• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 339
  • 162
  • 62
  • 43
  • 15
  • 15
  • 14
  • 8
  • 8
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 811
  • 88
  • 87
  • 83
  • 80
  • 79
  • 72
  • 69
  • 63
  • 56
  • 56
  • 55
  • 44
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
631

Gemini cationic surfactant-based delivery systems for non-invasive cutaneous gene therapy

Badea, Ildiko 01 June 2006
Gene transfer represents an important advance in the treatment of both genetic and acquired diseases. Topical gene therapy involves administration of the genetic material onto the surface of skin and mucosal membranes. Cationic gemini surfactants (m-s-m, where m represents the carbon atoms in the alkyl tail and s represents the carbon atoms in the spacer) are a novel category of delivery agents with especially high potential for polynucleotides. This is due to their structural versatility, ability to bind and condense DNA, and relatively low toxicity. <p>The objectives were to design, construct and characterize a cationic, non-viral gemini surfactant-based delivery system for an IFN-ã coding plasmid suitable for cutaneous gene therapy and to evaluate this novel therapeutic approach in a Tsk (tight-skin scleroderma) mouse model to determine its clinical feasibility. <p>The delivery systems were characterized by microscopy, dynamic light scattering (DLS), circular dichroism (CD) and small angle X-ray scattering (SAXS). <i>In vitro</i> gene expression was evaluated in PAM 212 keratinocyte culture. The extent of topical delivery of the plasmid using nanoparticle and nanoemulsion formulations was evaluated by measuring IFN-ã levels in CD1, IFN-ã-deficient and Tsk mice. The effect of transgene expression on collagen synthesis was evaluated in Tsk animals by real-time PCR.<p>The <i>in vitro</i> plasmidgeminilipid (PGL) system showed heterogeneous particle size (100-200 nm small particles and 300-600 nm aggregates). Electrostatic interactions between the DNA and PGL systems shifted the negative æ-potential of the DNA (-47 mV) to positive values (30-50 mV). At the same time, condensation of the DNA, and formation of Ø DNA was indicated by the increase of the overall negative signal in the CD spectra, due to the flattening of the 290 nm peak and shift of the 260 nm peak into the negative region in a structure-dependent manner. Lipid organization of the DNADOPE system, in the absence of gemini surfactants, shows hexagonal structure, while addition of gemini surfactant at +/- charge ratio of 10 caused lamellar phase organization. For short spacers (n=3-6), additional Pn3m cubic phase also appear to be present. <p><i> In vitro</i> transfection efficiency in the 12-n-12 series was found to be dependent on the length of the spacer between the two positively charged head groups, with the n=3 spacer showing the highest activity. The PGL systems with 12-3-12 and 12-4-12 led to significantly higher transgene expression compared to the other surfactants of the series. The transfection efficiency significantly correlated with the surface area occupied by one molecule (a). The effect of the tail length influenced the transfection efficiency, with longer tails being associated with higher protein expression. The highest <i>in vitro</i> transfection efficiency was recorded with the 18:1-3-18:1 surfactant (1.4±0.3 ng/5x10E4 cells). <p><i>In vivo</i>, high levels of IFN-ã expression were detected in the skin of animals treated with both nanoparticle (359±239 pg/cm2) and nanoemulsion (607±411 pg/cm2) formulations compared to topical naked DNA (136±125 pg/cm2). IFN-ã levels in the skin of animals injected with 5 ìg DNA were 256±130 pg/cm2. IFN-ã levels in the lymph nodes were higher for the nanoparticle formulation (433±456 pg/animal) compared to nanoemulsion (131±136 pg/animal) suggesting different delivery pathway of the two formulations.<p>IFN-ã expression was at high levels in the skin of Tsk mice after 4-day and 20-day treatments (472±171 and 345±276 pg/cm2). Both 4-day and 20-day treatments reduced the procollagen type I á1 mRNA levels for the topical treatment (64 and 70% reduction) and intradermal injection (58 and 72% reduction). Intercellular adhesion molecule-1 (ICAM-1) was upregulated by 50% in both topically treated and injected animals after 20-day treatment. <p>Here, it has been demonstrated that cationic gemini surfactant-based delivery systems are able to transfect epidermal cells <i>in vivo</i>, and the transgene IFN-ã expression is sufficient to cause significant reduction of collagen in an animal model of scleroderma. It has been shown for the first time that topical gene therapy is a feasible approach for the modulation of excessive collagen synthesis in scleroderma-affected skin.
632

Effect of Innate Immune Collectin Surfactant Protein D and Adaptive Immune Protein IgM on Enhancing Clearance of Late Apoptotic Cells by Alveolar Macrophages

Litvack, Michael L. 31 August 2011 (has links)
The innate immune protein surfactant protein (SP-) D is a carbohydrate binding protein that was originally isolated from mucosal lung tissues. Recently, studies show that SP-D binds to antibodies, including immunoglobulin M (IgM), which interacts with late apoptotic cells. Here we focus on the interaction between SP-D and IgM as they pertain to late apoptotic cell clearance. We hypothesized that the three-way interaction between IgM, SP-D and late apoptotic cells is functionally applicable to clearing late apoptotic cells from the lungs, thereby reducing lung inflammation. We show that SP-D binds to IgM and that IgM binds to the late apoptotic subclass of dying cells. We demonstrate that IgM and SP-D can both bind to late apoptotic cells in mutually distinct regions while also displaying some regional overlap. We show evidence that during LPS-induced lung inflammation both IgM and SP-D levels are elevated and this corresponds to an augmentation of apoptotic cell clearance. We illustrate that the protein interaction of IgM and SP-D is functionally relevant to apoptotic cell clearance in the lungs by showing that late apoptotic cells coated in IgM and/or SP-D are cleared more efficiently than control cells, by alveolar macrophages in vivo. Our ex vivo studies further show that these cells internalize apoptotic cells by engulfing very small particles released from the dying cells. We then showed that IgM preferentially directs the engulfment of small particles (~1 μm) by macrophages, in an apparent size-specific antibody-dependent particle clearance function. Our data reveals a novel relationship amongst IgM, SP-D, apoptotic cells, and alveolar macrophages that contributes to our understanding of apoptotic cell clearance, which may be used in the future to generate strategies addressing apoptotic cell accumulation or clearance deficiency in disease.
633

Effect of Innate Immune Collectin Surfactant Protein D and Adaptive Immune Protein IgM on Enhancing Clearance of Late Apoptotic Cells by Alveolar Macrophages

Litvack, Michael L. 31 August 2011 (has links)
The innate immune protein surfactant protein (SP-) D is a carbohydrate binding protein that was originally isolated from mucosal lung tissues. Recently, studies show that SP-D binds to antibodies, including immunoglobulin M (IgM), which interacts with late apoptotic cells. Here we focus on the interaction between SP-D and IgM as they pertain to late apoptotic cell clearance. We hypothesized that the three-way interaction between IgM, SP-D and late apoptotic cells is functionally applicable to clearing late apoptotic cells from the lungs, thereby reducing lung inflammation. We show that SP-D binds to IgM and that IgM binds to the late apoptotic subclass of dying cells. We demonstrate that IgM and SP-D can both bind to late apoptotic cells in mutually distinct regions while also displaying some regional overlap. We show evidence that during LPS-induced lung inflammation both IgM and SP-D levels are elevated and this corresponds to an augmentation of apoptotic cell clearance. We illustrate that the protein interaction of IgM and SP-D is functionally relevant to apoptotic cell clearance in the lungs by showing that late apoptotic cells coated in IgM and/or SP-D are cleared more efficiently than control cells, by alveolar macrophages in vivo. Our ex vivo studies further show that these cells internalize apoptotic cells by engulfing very small particles released from the dying cells. We then showed that IgM preferentially directs the engulfment of small particles (~1 μm) by macrophages, in an apparent size-specific antibody-dependent particle clearance function. Our data reveals a novel relationship amongst IgM, SP-D, apoptotic cells, and alveolar macrophages that contributes to our understanding of apoptotic cell clearance, which may be used in the future to generate strategies addressing apoptotic cell accumulation or clearance deficiency in disease.
634

Gemini cationic surfactant-based delivery systems for non-invasive cutaneous gene therapy

Badea, Ildiko 01 June 2006 (has links)
Gene transfer represents an important advance in the treatment of both genetic and acquired diseases. Topical gene therapy involves administration of the genetic material onto the surface of skin and mucosal membranes. Cationic gemini surfactants (m-s-m, where m represents the carbon atoms in the alkyl tail and s represents the carbon atoms in the spacer) are a novel category of delivery agents with especially high potential for polynucleotides. This is due to their structural versatility, ability to bind and condense DNA, and relatively low toxicity. <p>The objectives were to design, construct and characterize a cationic, non-viral gemini surfactant-based delivery system for an IFN-ã coding plasmid suitable for cutaneous gene therapy and to evaluate this novel therapeutic approach in a Tsk (tight-skin scleroderma) mouse model to determine its clinical feasibility. <p>The delivery systems were characterized by microscopy, dynamic light scattering (DLS), circular dichroism (CD) and small angle X-ray scattering (SAXS). <i>In vitro</i> gene expression was evaluated in PAM 212 keratinocyte culture. The extent of topical delivery of the plasmid using nanoparticle and nanoemulsion formulations was evaluated by measuring IFN-ã levels in CD1, IFN-ã-deficient and Tsk mice. The effect of transgene expression on collagen synthesis was evaluated in Tsk animals by real-time PCR.<p>The <i>in vitro</i> plasmidgeminilipid (PGL) system showed heterogeneous particle size (100-200 nm small particles and 300-600 nm aggregates). Electrostatic interactions between the DNA and PGL systems shifted the negative æ-potential of the DNA (-47 mV) to positive values (30-50 mV). At the same time, condensation of the DNA, and formation of Ø DNA was indicated by the increase of the overall negative signal in the CD spectra, due to the flattening of the 290 nm peak and shift of the 260 nm peak into the negative region in a structure-dependent manner. Lipid organization of the DNADOPE system, in the absence of gemini surfactants, shows hexagonal structure, while addition of gemini surfactant at +/- charge ratio of 10 caused lamellar phase organization. For short spacers (n=3-6), additional Pn3m cubic phase also appear to be present. <p><i> In vitro</i> transfection efficiency in the 12-n-12 series was found to be dependent on the length of the spacer between the two positively charged head groups, with the n=3 spacer showing the highest activity. The PGL systems with 12-3-12 and 12-4-12 led to significantly higher transgene expression compared to the other surfactants of the series. The transfection efficiency significantly correlated with the surface area occupied by one molecule (a). The effect of the tail length influenced the transfection efficiency, with longer tails being associated with higher protein expression. The highest <i>in vitro</i> transfection efficiency was recorded with the 18:1-3-18:1 surfactant (1.4±0.3 ng/5x10E4 cells). <p><i>In vivo</i>, high levels of IFN-ã expression were detected in the skin of animals treated with both nanoparticle (359±239 pg/cm2) and nanoemulsion (607±411 pg/cm2) formulations compared to topical naked DNA (136±125 pg/cm2). IFN-ã levels in the skin of animals injected with 5 ìg DNA were 256±130 pg/cm2. IFN-ã levels in the lymph nodes were higher for the nanoparticle formulation (433±456 pg/animal) compared to nanoemulsion (131±136 pg/animal) suggesting different delivery pathway of the two formulations.<p>IFN-ã expression was at high levels in the skin of Tsk mice after 4-day and 20-day treatments (472±171 and 345±276 pg/cm2). Both 4-day and 20-day treatments reduced the procollagen type I á1 mRNA levels for the topical treatment (64 and 70% reduction) and intradermal injection (58 and 72% reduction). Intercellular adhesion molecule-1 (ICAM-1) was upregulated by 50% in both topically treated and injected animals after 20-day treatment. <p>Here, it has been demonstrated that cationic gemini surfactant-based delivery systems are able to transfect epidermal cells <i>in vivo</i>, and the transgene IFN-ã expression is sufficient to cause significant reduction of collagen in an animal model of scleroderma. It has been shown for the first time that topical gene therapy is a feasible approach for the modulation of excessive collagen synthesis in scleroderma-affected skin.
635

Simulation study of surfactant transport mechanisms in naturally fractured reservoirs

Abbasi Asl, Yousef 03 January 2011 (has links)
Surfactants both change the wettability and lower the interfacial tension by various degrees depending on the type of surfactant and how it interacts with the specific oil. Ultra low IFT means almost zero capillary pressure, which in turn indicates little oil should be produced from capillary imbibition when the surfactant reduces the IFT in naturally fractured oil reservoirs that are mixed-wet or oil-wet. What is the transport mechanism for the surfactant to get far into the matrix and how does it scale? Molecular diffusion and capillary pressure are much too slow to explain the experimental data. Recent dynamic laboratory data suggest that the process is faster when a pressure gradient is applied compared to static tests. A mechanistic chemical compositional simulator was used to study the effect of pressure gradient on chemical oil recovery from naturally fractured oil reservoirs for several different chemical processes (polymer, surfactant, surfactant-polymer, alkali-surfactant-polymer flooding). The fractures were simulated explicitly by using small gridblocks with fracture properties. Both homogeneous and heterogeneous matrix blocks were simulated. Microemulsion phase behavior and related chemistry and physics were modeled in a manner similar to single porosity reservoirs. The simulations indicate that even very small pressure gradients (transverse to the flow in the fractures) are highly significant in terms of the chemical transport into the matrix and that increasing the injected fluid viscosity greatly improves the oil recovery. Field scale simulations show that the transverse pressure gradients promote transport of the surfactant into the matrix at a feasible rate even when there is a high contrast between the permeability of the fractures and the matrix. These simulations indicate that injecting a chemical solution that is viscous (because of polymer or foam or microemulsion) and lowers the IFT as well as alters the wettability from mixed-wet to water-wet, produces more oil and produces it faster than static chemical processes. These findings have significant implications for enhanced oil recovery from naturally fractured oil reservoirs and how these processes should be optimized and scaled up from the laboratory to the field. / text
636

An experimental and simulation study of the effect of geochemical reactions on chemical flooding

Chandrasekar, Vikram, 1984- 17 February 2011 (has links)
The overall objective of this research was to gain an insight into the challenges encountered during chemical flooding under high hardness conditions. Different aspects of this problem were studied using a combination of laboratory experiments and simulation studies. Chemical Flooding is an important Enhanced Oil Recovery process. One of the major components of the operational expenses of any chemical flooding project, especially Alkali Surfactant Polymer (ASP) flooding is the cost of softening the injection brine to prevent the precipitation of the carbonates of the calcium and magnesium ions which are invariably present in the formation brine. Novel hardness tolerant alkalis like sodium metaborate have been shown to perform well with brines of high salinity and hardness, thereby eliminating the need to soften the injection brine. The first part of this research was aimed at designing an optimal chemical flooding formulation for a reservoir having hard formation brine. Sodium metaborate was used as the alkali in the formulation with the hard brine. Under the experimental conditions, sodium metaborate was found to be inadequate in preventing precipitation in the ASP slug. Factors affecting the ability of sodium metaborate to sequester divalent ions, including its potential limitations under the experimental conditions were studied. The second part of this research studied the factors affecting the ability of novel alkali and chelating agents like sodium metaborate and tetrasodium EDTA to sequester divalent ions. Recent studies have shown that both these chemicals showed good performance in sequestering divalent ions under high hardness conditions. A study of the geochemical species in solution under different conditions was done using the computer program PHREEQC. Sensitivity studies about the effect of the presence of different solution species on the performance of these alkalis were done. The third part of this research focused on field scale mechanistic simulation studies of geochemical scaling during ASP flooding. This is one of the major challenges faced by the oil and gas industry and has been found to occur when sodium carbonate is used as the alkali and the formation brine present in situ has a sufficiently high hardness content. The multicomponent and multiphase compositional chemical flooding simulator, UTCHEM was used to determine the quantity and composition of the scales formed in the reservoir as well as the injection and production wells. Reactions occurring between the injected fluids, in situ fluids and the reservoir rocks were taken into consideration for this study. Sensitivity studies of the effect of key reservoir and process parameters like the physical dispersion and the alkali concentration on the extent of scaling were also done as a part of this study. / text
637

Drug Partitioning into Natural and Artificial Membranes : Data Applicable in Predictions of Drug Absorption

Engvall, Caroline January 2005 (has links)
When drug molecules are passively absorbed through the cell membrane in the small intestine, the first key step is partitioning of the drug into the membrane. Partition data can therefore be used to predict drug absorption. The partitioning of a solute can be analyzed by drug partition chromatography on immobilized model membranes, where the chromatographic retention of the solute reflects the partitioning. The aims of this thesis were to develop the model membranes used in drug partition chromatography and to study the effects of different membrane components and membrane structures on drug partitioning, in order to characterize drug–membrane interactions. Electrostatic effects were observed on the partitioning of charged drugs into liposomes containing charged detergent, lipid or phospholipid; bilayer disks; proteoliposomes and porcine intestinal brush border membrane vesicles (BBMVs), and on the retention of an oligonucleotide on positive liposomes. Biological membranes are naturally charged, which will affect drug partitioning in the human body. Proteoliposomes containing transmembrane proteins and cholesterol, BBMVs and bilayer disks were used as novel model membranes in drug partition chromatography. Partition data obtained on proteoliposomes and BBMVs demonstrated how cholesterol and transmembrane proteins interact with drug molecules. Such interactions will occur between drugs and natural cell membranes. In the use of immobilized BBMVs for drug partition chromatography, yet unsolved problems with the stability of the membrane were encountered. A comparison of partition data obtained on bilayer disks with data on multi- and unilamellar liposomes indicated that the structure of the membrane affect the partitioning. The most accurate partition values might be obtained on bilayer disks. Drug partition data obtained on immobilized model membranes include both hydrophobic and electrostatic interactions. Such partition data should preferably be used when deriving algorithms or computer programs for prediction of drug absorption.
638

MODELING AND DEVELOPMENT OF THREE-DIMENSIONAL GEL DOSIMETERS

NASR, ABDULLAH 27 March 2014 (has links)
A dynamic mathematical model was developed to simulate the response of polyacrylamide gel (PAG) dosimeters to a single spherical radioactive brachytherapy seed. Simulations were conducted for a high dose-rate (HDR) seed using 192Ir and a low dose-rate (LDR) seed using 125I. The model is able to predict the amount of polymer formed, the crosslink density, and the volume fraction of aqueous phase as a function of radial distance and time. Results show that PAG dosimeters can provide accurate HDR brachytherapy dosimetry at distances larger than 4 mm from the centre of the seed but will give poor results for LDR due to monomer diffusion. Experiments were conducted to evaluate the potential for using pentacosa-10,12-diynoic acid (PCDA) as the reporter molecule in micelle gel dosimeters for optical computed tomography (CT) readout. Several gels containing PCDA that was solubilized using sodium dodecyl sulfate (SDS) responded to radiation by changing from colourless to blue. Unfortunately, all phantoms that showed colour changes were turbid, making them unsuitable for optical CT scanning. Several techniques were used to produce transparent gels containing PCDA but none of these gels responded noticeably to radiation. Only turbid gels with precipitated PCDA responded, indicating that the colour change was due to oligomerization within PCDA crystals and that PCDA molecules solubilized in micelles did not undergo oligomerization. As a result, PCDA is not suitable for use in radiochromic micelle gel dosimeters. A new recipe for a radiochromic leuco crystal violet (LCV) micelle gel dosimeters with enhanced dose sensitivity was developed for optical CT readout. The recipe contains LCV, trichloro acetic acid (TCAA), Cetyl Trimethyl Ammonium Bromide (CTAB), 2,2,2-Trichloroethanol (TCE), and gelatin. Experiments were conducted to improve understanding about interactions between the different components of LCV micelle gel, highlighting the importance of pH on dose sensitivity and transparency. Results also showed the effectiveness of chlorinated compounds in improving dose sensitivity. Statistical techniques were used to build empirical models that were used to optimize the gel recipe. Additional testing in larger phantoms will be required to assess the effectiveness of the proposed gel for clinical dosimetry. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2014-03-27 11:11:47.655
639

Etude de la déformation de gouttes à interface et rhéologie complexes

Boufarguine, Majdi 07 June 2011 (has links) (PDF)
Ce travail de thèse est une contribution à l'étude des émulsions de Pickering qui ont vu unregain d'intérêt ces dernières années. Bien que l'effet Pickering ait été décrit depuis plus d'un siècle,des études plus systématiques pour comprendre l'activité des particules solides aux interfacesliquide/liquide n'est que partiellement entrepris, surtout en cours de déformation. Plusieurs questionsrestent d'actualité et, en premier, la localisation même des particules à l'interface et le mécanismed'adsorption associé.L'approche proposée dans ce travail de thèse s'inscrit dans cette optique avec en particulier laconsidération d'un événement élémentaire d'une émulsion : une goutte isolée dans une matrice etexaminée suite à un saut de déformation en cisaillement dans un dispositif de cisaillement contrarotatifdéveloppé à PCI. De manière générique, le but est de comprendre la relation entre le comportement dela goutte et la rhéologie complexe (en volume ou en surface) apportée par la dynamique de particulessolides aux interfaces liquide/liquide mobiles. Plusieurs paramètres ont été étudiés en commençant parl'affinité chimique des particules solides avec les phases liquides, la rhéologie des phases liquides, laconcentration et la taille des particules solides ; et pour finir, une attention particulière a été portée àl'effet de la déformation macroscopique et l'âge de la goutte.Plus particulièrement, la mise en évidence de la synergie entre la déformation macroscopiqueet l'âge de la goutte, sur la dynamique d'adsorption des particules à l'interface liquide/liquide et lastructuration de l'interface composée, a permis de proposer une méthodologie pour la modulation de" l'effet mémoire induite par la déformation " lors de la relaxation de la goutte en modifiant lasurface des particules par adsorption de tensioactifs choisis. Ainsi, il a été possible de figer les gouttesliquides dans des formes anisotropes contrôlées. Ce phénomène a été corrélé à une transition liquidesolidede l'interface composée mise en évidence par des mesures des modules rhéologiquesinterfaciaux. Ces derniers ont été, par ailleurs, reliés quantitativement à l'anisotropie des gouttesfigées.
640

Regulation of Breathing under Different Pulmonary Conditions

Rieger-Fackeldey, Esther January 2004 (has links)
The breathing pattern of preterm infants is immature and is associated with a variety of reflexes. In a patient on the ventilator these reflexes interfere with spontaneous breathing. A better understanding of the immature control of breathing could lead to further improvements in ventilatory techniques. This thesis concerns studies of pulmonary stretch receptor (PSR) and phrenic nerve activity as part of the regulation of breathing in an animal model. During assist/control ventilation with three different inspiratory pressure waveforms in animals with healthy lungs, squarewave pressure waveform strongly inhibits spontaneous inspiratory activity. During partial liquid ventilation (PLV) in animals with healthy lungs, all PSRs studied maintained their phasic character, with increased impulse frequency during inspiration. PSR activity was not higher during PLV than during gas ventilation (GV), indicating that there was no extensive stretching of the lung during PLV. During proportional assist ventilation (PAV) the applied airway pressure is servo-controlled proportionally to the ongoing breathing effort, thereby interacting with the activity of PSRs. Peak PSR activity was higher and occurred earlier during PAV than during CPAP. The regulation of breathing is maintained during PAV in surfactant-depleted animals before and early after surfactant instillation, with a higher ventilatory response and a lower breathing effort than during CPAP in both conditions. Both lung mechanics and gas exchange influence the regulation of breathing. Inhibition of inspiratory activity occurred at a lower arterial pH and a higher PaCO2 during PLV than during GV in animals with surfactant-depleted lungs, which might be related to recruitment of a larger number of pulmonary stretch receptors during PLV. In summary, selected aspects of the regulation of breathing were studied in an animal model with different ventilatory techniques under different lung conditions similar to those that can occur in infants.

Page generated in 0.0878 seconds