• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 72
  • 11
  • 10
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 266
  • 266
  • 94
  • 70
  • 61
  • 60
  • 49
  • 45
  • 43
  • 39
  • 35
  • 31
  • 30
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Controle ativo-passivo de vibrações estruturais usando materiais piezelétricos: otimização e quanticação de incertezas / Acitve-passive strucutural control using piezoelectric materials: optimization and uncertainty quantification

Heinsten Frederich Leal dos Santos 14 November 2012 (has links)
Esta tese apresenta uma análise numérica do controle de vibrações estruturais através de cerâmicas piezelétricas em extensão conectadas a circuitos ativo-passivos compostos por resistência, indutância e fonte de tensão. Para tal, um modelo de elementos finitos de vigas sanduíche com três camadas elásticas e/ou piezelétricas foi desenvolvido. Realizou-se também uma modelagem dos componentes do circuito elétrico e seu acoplamento à estrutura gerando assim uma equação de movimento acoplada para a estrutura com elementos piezelétricos conectados aos circuitos elétricos. Uma análise harmônica das equações obtidas foi realizada para se obter uma avaliação preliminar dos efeitos causados pelos componentes elétricos do circuito na estrutura. Observou-se que os elementos passivos do circuito, resistência e indutância, tem não somente um efeito de absorvedor dinâmico de vibrações mas, também, promovem uma amplificação da autoridade de controle no caso de se atuar através da fonte de tensão. Usando a metodologia tradicional de projeto de absorvedores dinâmicos de vibrações, derivou-se expressões para os valores de resistência e indutância de modo a maximizar o desempenho passivo do sistema. Uma análise do efeito de incertezas das constantes piezelétricas e dielétricas da cerâmica piezelétrica considerada e dos componentes de resistência e indutância do circuito elétrico no desempenho do controle passivo e ativo-passivo de estrutura tipo viga cantilever foi realizada. O objetivo desta análise foi quantificar robustez e sensibilidade do controle proposto. Em sequida, um estudo de otimização dos valores de resistência e indutância do circuito elétrico em função da tensão elétrica de controle máxima a ser aplicada em uma placa com diversos atuadores piezelétricos foi realizado. Finalmente e também para a estrutura tipo placa, uma análise de incertezas da rigidez da cola na interface entre estrutura e atuadores piezelétricos e seus efeitos no desempenho do controle passivo e ativo-passivo foi realizada. / This work presents a numerical analysis of the structural vibration control using piezoelectric materials in extension mode connected to active-passive electric circuits composed of resistance, inductance and voltage source. For that, a finite element model for sandwich beams with three elastic or piezoelectric layers was developed. A modeling of the electric circuit dynamics and its coupling to the structure with piezoelectric elements was also done. A harmonic analysis of the resulting equations was performed to yield a preliminary evaluation of the effects caused by the electric circuit components on the structure. It was observed that the passive circuit components not only lead to a dynamic vibration absorber effect but also to an amplification of the control authority in case of actuation using the voltage source. Using the standard methodology for the design of dynamic vibration absorbers, expressions were derived for the resistance and inductance values that optimize the passive vibration control performance of the system. An analysis of the effect of uncertainties of piezoelectric and dielectric constants of piezoelectric ceramic and resistance and inductance components of the shunt circuit on the passive and active-passive control performance for a cantilever beam structure was performed. The objective of this analysis was to quantify robustness and sensitivity of the proposed control. Then, an optimization study of the values of resistance and inductance of the shunt circuit as a function of the maximum control voltage to be applied on a plate with several piezoelectric actuators was performed. Finally and also for the plate structure, an analysis of uncertainties in the stiffness of the adhesive interface between structure and piezoelectric actuators and their effects on the performance of passive control and active-passive was performed.
242

Análise de desempenho de diferentes leis de controle de vibrações torcionais em colunas de perfuração de poços de petróleo / Performance analysis of different control laws for torsional vibrations in oil wells drillstrings

Hugo Leonardo Salomão Monteiro 09 April 2012 (has links)
O fenômeno de stick-slip, no processo de perfuração de poços de petróleo, é propiciado pela interação entre broca e formação rochosa e pode dar origem a grandes oscilações na velocidade angular podendo provocar danos irreparáveis ao processo. Neste trabalho, analisa-se o desempenho de leis de controle aplicadas à mesa rotativa (responsável por movimentar a coluna de perfuração), visando à redução de stick-slip e de oscilações da velocidade angular da broca. As leis de controle implementadas são do tipo PI (Proporcional-Integral), com parcelas de torque aplicado à mesa rotativa, proporcional e integral à velocidade da mesa, podendo ser com peso na broca constante ou variável. Para a coluna de perfuração, foi proposto um modelo em elementos finitos com função de forma linear. O torque na broca foi modelado segundo atrito de Coulomb pela forma não regularizada, curva esta ajustada pelos dados empíricos conforme propostas da literatura. Diversos critérios de desempenho foram analisados e foi observado que a minimização do desvio médio da velocidade angular em relação à referência propicia melhores condições de operação. Análises paramétricas dos ganhos de controle proporcional e integral foram realizadas, dando origem a curvas de nível para o desvio médio de velocidade angular na broca. A partir destas curvas, foram definidas regiões de estabilidade nas quais o desvio é aceitável. Estas regiões foram observadas serem maiores para menores pesos na broca e maiores velocidades angulares de referência e vice-versa. A adição do controle do peso na broca permitiu uma redução global dos níveis de desvio médio de velocidade angular, dando origem a um aumento das regiões de estabilidade do processo de perfuração. / The stick-slip phenomenon, in the process of drilling oil wells, due to the interaction between drill and rock formation can lead to large fluctuations in drill-bit angular velocity and, thus, cause irreparable damage to the process. In this work, the performance of control laws applied to the rotary table (responsible for moving the drill string) is analyzed, in order to reduce stick-slip and drill-bit angular velocity oscillations. The control laws implemented are based on a PI (Proportional-Integral) controller, for which the torque applied to the rotating table has components proportional and integral to table angular velocity with constant or variable WOB (Weight On Bit). For the drillstring, a finite element model with a linear interpolation was proposed. The torque on the drill-bit was modeled by a non-regularized Coulomb friction model, with parameters that were adjusted using empirical data proposed in literature. Several performance criteria were analyzed and it was observed that the minimization of the mean deviation of the drill-bit angular velocity relative to the target one would provide the best operating condition. Parametric analyses of proportional and integral control gains were performed, yielding level curves for the mean deviation of drill-bit angular velocity. From these curves, stability regions were defined in which the deviation is acceptable. These regions were observed to be wider for smaller values of WOB and higher values of target angular velocity and vice-versa. The inclusion of a controlled dynamic WOB reduced the levels of mean deviation of angular velocity, leading to improved stability regions for the drilling process.
243

Damage-Tolerant Modal Control Methods for Flexible Structures / Contrôle Actif Modal de Structures Tolérant aux Dommages

Genari, Helói Francico Gentil 15 September 2016 (has links)
Les structures intelligentes sont de plus en plus présentes dans différentes industries et notamment dans les domaines de l'aéronautique et du génie civil. Ces structures sont dotées de fonctions qui leur permettent d'interagir avec leur environnement, d'adapter leurs caractéristiques structurelles (raideur, amortissement, viscosité, etc.) selon les besoins ou de surveiller leur état de santé ou « SHM » (Structural Health Monitoring). Aujourd’hui, les performances des méthodes de contrôle actif peuvent être considérablement dégradées lors de l’apparition d’endommagement. Le contrôle actif tolérant aux dommages ou « DTAC » (Damage Tolerant Active Control) est un champ de recherche récent qui s'intéresse à l'élaboration d'approches intégrées pour réduire les vibrations tout en surveillant l'intégrité de la structure, en identifiant les éventuels dommages, et en reconfigurant la loi de commande.Cette thèse apporte une contribution au DTAC en proposant une approche originale basée sur la norme H∞ modale . Les méthodes proposées se focalisent principalement sur le cas où plusieurs actionneurs et capteurs piézoélectriques non-collocalisés sont utilisés pour atténuer les vibrations des structures endommagées. Le manuscrit comprend quatre parties principales. Le chapitre 2 présente des rappels sur la commande H∞ et sur sa solution sous optimale obtenue par une approche par inégalité matricielle ou « LMI » (Linear Matrix Inequality), sur lesquels s’appuient les développements proposés dans ce travail. Le chapitre 3 décrit la norme H∞ modale introduite pour le contrôle actif des vibrations. Cette commande présente une sélectivité modale élevée, permettant ainsi de se concentrer sur les effets du dommage tout en bénéficiant des propriétés de robustesse qu'offre la commande H∞ vis-à-vis du spillover et des variations de paramètres. Une nouvelle stratégie de rejet des vibrations est proposée au chapitre 4. C'est une approche dite préventive où une prise en compte lors de l'élaboration de la commande H∞ modale, des zones fortement contraintes de la structure, où le risque d’endommagement est élevé est réalisée. Un algorithme SHM est proposé afin d'évaluer la sévérité du dommage pour chaque mode. Le chapitre 5 propose une nouvelle approche modale à double boucle de commande pour faire face à des endommagements imprévisibles. Un premier correcteur est conçu dans ce but pour satisfaire les contraintes de performance et de robustesse sur la structure saine, tandis que le second a pour objectif de conserver un contrôle satisfaisant quand un dommage survient. La loi de commande s'appuie sur un observateur d’état et d'un algorithme SHM pour reconfigurer en ligne le correcteur. Toutes les approches DTAC proposées sont testées en utilisant des simulations (analytiques et éléments finis) et/ou des expérimentations sur des structures intelligentes. / Smart structures have increasingly become present in different industry applications and particularly in the fields of aeronautics and civil engineering. These structures have features that allow interactions with the environment, adapting their characteristics according to the needs (stiffness, damping, viscosity, etc.), monitoring their health or controlling their vibrations. Today smart structure active control methods do not respond appropriately to damage, despite the capacity of external disturbances good rejection. Damage-tolerant active control (DTAC) is a recent research area that aims to develop integrated approaches to reduce the vibrations while monitoring the integrity of the structure, identifying damage occurrence and reconfiguring the control law of the adopted active vibration control method.This thesis contributes to DTAC area, proposing a novel modal control framework and some applying strategies. Developed methods focus in non-collocated flexible structures, where multiples piezoelectric sensors and actuators are used to attenuate damaged structure vibration. The chapters present four main topics and the conclusions. Chapter 2 reviews the regular suboptimal H∞ problem and its respective solution based on the linear matrix inequality (LMI) approach, which is a fundamental tool for the development of subsequent topics. Chapter 3 introduces the modal H∞-norm based method for vibration control, which reveals high modal selectivity, allowing control energy concentration on damage effects and presenting robustness to spillover and parameter variation. A new control strategy is developed in Chapter 4, taking into account existing knowledge about the structure stressed regions with high probability of damage occurrence, leading to specific requirements in the modal H∞ controller design. A structural health monitoring (SHM) technique assesses each damaged mode behavior, which is used to design a preventive controller. Chapter 5 presents a novel modal double-loop control methodology to deal with the unpredictability of damage, nevertheless ensuring a good compromise between robustness and performance to both healthy and damaged structures. For this purpose, the first loop modal controller is designed to comply with regular requirements for the healthy structure behavior, and the second loop controller is reconfigured aiming to ensure satisfactory performance and robustness when and if damage occurs, based on a state-tracking observer and an SHM technique to adapt the controller online. In all these chapters, simulated (analytical and finite elements based) and/or experimental aluminum structures are used to examine the proposed methodology under the respective control strategies. The last chapter subsumes the achieved results for each different approach described in the previous chapters.
244

Contrôle actif d’une suspension de boîte de transmission principale d’hélicoptère / Active control of a helicopter main gearbox suspension system

Rodriguez, Jonathan 22 April 2015 (has links)
L’une des principales sources d’inconfort dans un hélicoptère sont les vibrations transmises par le rotor à la structure de l’appareil. En vol d’avancement, des efforts aérodynamiques cycliques sont subis par l’ensemble des pales en tête rotor et génèrent de très fortes vibrations basse fréquence (aux alentours des 17Hz) transmises aux passagers via la boîte de transmission principale puis le fuselage lui-même. Afin de garantir le confort des membres d’équipage et des passagers, de nombreux systèmes antivibratoires ont été conçus. Ces systèmes sont généralement passifs car la majorité de l’énergie vibratoire transmise à la structure se situe à une fréquence unique ωc correspondant à bΩ avec b le nombre de pales et Ω la fréquence de rotation du rotor. Cependant, les appareils modernes évoluent et le régime rotor jusqu’alors fixe durant toutes les phases de vol varie à présent pour des préoccupations de performances et de consommation (variation de l’ordre de +/-10% autour de bΩ). Cette nouvelle contrainte dans la conception des hélicoptères rend pertinente la technologie des systèmes antivibratoires actifs, pouvant s’adapter à la sollicitation en termes d’amplitude et fréquence. Lors de ces travaux de thèse, la suspension passive SARIB de Airbus Helicopters basée sur le principe du DAVI (Dynamic Antiresonant Vibration Isolator) est modifiée afin d’être rendue active par ajout d’une partie actuation/commande. La théorie des lois et algorithmes de contrôle utilisés dans ces travaux, est présentée en détail afin de poser solidement les bases du contrôle actif du prototype de suspension conceptualisé ici à savoir le contrôle FXLMS (adaptatif) et le contrôle optimal LQG. Afin de simuler le fonctionnement du système, un modèle tridimensionnel de la suspension active est construit, couplé à la structure souple de l’hélicoptère (NH90). Sur ce modèle sont alors appliquées les différentes lois de commande introduites auparavant et leurs performances comparées dans différents cas de chargement en tête rotor et surtout pour différentes fréquences de sollicitation. De même, pour chaque algorithme, différentes localisations des capteurs d’erreur sont étudiées afin de converger vers une configuration optimale. Les simulations démontrent que l’algorithme FXLMS feedforward est très bien adapté au contrôle des perturbations harmoniques et permet de réduire très significativement le niveau vibratoire du plancher cabine, sans réinjection parasite dans le reste de la structure. Une comparaison de l’efficacité du SARIB actif avec les systèmes d’absorbeurs en cabine est ensuite effectuée pour démontrer la pertinence d’utiliser le principe du DAVI comme base d’un système actif. Les travaux de cette thèse traitent également des essais réalisés en laboratoire sur le prototype échelle 1 de la suspension SARIB active avec contrôle FXLMS. / One of the main causes of discomfort in helicopters are the vibrations transmitted from the rotor to the structure. In forward flight, the blades are submitted to cyclic aerodynamic loads which generate low frequency (around 17Hz) but high energy mechanical vibrations. These vibrations are transmitted from the rotor to the main gearbox, then to the structure and finally to the crew and passengers. In order to maintain acceptable comfort for crew members and passengers, a lot of antivibration devices have been developed since the last 30 years. These systems are generally passive because most of the mechanical energy transmitted to the structure is at only one frequency ωc which is equal to the product bΩ with b the number of blades and Ω the rotor rotational speed. However, modern helicopters evolve and the rotor rpm, which has always been considered as fixed during flight is now a function of time, depending on the flight phases in order to increase performances and reduce energy consumption (variation bandwidth of Ω +/- 10%). This new constraint on the design of helicopters makes the active antivibration technology completely relevant with its capacity to adapt in terms of amplitude and frequency to the perturbation. During this thesis, the passive suspension called SARIB from Airbus Helicopters, based on the DAVI principle (Dynamic Antiresonant Vibration Isolator) is modified in order to implement active components and command (actuation). The theory of the control algorithms used in this thesis is presented in detail in order to define the theoretical tools of the active DAVI control which are : FXLMS control (adaptive control) and LQG (optimal control). To simulate the complete system, a 3D multibody model of the active suspension has been set up, coupled to a the flexible structure of a NH90 (Airbus Helicopters). On this model are applied the different control algorithms presented before and their performances are compared for different loads with variable frequency on the rotor hub. In the same way, different locations for the error sensors in the structure are studied to find the optimal control configuration. The simulations show that the FXLMS algorithm is well suited for the control of harmonic perturbations and reduce significantly the dynamic acceleration level on the cabin floor, without parasite reinjection on other parts of the structure. A comparison of the active SARIB with classical cabin vibration absorbers is also made in terms of efficiency in order to show the advantages of using the DAVI system as a base for an active antivibration device. Finally, this thesis also presents the experiments realized in the dynamics laboratory of Airbus Helicopters on a 1:1 scale prototype of the active SARIB suspension with FXLMS control. The results demonstrate the efficiency of the active suspension architecture and control algorithms.
245

Enhanced self-powered vibration damping of smart structures by modal energy transfer / Amélioration du contrôle vibratoire autonome de smart structures par échange modal d’énergie

Wang, Zhen 20 July 2015 (has links)
Le travail de cette thèse propose une nouvelle méthode de contrôle appelée SSDH (Synchronized Switch Damping and Harvesting) basée sur l’idée de redistribution de l’énergie récupérée pour réduire l’énergie vibratoire d’une structure. De nombreuses recherches ont concerné le contrôle de vibration des structures souples. L’utilisation de l’approche modale pour ce genre de structure présente de nombreux intérêts. Dans le cadre de cette thèse l’idée est de récupérer l’énergie des modes qui ne sont pas contrôlés de façon à améliorer l’effet d’amortissement des modes ciblés par le contrôle sur une même structure. Pour cela, sur la base de la technique semi-active de contrôle, un circuit de contrôle modal a été conçu pour être compatible, via un convertisseur, avec des techniques semi-active de récupération d’énergie qui ont elles même été adaptées en modal. Plusieurs variantes de la méthode SSDH ont été testées en simulation. De façon à estimer l’efficacité du concept, une application sur un modèle expérimental d’une smart structure simple est proposée. Actionneurs et capteurs utilisent des matériaux piézoélectriques qui présentent les effets directs et inverses utiles pour la récupération d’énergie et le contrôle vibratoire. Après optimisation des différents paramètres électromécaniques et électriques, les résultats des simulations menées sous excitations bisinusoidale ou en bruit blanc, montrent que la nouvelle méthode de contrôle autoalimentée SSDH est efficace et robuste. Elle améliore sensiblement l’amortissement produit par les techniques semi-actives modales de base (SSDI) grâce à l’utilisation de l’énergie modale récupérée. / In a context of embedded structures, the next challenge is to develop an efficient, energetically autonomous vibration control technique. Synchronized Switch Damping techniques (SSD) have been demonstrated interesting properties in vibration control with a low power consumption. For compliant or soft smart structures, modal control is a promising way as specific modes can be targetted. This Ph-D work examines a novel energy transfer concept and design of simultaneous energy harvesting and vibration control on the same host structure. The basic idea is that the structure is able to extract modal energy from the chosen modes, and utilize this harvested energy to suppress the target modes via modal control method. We propose here a new technique to enhance the classic SSD circuit due to energy harvesting and energy transfer. Our architecture called Modal Synchronized Switching Damping and Harvesting (Modal SSDH) is composed of a harvesting circuit (Synchronized Switch Harvesting on Inductor SSHI), a Buck-Boost converter and a vibration modal control circuit (SSD). Various alternatives of our SSDH techniques were proposed and simulated. A real smart structure is modeled and used as specific case to test the efficiency of our concept. Piezoelectric sensors and actuators are taken as active transducers, as they develop the direct and inverse effects useful for the energy harvesting and the vibration damping. Optimization are running out and the basic design factors are discussed in terms of energy transfer. Simulations, carried out under bi-harmonic and noise excitation, underline that our new SSDH concept is efficient and robust. Our technique improve the damping effect of semi-active method compared to classic SSD method thanks to the use of harvested modal energy.
246

Evolutionary Optimization For Vibration Analysis And Control

Dutta, Rajdeep 03 1900 (has links) (PDF)
Problems in the control and identification of structural dynamic systems can lead to multimodal optimization problems, which are difficult to solve using classical gradient based methods. In this work, optimization problems pertaining to the vibration control of smart structures and the exploration of isospectral systems are addressed. Isospectral vibrating systems have identical natural frequencies, and existence of the isospectral systems proves non-uniqueness in system identification. For the smart structure problem, the optimal location(s) of collocated actuator(s)/sensor(s) and the optimal feedback gain matrix are obtained by maximizing the energy dissipated by the feedback control system. For the isospectral system problem, both discrete and continuous systems are considered. An error function is designed to calculate the error between the spectra of two distinct structural dynamic systems. For the discrete system, the Jacobi matrix, derived from the given system, is modified and the problem is posed as an optimization problem where the objective is to minimize the non-negative error function. Isospectral spring-mass systems are obtained. For the continuous system, finite element modeling is used and an error function is designed to calculate the error between the spectra of the uniform beam and the non-uniform beam. Non-uniform cantilever beams which are isospectral to a given uniform cantilever beam are obtained by minimizing the non-negative error function. Numerical studies reveal several isospectral systems, and optimal gain matrices and sensor/actuator locations for the smart structure. New evolutionary algorithms, which do not need genetic operators such as crossover and mutation, are used for the optimization. These algorithms are: Artificial bee colony (ABC) algorithm, Glowworm swarm optimization (GSO) algorithm, Firefly algorithm (FA) and Electromagnetism inspired optimization (EIO) algorithm.
247

DIGITAL HYDRAULICS IN ELECTRIC HYBRID VEHICLES TO IMPROVE EFFICIENCY AND BATTERY USE

Jorge Leon Quiroga (9192758) 31 July 2020 (has links)
The transportation sector consumes around 70% of all petroleum in the US. In recent years, there have been improvements in the efficiency of the vehicles, and hybrid techniques that have been used to improve efficiency for conventional combustion vehicles. Hydraulic systems have been used as an alternative to conventional electric regenerative systems with good results. It has been proven that hydraulic systems can improve energy consumption in conventional combustion vehicles and in refuse collection vehicles. The control strategy has a large impact on the performance of the system and studies have shown the control strategy selection should be optimized and selected based on application. The performance of a hydraulic accumulator was compared with the performance of a set of ultracapacitors with the same energy storage capacity. The energy efficiency for the ultracapacitor was around 79% and the energy efficiency of the hydraulic accumulator was 87.7%. The power/mass ratio in the set of ultracapacitors was 2.21 kW/kg and 2.69 kW/kg in the hydraulic accumulator. The cost/power ratio is 217 US$/kW in the ultracapacitors and 75 US$/kW in the hydraulic accumulator. Based on these results, the hydraulic accumulator was selected as the energy storage device for the system. A testbench was designed, modeled, implemented to test the energy storage system in different conditions of operation. The experimental results of the testbench show how system can be actively controlled for different operating conditions. The operating conditions in the system can be adjusted by changing the number of rheostats connected to the electric generator. Different variables in the system were measured such as the angular shaft speed in the hydraulic pump, the torque and speed in the hydraulic motor, the pressure in the system, the flow rate, and the current and voltage in the electric generator. The control algorithm was successfully implemented, the results for the pressure in the system and the angular speed in the electric generator show how the control system can follow a desired reference value. Two different controllers were implemented: one controller for the pressure in the system, and one controller for the speed.
248

DEVELOPMENT OF SOURCE-PATH MODELS TO SYNTHESIZE PRODUCT SOUNDS OF AN OUTDOOR HVAC UNIT

Wesaam Lepak (9193604) 03 August 2020 (has links)
Outdoor heating, ventilating, and air-conditioning (HVAC) units emit a significant amount of noise, which may lead to poor sound quality and a perceived low product quality. It is the job of the noise control engineer to reduce the undesired noise and improve the sound quality of the outdoor HVAC unit to decrease consumer annoyance. There is great interest in developing a detailed and accurate acoustic model of the outdoor HVAC unit so that the sound of the outdoor HVAC unit can be listened to before the unit is constructed. Having an acoustic model which can synthesize sounds allows the noise control engineer to evaluate and improve the sound quality of the outdoor HVAC unit during the design process, without the need for extensive prototyping. Acoustical holography methods will be used to identify and localize noise due to the fan, and other significant noise sources, to visualize the sound field. In the current study, an acoustic model is described which can be used to model the noise due to structural radiation and vortex shedding of the outdoor HVAC unit’s rotating fan blades, one of the top contributors to the unit’s overall noise level. This moving source model simulates the Doppler effect which occurs when the blade moves towards and away from a receiver. The results from this moving source model is shown for different source signals, including sinusoidal, bandpass random, repeating random, and sinusoidal with time-varying frequency source signals. The parameters of this moving source model will be optimized to reproduce the experimental results, including the power spectral densities, tonal power component, and auralizations.
249

DEVELOPMENT OF AN ELECTRO-HYDRAULIC ACTUATION SYSTEM TO ENABLE ELECTRIFICATION OF MOBILE HYDRAULIC SYSTEMS

Shaoyang Qu (12879053) 15 June 2022 (has links)
<p>The electrification trend affecting off-road vehicles is paving the way toward dedicated electrified hydraulic actuation systems. Although traditional centralized fluid power architectures are still utilized in many applications for low cost, power density, and reliability, nowadays emission policy results in an increasing interest in developing electro-hydraulic actuator (EHA) solutions. EHAs enable non-throttling actuation and energy recuperation during overrunning loads, leading to higher transmission efficiency and lower fuel consumption. These features in energy efficiency make EHAs competitive in meeting emission regulations compared to conventional hydraulic solutions.</p> <p>The key challenge in developing the EHA solution comes from the high cost and space requirements, especially for the adoption of self-contained EHAs in mobile applications. In this study, two architectures for the EHA are proposed, a closed-circuit architecture and an open-circuit one, to determine the most practical and efficient configuration. The most effective open-circuit architecture with distributed concepts is further investigated for implementation, which requires less modification of the mechanical structures and performs more efficiently than the closed-circuit alternative. The proposed EHA is driven by an electro-hydraulic unit (EHU) consisting of a variable-speed electric motor and a fixed-displacement hydraulic pump, which is relatively cost-effective. A novel hydraulic configuration is proposed, which allows the EHA to cover full-speed operating ranges in four quadrants. </p> <p>To verify the EHA design, the behavior of the proposed system should be predicted prior to costly experiments and demonstrations. For this purpose, an integrated simulation model is developed based on the lumped parameter approach in the Amesim environment. The model includes the electric system, the hydraulic system, and the mechanism to be implemented, which are capable of flexible analysis of functionality, efficiency, and thermal performance.</p> <p>In this work, a dedicated test rig for EHA testing is developed. The test rig can help verify EHA performance, test the control algorithm, and diagnose errors before implementing the system on real applications. The experimental results from the test rig also validate the simulation model. An independent load drive of the test rig allows testing all possible  loading conditions of the proposed EHA, thus demonstrating the energy performance in four quadrants. Thermal behavior is investigated with long duty cycles to determine the need for additional cooling equipment. After the validation of the hydraulic configuration, a power electronics setup is added to the test rig, which allows to drive the EHA system with the novel designed EHUs. Validation on the test platform paves the way for implementation in a vehicle. </p> <p>As a final step, the proposed EHA system is implemented in a reference vehicle, a Case New Holland TV380 skid steer loader. A novel designed EHU is adopted to drive the system for technology demonstration. The energy savings capacity of the EHA is investigated in comparison to the baseline measurements of the traditional open-center hydraulic architecture. The impressive savings from the reduction of throttling losses and energy recovery guide the possible commercialization of such EHAs in mobile hydraulic applications. The controller design of the implemented EHA system is investigated with the aim of improving the dynamic performance, e.g., reducing damping oscillation. Basic power management strategies are also studied to integrate EHA with the power train of current hydraulic machines. Regarding future work, based on this research but not within the scope of this study, the proposed EHA system can be adopted with different types of prime movers, such as axial piston machines as the hydraulic part of an EHU. Furthermore, the design approach proposed in this study can help resize the EHA system for other applications with different loading conditions and power requirements, and the energy savings capability can be further investigated. With this, a comprehensive market analysis will be performed for the commercialization of EHA. </p>
250

MICRO-SCALE THERMO-MECHANICAL RESPONSE OF SHOCK COMPRESSED MOCK ENERGETIC MATERIAL AT NANO-SECOND TIME RESOLUTION

Abhijeet Dhiman (5930609) 11 March 2022 (has links)
<p>Raman spectroscopy is a molecular spectroscopy technique that uses monochromatic light to provide a fingerprint to identify structural components and chemical composition. Depending on the changes in the unit-cell parameters and volume under the application of stress and temperature, the Raman spectrum undergoes changes in the wavenumber of Raman-active modes that allow identification of sample characteristics. Due to the various advantage of mechanical Raman spectroscopy (MRS), the use of this technique in the characterization and modeling of chemical changes under stress and temperature have gained popularity. </p> <p> Quantitative information regarding the local behavior of interfaces in an inhomogeneous material during shock loading is limited due to challenges associated with time and spatial resolution. Recently, we have extended the use of MRS to high-strain rate experiments to capture the local thermomechanical response of mock energetic material and obtain material properties during shock wave propagation. This was achieved by developing a novel method for <i>in‑situ</i> measurement of the thermo‑mechanical response from mock energetic materials in a time‑resolved manner with 5 ns resolution providing an estimation on local pressure, temperature, strain rate, and local shock viscosity. The results show the solid to liquid phase transition of sucrose under shock compression. The viscous behavior of the binder was also characterized through measurement of shock viscosity at strain rates higher than 10<sup>6</sup>/s using microsphere impact experiments.</p> <p> This technique was further extended to perform Raman spectral imaging over a microscale domain of the sample with a nano-second resolution. This was achieved by developing a laser-array Raman spectral imaging technique where simultaneous deconvolution of Raman spectra over the sample domain was achieved and Raman spectral image was reconstructed on post-processing. We developed a Raman spectral imaging system using a laser array and analysis was performed over the interface of sucrose crystals bonded using an epoxy binder. This study provides the Raman spectra over the microstructure domain which enabled the detection of localized melting under shock compression. The distribution of shock pressure and temperature over the microstructure was obtained using mechanical Raman analysis. The study shows the effects of an actual interface on the propagation of shock waves where a higher dissipation of shock energy was observed compared to an ideal interface. This increase in shock dissipation is accompanied by a decrease in both the maximum temperature, as well as the maximum pressure within the microstructure during shock wave propagation.</p>

Page generated in 0.0677 seconds