MLCTs and a LMCT band for energy conversion by deconvolution of the photoaction spectra. Interestingly, these new ruthenium dyes presented overall efficiency normalized by the amount of dye adsorbed on TiO2 larger than for the N719 dye, indicating a potential for application as photosensitizers. The mechanism of the synergistic effect observed in blends of rutile and anatase was investigated studying the contributions of the recombination and electron diffusion processes in mesoporous mixed TiO2 films on the performance of DSCs, as a function of the distribution of those nanocrystals in different proportions, as confirmed by Raman microscopy (Confocal). The impedance of interfaces/junctions present in the DSCs was carefully characterized by electrochemical impedance spectroscopy (EIS) to determine key parameters such as chemical capacitance, diffusion resistance, recombination resistance, diffusion coefficient, lifetime and the electron diffusion length in mixed TiO2 films. The I x V characteristics, i.e. the overall efficiency parameter (η), density of short circuit current (Jsc), open-circuit voltage (Voc) and fill factor (FF) of solar cells were correlated with the impedance parameters and the degree of homogeneity of mixtures of rutile and anatase nanoparticles. In fact, the essential role of electron diffusion properties in the mixed TiO2 films on the performance of DSCs was demonstrated. Impedance studies of low homogeneity mixed films prepared with commercial TiO2 (Aldrich) by fitting the experimental spectra with a suitable equivalent circuit revealed that the electron diffusion coefficient of these materials exhibits a maximum at 15% rutile and 85% anatase, as expected based on the synergic effect in DSCs. In fact, subtle differences in the contributions of chemical capacitance and diffusion resistance were responsible for the increase of the electron diffusion coefficient in low homogeneity mixed TiO2 films. On the other hand, an increase in the anatase and rutile nanoparticles contact area reflected positively in the chemical capacitance and electron lifetime, as expected for an enhanced electron transfer efficiency between the rutile and anatase nanocrystals, thus decreasing the electron recombination and increasing the stability of the photoinjected charge on the TiO2 conduction band.
|
449 |
Evaluation of a Flat-Plate Photovoltaic Thermal (PVT) Collector prototypeLinde, Daniel January 2016 (has links)
This Master thesis, in collaboration with Morgonsol Väst AB, was completed as a part of the Solar Energy engineering program at Dalarna University. It analyses the electrical and thermal performance of a prototype PVT collector developed by Morgonsol Väst AB. By following the standards EN 12975 and EN ISO 9806 as guides, the thermal tests of the collector were completed at the facility in Borlänge. The electrical performance of the PVT collector was evaluated by comparing it to a reference PV panel fitted next to it. The result from the tests shows an improved electrical performance of the PVT collector caused by the cooling and a thermal performance described by the linear efficiency curve ηth=0.53-21.6(Tm-Ta/G). The experimental work in this thesis is an initial study of the prototype PVT collector that will supply Morgonsol Väst with important data for future development and research of the product.
|
450 |
Implementa??o de emissores p+com diferentes dopantes para c?lulas solares n+np+ finasMachado, Taila Cristiane Policarpi Alves 28 February 2018 (has links)
Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2018-04-24T14:42:28Z
No. of bitstreams: 1
Dissertacao Taila Final.pdf: 2384346 bytes, checksum: 8e3d52f21033cdc04d8f1c3449453ceb (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-05-08T19:50:29Z (GMT) No. of bitstreams: 1
Dissertacao Taila Final.pdf: 2384346 bytes, checksum: 8e3d52f21033cdc04d8f1c3449453ceb (MD5) / Made available in DSpace on 2018-05-08T20:07:12Z (GMT). No. of bitstreams: 1
Dissertacao Taila Final.pdf: 2384346 bytes, checksum: 8e3d52f21033cdc04d8f1c3449453ceb (MD5)
Previous issue date: 2018-02-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / The solar cells manufactured in n-type silicon, doped with phosphorus, do not present
light induced degradation and they have the potential of achieving high efficiency due
to the larger minority charge carrier lifetime. Besides, they are less susceptible to
contamination by metal impurities. The aim of this work was to analyze different
dopants to obtain the p+ region in n+np+ solar cells manufactured in Czochralski silicon
wafers, solar grade, n-type, 120 ?m thick. The acceptor impurities used were B, Al,
Ga, GaB and AlGa, deposited by spin-on and diffused at high temperature. The
temperature, time and gases used in the process of diffusion were ranged. The sheet
resistances (R?) of the diffused regions and the impurity concentration profiles were
measured. We concluded that the B and GaB can be diffused at 970? C for 20 min to
obtain p+ emitters with values of R? suitable to the production of solar cells with screenprinted
metal grid. The Ga and AlGa require high temperatures (greater than 1100? C)
and long times to produce doping profiles compatible with the production of solar cells.
The Al did not produce low sheet resistance regions, even at temperatures of 1100?
C. The use of argon gas instead of the nitrogen did not lead to the decreasing of the
sheet resistance. The GaB is the only one doping material analyzed that can be a
viable replacement for the B in the production of p+ emitter in n-type solar cells.The
GaB was the only one doping material analyzed that allowed the manufacture of solar
cells with the maximum efficiency of 13.5%, with the diffusion performed at 1020? C
for 20 min. The FF was the main parameter that reduced the efficiency of solar cells
doped with GaB when compared to the boron doped cells due to a lower shunt
resistance. The n+np+ solar cell, 120 ?m thick, that achieved the highest efficiency was
doped with boron and reached 14.9%, a value higher than the previously obtained in
studies in the NT-Solar with thin silicon wafers. / As c?lulas solares fabricadas em l?minas de sil?cio tipo n, dopadas com f?sforo,
n?o apresentam degrada??o por ilumina??o e t?m potencial de obten??o de maior
efici?ncia devido ao maior valor do tempo de vida dos portadores de carga
minorit?rios. Adicionalmente, s?o menos suscept?veis ? contamina??o por impurezas
met?licas. O objetivo deste trabalho foi realizar uma an?lise de diferentes dopantes
para obten??o da regi?o p+ em c?lulas solares n+np+fabricadas em l?minas de sil?cio
Czochralski, grau solar, tipo n, com espessura de 120 ?m. Os elementos aceitadores
utilizados foram o B, Al, Ga, GaB e AlGa, depositados por spin-on e difundidos em
alta temperatura. Foram variadas as temperaturas, os tempos e os gases utilizados
no processo de difus?o. Foi medida a resist?ncia de folha (R?) das regi?es difundidas
e o perfil de concentra??o de impurezas em fun??o da profundidade. Foram
desenvolvidas c?lulas solares com B, Ga, GaB e Al. Verificou-se que o B e GaB podem
ser difundidos em temperatura de 970 ?C e por 20 min para obten??o de emissores
com valores de R? compat?veis com a produ??o de c?lulas solares metalizadas por
serigrafia. O Ga e AlGa necessitam de altas temperaturas (maiores que 1100 ?C) e
tempos elevados para produzir perfis de dopantes compat?veis. O Al n?o produziu
regi?es p+ de baixa R?, mesmo com a difus?o a 1100 ?C. O uso de Ar para substituir
o N2 n?o acarretou em diminui??o da resist?ncia de folha. O GaB foi o ?nico dopante
analisado que permitiu a fabrica??o de c?lulas solares com efici?ncia m?xima de 13,5
%, com difus?o a 1020 ?C por 20 min. O fator de forma foi o principal par?metro que
reduziu a efici?ncia dos dispositivos com GaB quando comparado ao valor obtido com
B devido a menor resist?ncia em paralelo. A c?lula solar n+np+ de 120 ?m de maior
efici?ncia produzida neste trabalho foi dopada com boro e atingiu a efici?ncia de 14,9
%, sendo maior que as anteriormente obtidas em trabalhos realizados no NT-Solar
com l?minas finas.
|
Page generated in 0.0557 seconds