Spelling suggestions: "subject:"[een] VALUE-AT-RISK - VAR"" "subject:"[enn] VALUE-AT-RISK - VAR""
41 |
O uso do value at risk (var) como medida de risco para fundos de pensãoMachry, Manuela Silva 12 March 2003 (has links)
Made available in DSpace on 2010-04-20T20:51:05Z (GMT). No. of bitstreams: 3
98333.pdf.jpg: 13860 bytes, checksum: 411f2e503bdd3f85174e0db0b4bd251c (MD5)
98333.pdf: 711485 bytes, checksum: 410792964fe8e1c5a1db006b3e7fa833 (MD5)
98333.pdf.txt: 212638 bytes, checksum: 847f0564ff4a3061300b1a06e613bfd4 (MD5)
Previous issue date: 2003-03-12T00:00:00Z / Este estudo faz uma revisão das origens do VaR, bem como dos conceitos e teorias que o fundamentam, e sua aplicabilidade aos fundos de pensão. Descreve as principais metodologias de cálculo e as situações nas quais o uso de cada uma é mais adequado. Revisa a literatura internacional acerca do uso do VaR como medida de risco pelos fundos de pensão. A seguir faz a previsão do VaR para as carteiras reais de três fundos de pensão brasileiros com três metodologias distintas: paramétrica, simulação histórica e simulação de Monte Carlo, esta última com duas suposições distintas para a distribuição dos retornos dos fatores de risco (normal e histórica). A partir disso, realiza um teste qualitativo, através da comparação do número de perdas efetivas realizadas pelas carteiras dos três fundos de pensão com o número de perdas correspondente admitido para os diferentes níveis de confiança utilizados no cálculo do VaR. O trabalho não encontra evidências de superioridade de nenhuma das metodologias de cálculo, sendo que todas elas superestimaram as perdas verificadas na prática (o VaR foi excedido menos vezes do que o esperado). / This study summarizes the theory underlying Value at risk, including its history, concepts and applicability to pension funds. It describes the main approaches in computing VaR, as well as the situations in which one approach is more appropriate than the other. It also revises the international literature about the use of VaR as a risk measure by pension funds. After that, VaR is computed for real portfolios of three Brazilian pension funds, applying three methods: analytical, historical simulation and Monte Carlo simulation, the last one with two different assumptions about risk factor returns’ distributions (normal and historical). Following VaR computation, a qualitative test is performed, by comparing the actual losses faced by the three pension funds’ portfolios with the associated number of losses, given the confidence level. Evidence about superiority of some of the approaches has not been found, and all of them have overestimated real losses (the VaR measure was exceeded less often than expected).
|
42 |
Medidas de risco e seleção de portfolios / Risk measures and portfolio selectionMagro, Rogerio Correa 15 February 2008 (has links)
Orientador: Roberto Andreani / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T15:35:32Z (GMT). No. of bitstreams: 1
Magro_RogerioCorrea_M.pdf: 1309841 bytes, checksum: 3935050b45cf1bf5bbba46ac64603d72 (MD5)
Previous issue date: 2008 / Resumo: Dado um capital C e n opções de investimento (ativos), o problema de seleção de portfolio consiste em aplicar C da melhor forma possivel para um determinado perfil de investidor. Visto que, em geral, os valores futuros destes ativos não são conhecidos, a questão fundamental a ser respondida e: Como mensurar a incerteza? No presente trabalho são apresentadas tres medidas de risco: O modelo de Markowitz, o Value-at-Risk (VaR) e o Conditional Value-At-Risk (CVaR). Defendemos que, sob o ponto de vista teorico, o Valor em Risco (VaR) e a melhor dentre as tres medidas. O motivo de tal escolha deve-se ao fato de que, para o VaR, podemos controlar a influencia que os cenários catastroficos possuem sobre nossas decisões. Em contrapartida, o processo computacional envolvido na escolha de um portfolio ótimo sob a metodologia VaR apresenta-se notadamente mais custoso do que aqueles envolvidos nos calculos das demais medidas consideradas. Dessa forma, nosso objetivo e tentar explorar essa vantagem computacional do Modelo de Markowitz e do CVaR no sentido de tentar aproximar suas decisões aquelas apontadas pela medida eleita. Para tal, consideraremos soluções VaR em seu sentido original (utilizando apenas o parametro de confiabilidade ao buscar portfolios otimos) e soluções com controle de perda (impondo uma cota superior para a perda esperada) / Abstract: Given a capital C and n investment options (assets), the problem of portfolio selection consists of applying C in the best possible way for a certain investor profile. Because, in general, the future values of these assets are unknown, the fundamental question to be answered is: How to measure the uncertainty? In the present work three risk measures are presented: The Markowitz¿s model, the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR). We defended that, under the theoretical point of view, the Value in Risk (VaR) is the best amongst the three measures. The reason of such a choice is due to the fact that, for VaR, we can control the influence that the catastrophic sceneries possess about our decisions. In the other hand, the computational process involved in the choice of a optimal portfolio under the VaR methodology comes notedly more expensive than those involved in the calculations of the other considered measures. In that way, our objective is to try to explore that computational advantage of the Markowitz¿s Model and of CVaR in the sense of trying to approach its decisions the those pointed by the elect measure. For such, we will consider VaR solutions in its original sense (just using the confidence level parameter when looking for optimal portfolios) and solutions with loss control (imposing a superior quota for the expected loss) / Mestrado / Otimização / Mestre em Matemática Aplicada
|
43 |
[pt] COMPARAÇÃO DOS MÉTODOS DE QUASE-VEROSSIMILHANÇA E MCMC PARA ESTIMAÇÃO DE MODELOS DE VOLATILIDADE ESTOCÁSTICAEVANDRO DE FIGUEIREDO QUINAUD 05 June 2002 (has links)
[pt] A dissertação trata da comparação de dois métodos de
estimação para modelos de séries temporais com volatilidade
estocástica. Um dos métodos é baseado em inferência
Bayesiana e depende de simulações enquanto o outro utiliza
máxima verossimilhança para o processo de estimação. A
comparação é feita tanto com séries temporais
artificialmente geradas como também com séries financeiras
reais. O objetivo é mostrar que os dois métodos apresentam
resultados semelhantes, sendo que o segundo método é
significativamente mais rápido do que o primeiro.
|
44 |
Techniques for Uncertainty quantification, Risk minimization, with applications to risk-averse decision makingAshish Chandra (12975932) 27 July 2022 (has links)
<p>Optimization under uncertainty is the field of optimization where the data or the optimization model itself has uncertainties associated with it. Such problems are more commonly referred to as stochastic optimization problems. These problems capture the broad idea of making optimal decisions under uncertainty. An important class of these stochastic optimization problems is chance-constrained optimization problems, where the decision maker seeks to choose the best decision such that the probability of violating a set of uncertainty constraints is within a predefined probabilistic threshold risk level. Such stochastic optimization problems have found a lot of interest in the service industry as the service providers need to satisfy a minimum service level agreement (SLA) with their customers. Satisfying SLA in the presence of uncertainty in the form of probabilistic failure of infrastructure poses many interesting and challenging questions. In this thesis, we answer a few of these questions.</p>
<p>We first explore the problem of quantifying uncertainties that adversely impact the service provider's infrastructure, thereby hurting the service level agreements. In particular we address the probability quantification problem, where given an uncertainty set, the goal is to quantify the probability of an event, on which the optimal value of an optimization problem exceeds a predefined threshold value. The novel techniques we propose, use and develop ideas from diverse literatures such as mixed integer nonlinear program, chance-constrained programming, approximate sampling and counting techniques, and large deviation bounds. Our approach yields the first polynomial time approximation scheme for the specific probability quantification problem we consider. </p>
<p>Our next work is inspired by the ideas of risk averse decision making. Here, we focus on studying the problem of minimizing risk functions. As a special case we also explore the problem of minimizing the Value at Risk (VaR), which is a well know non-convex problem. For more than a decade, the well-known, best convex approximation to this problem has been obtained by minimizing the Conditional Value at Risk (CVaR). We proposed a new two-stage model which formulates these risk functions, which eventually leads to a bilinear optimization problem, a special case of which is the VaR minimization problem. We come up with enhancements to this bilinear formulation and use convexification techniques to obtain tighter lower and upper convex approximations to the problem. We also find that the approximation obtained by CVaR minimization is a special case of our method. The overestimates we construct help us to develop tighter convex inner approximations for the chance constraint optimization problems.</p>
|
45 |
Value at risk et expected shortfall pour des données faiblement dépendantes : estimations non-paramétriques et théorèmes de convergences / Value at risk and expected shortfall for weak dependent random variables : nonparametric estimations and limit theoremsKabui, Ali 19 September 2012 (has links)
Quantifier et mesurer le risque dans un environnement partiellement ou totalement incertain est probablement l'un des enjeux majeurs de la recherche appliquée en mathématiques financières. Cela concerne l'économie, la finance, mais d'autres domaines comme la santé via les assurances par exemple. L'une des difficultés fondamentales de ce processus de gestion des risques est de modéliser les actifs sous-jacents, puis d'approcher le risque à partir des observations ou des simulations. Comme dans ce domaine, l'aléa ou l'incertitude joue un rôle fondamental dans l'évolution des actifs, le recours aux processus stochastiques et aux méthodes statistiques devient crucial. Dans la pratique l'approche paramétrique est largement utilisée. Elle consiste à choisir le modèle dans une famille paramétrique, de quantifier le risque en fonction des paramètres, et d'estimer le risque en remplaçant les paramètres par leurs estimations. Cette approche présente un risque majeur, celui de mal spécifier le modèle, et donc de sous-estimer ou sur-estimer le risque. Partant de ce constat et dans une perspective de minimiser le risque de modèle, nous avons choisi d'aborder la question de la quantification du risque avec une approche non-paramétrique qui s'applique à des modèles aussi généraux que possible. Nous nous sommes concentrés sur deux mesures de risque largement utilisées dans la pratique et qui sont parfois imposées par les réglementations nationales ou internationales. Il s'agit de la Value at Risk (VaR) qui quantifie le niveau de perte maximum avec un niveau de confiance élevé (95% ou 99%). La seconde mesure est l'Expected Shortfall (ES) qui nous renseigne sur la perte moyenne au delà de la VaR. / To quantify and measure the risk in an environment partially or completely uncertain is probably one of the major issues of the applied research in financial mathematics. That relates to the economy, finance, but many other fields like health via the insurances for example. One of the fundamental difficulties of this process of management of risks is to model the under lying credits, then approach the risk from observations or simulations. As in this field, the risk or uncertainty plays a fundamental role in the evolution of the credits; the recourse to the stochastic processes and with the statistical methods becomes crucial. In practice the parametric approach is largely used.It consists in choosing the model in a parametric family, to quantify the risk according to the parameters, and to estimate its risk by replacing the parameters by their estimates. This approach presents a main risk, that badly to specify the model, and thus to underestimate or over-estimate the risk. Based within and with a view to minimizing the risk model, we choose to tackle the question of the quantification of the risk with a nonparametric approach which applies to models as general as possible. We concentrate to two measures of risk largely used in practice and which are sometimes imposed by the national or international regulations. They are the Value at Risk (VaR) which quantifies the maximum level of loss with a high degree of confidence (95% or 99%). The second measure is the Expected Shortfall (ES) which informs about the average loss beyond the VaR.
|
46 |
Portfolio selection and hedge funds : linearity, heteroscedasticity, autocorrelation and tail-riskBianchi, Robert John January 2007 (has links)
Portfolio selection has a long tradition in financial economics and plays an integral role in investment management. Portfolio selection provides the framework to determine optimal portfolio choice from a universe of available investments. However, the asset weightings from portfolio selection are optimal only if the empirical characteristics of asset returns do not violate the portfolio selection model assumptions. This thesis explores the empirical characteristics of traditional assets and hedge fund returns and examines their effects on the assumptions of linearity-in-the-mean testing and portfolio selection. The encompassing theme of this thesis is the empirical interplay between traditional assets and hedge fund returns. Despite the paucity of hedge fund research, pension funds continue to increase their portfolio allocations to global hedge funds in an effort to pursue higher risk-adjusted returns. This thesis presents three empirical studies which provide positive insights into the relationships between traditional assets and hedge fund returns. The first two empirical studies examine an emerging body of literature which suggests that the relationship between traditional assets and hedge fund returns is non-linear. For mean-variance investors, non-linear asset returns are problematic as they do not satisfy the assumption of linearity required for the covariance matrix in portfolio selection. To examine the linearity assumption as it relates to a mean-variance investor, a hypothesis test approach is employed which investigates the linearity-in-the-mean of traditional assets and hedge funds. The findings from the first two empirical studies reveal that conventional linearity-in-the-mean tests incorrectly conclude that asset returns are nonlinear. We demonstrate that the empirical characteristics of heteroscedasticity and autocorrelation in asset returns are the primary sources of test mis-specification in these linearity-in-the-mean hypothesis tests. To address this problem, an innovative approach is proposed to control heteroscedasticity and autocorrelation in the underlying tests and it is shown that traditional assets and hedge funds are indeed linear-in-the-mean. The third and final study of this thesis explores traditional assets and hedge funds in a portfolio selection framework. Following the theme of the previous two studies, the effects of heteroscedasticity and autocorrelation are examined in the portfolio selection context. The characteristics of serial correlation in bond and hedge fund returns are shown to cause a downward bias in the second sample moment. This thesis proposes two methods to control for this effect and it is shown that autocorrelation induces an overallocation to bonds and hedge funds. Whilst heteroscedasticity cannot be directly examined in portfolio selection, empirical evidence suggests that heteroscedastic events (such as those that occurred in August 1998) translate into the empirical feature known as tail-risk. The effects of tail-risk are examined by comparing the portfolio decisions of mean-variance analysis (MVA) versus mean-conditional value at risk (M-CVaR) investors. The findings reveal that the volatility of returns in a MVA portfolio decreases when hedge funds are included in the investment opportunity set. However, the reduction in the volatility of portfolio returns comes at a cost of undesirable third and fourth moments. Furthermore, it is shown that investors with M-CVaR preferences exhibit a decreasing demand for hedge funds as their aversion for tail-risk increases. The results of the thesis highlight the sensitivities of linearity tests and portfolio selection to the empirical features of heteroscedasticity, autocorrelation and tail-risk. This thesis contributes to the literature by providing refinements to these frameworks which allow improved inferences to be made when hedge funds are examined in linearity and portfolio selection settings.
|
47 |
利用混合模型估計風險值的探討阮建豐 Unknown Date (has links)
風險值大多是在假設資產報酬為常態分配下計算而得的,但是這個假設與實際的資產報酬分配不一致,因為很多研究者都發現實際的資產報酬分配都有厚尾的現象,也就是極端事件的發生機率遠比常態假設要來的高,因此利用常態假設來計算風險值對於真實損失的衡量不是很恰當。
針對這個問題,本論文以歷史模擬法、變異數-共變異數法、混合常態模型來模擬報酬率的分配,並依給定的信賴水準估算出風險值,其中混合常態模型的參數是利用準貝式最大概似估計法及EM演算法來估計;然後利用三種風險值的評量方法:回溯測試、前向測試與二項檢定,來評判三種估算風險值方法的優劣。
經由實證結果發現:
1.報酬率分配在左尾臨界機率1%有較明顯厚尾的現象。
2.利用混合常態分配來模擬報酬率分配會比另外兩種方法更能準確的捕捉到左尾臨界機率1%的厚尾。
3.混合常態模型的峰態係數值接近於真實報酬率分配的峰態係數值,因此我們可以確認混合常態模型可以捕捉高峰的現象。
關鍵字:風險值、厚尾、歷史模擬法、變異數-共變異教法、混合常態模型、準貝式最大概似估計法、EM演算法、回溯測試、前向測試、高峰 / Initially, Value at Risk (VaR) is calculated by assuming that the underline asset return is normal distribution, but this assumption sometimes does not consist with the actual distribution of asset return.
Many researchers have found that the actual distribution of the underline asset return have Fat-Tail, extreme value events, character. So under normal distribution assumption, the VaR value is improper compared with the actual losses.
The paper discuss three methods. Historical Simulated method - Variance-Covariance method and Mixture Normal .simulating those asset, return and VaR by given proper confidence level. About the Mixture Normal Distribution, we use both EM algorithm and Quasi-Bayesian MLE calculating its parameters. Finally, we use tree VaR testing methods, Back test、Forward tes and Binomial test -----comparing its VaR loss probability
We find the following results:
1.Under 1% left-tail critical probability, asset return distribution has significant Fat-tail character.
2.Using Mixture Normal distribution we can catch more Fat-tail character precisely than the other two methods.
3.The kurtosis of Mixture Normal is close to the actual kurtosis, this means that the Mixture Normal distribution can catch the Leptokurtosis phenomenon.
Key words: Value at Risk、VaR、Fat tail、Historical simulation method、 Variance-Covariance method、Mixture Normal distribution、Quasi-Bayesian MLE、EM algorithm、Back test、 Forward test、 Leptokurtosis
|
Page generated in 0.0332 seconds