Spelling suggestions: "subject:"¨übergangsmetall""
1 |
Cellulose based transition metal nano-composites : structuring and developmentGlatzel, Stefan January 2013 (has links)
Cellulose is the most abundant biopolymer on earth. In this work it has been used, in various forms ranging from wood to fully processed laboratory grade microcrystalline cellulose, to synthesise a variety of metal and metal carbide nanoparticles and to establish structuring and patterning methodologies that produce highly functional nano-hybrids.
To achieve this, the mechanisms governing the catalytic processes that bring about graphitised carbons in the presence of iron have been investigated. It was found that, when infusing cellulose with an aqueous iron salt solution and heating this mixture under inert atmosphere to 640 °C and above, a liquid eutectic mixture of iron and carbon with an atom ratio of approximately 1:1 forms. The eutectic droplets were monitored with in-situ TEM at the reaction temperature where they could be seen dissolving amorphous carbon and leaving behind a trail of graphitised carbon sheets and subsequently iron carbide nanoparticles. These transformations turned ordinary cellulose into a conductive and porous matrix that is well suited for catalytic applications. Despite these significant changes on the nanometre scale the shape of the matrix as a whole was retained with remarkable precision. This was exemplified by folding a sheet of cellulose paper into origami cranes and converting them via the temperature treatment in to magnetic facsimiles of those cranes. The study showed that the catalytic mechanisms derived from controlled systems and described in the literature can be transferred to synthetic concepts beyond the lab without loss of generality.
Once the processes determining the transformation of cellulose into functional materials were understood, the concept could be extended to other metals and metal-combinations. Firstly, the procedure was utilised to produce different ternary iron carbides in the form of MxFeyC (M = W, Mn). None of those ternary carbides have thus far been produced in a nanoparticle form. The next part of this work encompassed combinations of iron with cobalt, nickel, palladium and copper. All of those metals were also probed alone in combination with cellulose. This produced elemental metal and metal alloy particles of low polydispersity and high stability. Both features are something that is typically not associated with high temperature syntheses and enables to connect the good size control with a scalable process. Each of the probed reactions resulted in phase pure, single crystalline, stable materials.
After showing that cellulose is a good stabilising and separating agent for all the investigated types of nanoparticles, the focus of the work at hand is shifted towards probing the limits of the structuring and pattering capabilities of cellulose. Moreover possible post-processing techniques to further broaden the applicability of the materials are evaluated.
This showed that, by choosing an appropriate paper, products ranging from stiff, self-sustaining monoliths to ultra-thin and very flexible cloths can be obtained after high temperature treatment. Furthermore cellulose has been demonstrated to be a very good substrate for many structuring and patterning techniques from origami folding to ink-jet printing. The thereby resulting products have been employed as electrodes, which was exemplified by electrodepositing copper onto them. Via ink-jet printing they have additionally been patterned and the resulting electrodes have also been post functionalised by electro-deposition of copper onto the graphitised (printed) parts of the samples. Lastly in a preliminary test the possibility of printing several metals simultaneously and thereby producing finely tuneable gradients from one metal to another have successfully been made. Starting from these concepts future experiments were outlined.
The last chapter of this thesis concerned itself with alternative synthesis methods of the iron-carbon composite, thereby testing the robustness of the devolved reactions. By performing the synthesis with partly dissolved scrap metal and pieces of raw, dry wood, some progress for further use of the general synthesis technique were made. For example by using wood instead of processed cellulose all the established shaping techniques available for wooden objects, such as CNC milling or 3D prototyping, become accessible for the synthesis path. Also by using wood its intrinsic well defined porosity and the fact that large monoliths are obtained help expanding the prospect of using the composite. It was also demonstrated in this chapter that the resulting material can be applied for the environmentally important issue of waste water cleansing. Additionally to being made from renewable resources and by a cheap and easy one-pot synthesis, the material is recyclable, since the pollutants can be recovered by washing with ethanol. Most importantly this chapter covered experiments where the reaction was performed in a crude, home-built glass vessel, fuelled – with the help of a Fresnel lens – only by direct concentrated sunlight irradiation. This concept carries the thus far presented synthetic procedures from being common laboratory syntheses to a real world application.
Based on cellulose, transition metals and simple equipment, this work enabled the easy one-pot synthesis of nano-ceramic and metal nanoparticle composites otherwise not readily accessible. Furthermore were structuring and patterning techniques and synthesis routes involving only renewable resources and environmentally benign procedures established here. Thereby it has laid the foundation for a multitude of applications and pointed towards several future projects reaching from fundamental research, to application focussed research and even and industry relevant engineering project was envisioned. / Die vorliegende Arbeit beschäftigt sich mit der Synthese und Strukturierung von Nanokompositen, d.h. mit ausgedehnten Strukturen, welche Nanopartikel enthalten.
Im Zuge der Arbeit wurde der Mechanismus der katalytischen Graphitisierung, ein Prozess, bei dem ungeordneter Kohlenstoff durch metallische Nanopartikel in geordneten (graphitischen) Kohlenstoff überführt wird, aufgeklärt. Dies wurde exemplarisch am Beispiel von Zellulose und Eisen durchgeführt. Die untersuchte Synthese erfolgte durch das Lösen eines Eisensalzes in Wasser und die anschließende Zugabe von so viel Zellulose, dass das die gesamte Eisensalzlösung aufgenommen wurde. Die so erhaltene Mischung wurde anschließend unter Schutzgas innerhalb kürzester Zeit auf 800 °C erhitzt. Hierbei zeigte sich, dass zu Beginn der Reaktion Eisenoxidnanopartikel (Rost) auf der Oberfläche der Zellulose entstehen. Beim weiteren Erhöhen der Temperatur werden diese Partikel zu Eisenpartikeln umgewandelt. Diese lösen dann kleine Bereiche der Zellulose auf, wandeln sich in Eisenkarbid um und scheiden graphitischen Kohlenstoff ab. Nach der Reaktion sind die Zellulosefasern porös, jedoch bleibt ihre Faserstruktur vollkommen erhalten. Dies konnte am Beispiel eines Origamikranichs gezeigt werden, welcher nach dem Erhitzen zwar seine Farbe von Weiß zu Schwarz verändert hatte, ansonsten aber seine Form vollkommen beibehält. Aufgrund der eingebetteten Eisenkarbid Nanopartikel war der Kranich außerdem hochgradig magnetisch.
Basierend auf dieser Technik wurden außerdem winzige metallische Nanopartikel aus Nickel, Nickel-Palladium, Nickel-Eisen, Kobalt, Kobalt-Eisen und Kupfer, sowie Partikel aus den Verbundkarbiden Eisen-Mangan-Karbid und Eisen-Wolfram-Karbid, jeweils in verschiedenen Mischungsverhältnissen, hergestellt und analysiert.
Da die Vorstufe der Reaktion flüssig ist, konnte diese mit Hilfe eines einfachen kommerziellen Tintenstrahldruckers strukturiert auf Zellulosepapier aufgebracht werden. Dies ermöglicht gezielt Leiterbahnen, bestehend aus graphitisiertem Kohlenstoff, in ansonsten ungeordnetem (amorphen) Kohlenstoff zu erzeugen. Diese Methode wurde anschließend auf Systeme mit mehreren Metallen übertragen. Hierbei wurde die Tatsache, dass moderne Drucker vier Tintenpatronen beherbergen, ausgenutzt um Nanopartikel mit beliebigen Mischungsverhältnisse von Metallen zu erzeugen. Dieser Ansatz hat potentiell weitreichende Auswirkungen im Feld der Katalyse, da hiermit hunderte oder gar tausende Mischungen simultan erzeugt und getestet werden können. Daraus würden sich große Zeiteinsparungen (Tage anstelle von Monaten) bei der Entwicklung neuer Katalysatoren ergeben.
Der letzte Teil der Arbeit beschäftigt sich mit der umweltfreundlichen Synthese der obengenannten Komposite. Hierbei wurden erfolgreich Altmetall und Holzstücke als Ausgangstoffe verwandt. Zusätzlich wurde gezeigt, dass die gesamte Synthese ohne Verwendung von hochentwickeltem Equipment durchgeführt werden kann. Dazu wurde eine sogenannte Fresnel-Linse genutzt um Sonnenlicht zu bündeln und damit direkt die Reaktionsmischung auf die benötigten 800 °C zu erhitzen. Weiterhin wurde ein selbst gebauter Glasreaktor eingesetzt und gezeigt, wie das entstehende Produkt als Abwasserfilter genutzt werden kann. Die Kombination dieser Ergebnisse bedeutet, dass dieses System sich beispielsweise zum Einsatz in Katastrophenregionen eignen würde, um ohne Strom und besondere Ausrüstung vor Ort Wasserfilter herzustellen.
|
2 |
New Developments in the Crystal Chemistry of Selected Borophosphates and PhosphatesMenezes, Prashanth W. 17 November 2009 (has links) (PDF)
Borophosphates are intermediate compounds of systems MxOy–B2O3–P2O5–(H2O) (M = main group or transition metal) which contain complex anionic structures built of interconnected trigonal–planar BO3 and / or BO4 and PO4 groups and their partially protonated species. The main objective of the present work was to synthesize, characterize and to study the properties of new selected 3d transition metal borophosphates. The selected four elements are scandium (Sc), iron (Fe), cobalt (Co) and nickel (Ni) due to their interesting contributions to borophosphate structural chemistry. The mild hydrothermal method was employed for the syntheses.
During the investigation of borophosphates containing alkali–metals and scandium, the following three compounds were prepared and structurally characterized:
MISc[BP2O8(OH)] (MI = K, Rb), CsSc[B2P3O11(OH)3]
The anionic partial structure of MISc[BP2O8(OH)] (MI = K, Rb) consists of the well known open–branched four–membered rings of alternating borate and phosphate tetrahedra (a loop–branched hexamer with B : P = 1 : 2). The anionic partial structure of CsSc[B2P3O11(OH)3] represents the new type of oligomer containing boron in three– and four– fold coordination (B : P = 2 : 3). This is also the first time that a BO3 group is not only linked to borate species but also to a phosphate tetrahedron. This kind of oligomer was already predicted for borates but was never observed. By this, CsSc[B2P3O11(OH)3] is a special compound with regard to the structural building principles of borates and borophosphates. The significant differences in the crystal structures of MISc[BP2O8(OH)] (MI = K, Rb) and CsSc[B2P3O11(OH)3] may be due to the higher coordination number of cesium. Thermal treatment (up to 1000 ºC) of these compounds resulted in white crystalline products containing new phases with unknown crystal structures.
Besides the discovery of alkali–metal scandium borophosphates, five new alkali metal scandium hydrogenphosphates were synthesized and structurally characterized:
Li2Sc[(PO4)(HPO4)], MISc(HPO4)2 (MI = K, Rb, Cs, NH4)
It was already predicted that open framework scandium phosphates should be isotypes of the respective indium phosphates. It was also stated that there should be a whole family of scandium hydrogenphosphates as we were able to confirm with the five novel compounds. Our systematic study reveals the structural changes of the anionic partial frameworks with increasing ionic radii of the alkali–metal ion. With respect to the M―T connections (M = six coordinated central metal atom, T = four coordinated phosphorous atom) the channel size increases from 8–membered rings in Li2Sc[(PO4)(HPO4)] to 12–membered rings in MISc(HPO4)2 (MI = K, Rb, Cs, NH4). KSc(HPO4)2 exhibits a new structure type in the family of monohydrogenphosphates with the general formula MIMIII(HPO4)2. This provides further evidence that scandium is a suitable element for the synthesis of framework structures with different channel sizes. The observation that in analogy to MISc(HPO4)2 (MI = Rb, Cs, NH4) a compound exists where the MI site is replaced by H3O+ gives rise to the hope that ion exchange properties could be of interest in this class of compounds. In addition, the possible existence of further modifications (as reported for the element–combinations RbV, NH4V, RbFe, and CsIn) shoud be investigated by thermoanalytical and X–ray methods.
The extensive studies on borophosphate containing the transition metals Fe, Co, Ni together with alkaline earth–metals (Mg, Ca, Sr, Ba) led to the preparation of 13 compounds containing the combination of two different divalent M1IIM2II ions:
CaM2II[BP2O7(OH)3] (M2II = Fe, Ni), BaM2II[BP2O8(OH)] (M2II = Fe, Co),
SrFe[BP2O8(OH)2], CaCo(H2O)[BP2O8(OH)]•H2O,
M1II0.5M2II(H2O)2[BP2O8]•H2O (M1II0.5 = Ca, Sr, Ba; M2II = Fe, Co, Ni)
The anionic partial structure of CaM2II[BP2O7(OH)3] (M2II = Fe, Ni) consists of a tetrahedral triple [BP2O7(OH)3]4-, built from a central (HO)2BO2 tetrahedron sharing common vertices with two (H0.5)OPO3 tetrahedra. The complex anions in the crystal structure of BaM2II[BP2O8(OH)] (M2II = Fe, Co) comprises open–branched four–membered rings, [B2P4O16(OH)2]8-, which are formed by alternating (HO)BO3 and PO4 tetrahedra sharing common corners with two additional PO4 branches. The interconnection of these complex anions with M2II coordination octahedra (M2II = Fe, Co, Ni) by sharing common corners results in overall three–dimensional frameworks which contain channels filled with the M1II ions (M1II = Ca, Ba). The anionic partial structure of SrFe[BP2O8(OH)2] is built from a central (HO)2BO2 tetrahedron sharing common vertices with two PO4 tetrahedra. Surprisingly, SrFe[BP2O8(OH)2] represents the first example in the structural chemistry of borophosphates where the charge of the anionic partial structure is balanced by a divalent and a trivalent species (MIIMIII). Although being a member of the M1IIM2II[BP2O8(OH)] family the crystal structure of CaCo(H2O)[BP2O8(OH)]•H2O is different. Interestingly, this is the first case in the borophosphate structural chemistry where dimers of cobalt coordination octahedra together with borophosphate oligomers form a (two–dimensional) layered structure.
The helical borophosphates M1II0.5M2II(H2O)2[BP2O8]•H2O (M1II0.5 = Ca, Sr, Ba; M2II = Fe, Co, Ni) contain one–dimensional infinite loop–branched borophosphate helices built of alternatively distorted borate and phosphate tetrahedra. Up to now, the group of compounds with 1[BP2O8]3– helical chain anions has been synthesized only in combination with different cations MIMII and MIII (MI = Li, Na, K; MII = Mg, Mn, Fe, Co, Ni, Zn; MIII = Sc, In, Fe). The systematic investigation on helical borophosphates of transition metals (Fe, Co, Ni) and alkaline–earth metals showed that it is also possible to accommodate divalent metal cations within the structure without disturbing the anionic partial structure. It was not possible to find the completely ordered structural model for the compounds M1II0.5M2II(H2O)2[BP2O8]•H2O (M1II0.5 = Ca, Sr, Ba; M2II = Co) but the substructure presented shows good agreement with the ordered known helical borophosphate compounds. Interestingly, it was also possible to judge the “kind of superstructure” against the crystal morphology.
Syntheses of one of the few examples of borophosphates containing layered anionic partial structures (63 net topology) containing transition metal cations (Fe, Co, Ni) was realized with 6 isotypic compounds:
MII(H2O)2[B2P2O8(OH)2]•H2O (MII = Fe, Co, Ni, Ni0.5Co0.5, Ni0.8Zn0.2, Ni0.5Mg0.5)
The compounds MII(H2O)2[B2P2O8(OH)2]•H2O (MII = Fe, Co, Ni) adopt the structure type of Mg(H2O)2[B2P2O8(OH)2]•H2O characterized by a two–dimensional borophosphate anion. Substitution on the transition metal sites was shown to be possible (Ni0.5Co0.5) realized for this structure type. With the synthesis of Ni0.8Zn0.2(H2O)2[B2P2O8(OH)2]•H2O and Ni0.5Mg0.5(H2O)2[B2P2O8(OH)2]•H2O it was also proved that magnetically diluted samples can be prepared in analogy to Mg1–x Cox(H2O)2[B2P2O8(OH)2]•H2O (x = 0.25). The thermal stability of these compounds is very similar with a slight shift to higher decomposition temperatures for the Ni0.5Mg0.5(H2O)2[B2P2O8(OH)2]•H2O. In contrast to other borophosphates such as MIMII(H2O)2[BP2O8]∙H2O and MIII(H2O)2[BP2O8]∙H2O, it is not possible to rehydrate partially dehydrated samples even though the crystal structure may suggest this property. This shows that the aqua–ligands significantly contribute to the stability of the structure. The magnetic behavior of MII(H2O)2[B2P2O8(OH)2]•H2O (MII = Fe, Ni) corresponds well with separated 3d ions without strong magnetic interactions down to 1.8 K. Quite surprising was the remarkable change in the crystal habit that was observed during the synthesis upon addition of alkali–metal cations. Syntheses with the absence of alkali–metals lead to a change in the crystal habit by reducing of the number of faces in direction of the more simple prismatic morphology.
Our research on borophosphates containing mixed transition metals led to the preparation of a borophosphate and a phosphate:
FeCo(H2O)[BP3O9(OH)4], Fe1.3Co0.7[P2O7]∙2H2O
The anionic partial structure of FeCo(H2O)[BP3O9(OH)4] is an open–branched tetramer built from (HO)BO3 sharing common O–corners with one (HO)PO3, one (HO)2PO2 and one PO4 group. The crystal structure is an isotype to Mg2(H2O)[BP3O9(OH)4]. Fe1.3Co0.7[P2O7]∙2H2O contains the diphosphate composed of two corner–sharing tetrahedra (isotypic to MII[X2O7]∙2H2O (MII = Mg, Mn, Co, Fe and X = P, As). However, the crystal structure of both, FeCo(H2O)[BP3O9(OH)4] and Fe1.3Co0.7[P2O7]∙2H2O, contains octahedral zigzag chains, which are interconnected by the respective tetrahedral anions. The octahedral chains in these crystal structures are closely related to the octahedral arrangements in MIIH2P2O7 (MII = Co, Ni) which exhibit a field-induced metamagnetic behavior from an antiferromagnetic state to a ferromagnetic state and to MII[BPO4(OH)2] (MII = Mn, Fe, Co) which indicate a low-dimensional antiferromagnetic correlation of the MII ions by dominant exchange interactions within the one–dimensional octahedral chain structure. Therefore, due to the similar structural features, FeCo(H2O)[BP3O9(OH)4] and Fe1.3Co0.7[P2O7]∙2H2O may exhibit interesting magnetic properties. Thermal investigation revealed that both compounds are stable until 300 ºC and transform into pyrophosphates at higher temperatures. Fe1.3Co0.7[P2O7]∙2H2O represents the first hydrated mixed divalent cation diphosphate.
|
3 |
Neue Methoden zur Fluorierung von Verbindungen früher ÜbergangsmetalleSchormann, Mark 30 October 2000 (has links)
No description available.
|
4 |
Cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O'Kane and Al'Shehbaz and Arabidopsis thaliana (L.) HeynholdHoffmann, Toni January 2007 (has links)
Being living systems unable to adjust their location to changing environmental conditions, plants display homeostatic networks that have evolved to maintain transition metal levels in a very narrow concentration range in order to avoid either deficiency or toxicity. Hence, plants possess a broad repertoire of mechanisms for the cellular uptake, compartmentation and efflux, as well as for the chelation of transition metal ions.
A small number of plants are hypertolerant to one or a few specific transition metals. Some metal tolerant plants are also able to hyperaccumulate metal ions. The Brassicaceae family member Arabidopis halleri ssp. halleri (L.) O´KANE and AL´SHEHBAZ is a hyperaccumulator of zinc (Zn), and it is closely related to the non-hypertolerant and non-hyperaccumulating model plant Arabidopsis thaliana (L.) HEYNHOLD. The close relationship renders A. halleri a promising emerging model plant for the comparative investigation of the molecular mechanisms behind hypertolerance and hyperaccumulation. Among several potential candidate genes that are probably involved in mediating the zinc-hypertolerant and zinc-hyperaccumulating trait is AhHMA3. The AhHMA3 gene is highly similar to AtHMA3 (AGI number: At4g30120) in A. thaliana, and its encoded protein belongs to the P-type IB ATPase family of integral membrane transporter proteins that transport transition metals. In contrast to the low AtHMA3 transcript levels in A. thaliana, the gene was found to be constitutively highly expressed across different Zn treatments in A. halleri, especially in shoots.
In this study, the cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O´KANE and AL´SHEHBAZ and Arabidopsis thaliana (L.) HEYNHOLD is described. Heterologously expressed AhHMA3 mediated enhanced tolerance to Zn and to a much lesser degree to cadmium (Cd) but not to cobalt (Co) in metal-sensitive mutant strains of budding yeast. It is demonstrated that the genome of A. halleri contains at least four copies of AhHMA3, AhHMA3-1 to AhHMA3-4. A copy-specific real-time RT-PCR indicated that an AhHMA3-1 related gene copy is the source of the constitutively high transcript level in A. halleri and not a gene copy similar to AhHMA3-2 or AhHMA3-4.
In accordance with the enhanced AtHMA3mRNA transcript level in A. thaliana roots, an AtHMA3 promoter-GUS gene construct mediated GUS activity predominantly in the vascular tissues of roots and not in shoots. However, the observed AhHMA3-1 and AhHMA3-2 promoter-mediated GUS activity in A. thaliana or A. halleri plants did not reflect the constitutively high expression of AhHMA3 in shoots of A. halleri. It is suggested that other factors e. g. characteristic sequence inserts within the first intron of AhHMA3-1 might enable a constitutively high expression. Moreover, the unknown promoter of the AhHMA3-3 gene copy could be the source of the constitutively high AhHMA3 transcript levels in A. halleri. In that case, the AhHMA3-3 sequence is predicted to be highly homologous to AhHMA3-1.
The lack of solid localisation data for the AhHMA3 protein prevents a clear functional assignment. The provided data suggest several possible functions of the AhHMA3 protein: Like AtHMA2 and AtHMA4 it might be localised to the plasma membrane and could contribute to the efficient translocation of Zn from root to shoot and/or to the cell-to-cell distribution of Zn in the shoot. If localised to the vacuolar membrane, then a role in maintaining a low cytoplasmic zinc concentration by vacuolar zinc sequestration is possible. In addition, AhHMA3 might be involved in the delivery of zinc ions to trichomes and mesophyll leaf cells that are major zinc storage sites in A. halleri. / Pflanzen sind lebende Systeme, die nicht in der Lage sind ihren Standort sich ändernden Umweltbedingungen anzupassen. Infolgedessen weisen Pflanzen homöostatischeNetzwerke auf, welche die Mengen an intrazellulären Übergangsmetallen in einem sehr engen Konzentrationsbereich kontrollieren um somit Vergiftungs- oder Mangelerscheinungen zu vermeiden.
Eine kleine Anzahl von Pflanzen ist hypertolerant gegenüber einem oder mehreren Übergangsmetallen. Einige wenige dieser metalltoleranten Pflanzen sind fähig Übergangsmetalle in beträchtlichen Mengen zu speichern, sprich zu hyperakkumulieren, ohne Vergiftungserscheinungen zu zeigen. Die Haller’sche Schaumkresse (Arabidopis halleri ssp. halleri (L.) O´KANE und AL´SHEHBAZ) aus der Familie der Kreuzblütler (Brassicaceae) ist ein solcher Hyperakkumulator für Zink (Zn). Sie ist nah verwandt mit der Modellpflanze Ackerschmalwand (Arabidopsis thaliana (L.) HEYNHOLD), die jedoch nicht-hypertolerant und nicht-hyperakkumulierend für Übergangsmetalle ist. Diese nahe Verwandtschaft erlaubt vergleichende Studien der molekularen Mechanismen, die Hypertoleranz und Hyperakkumulation zu Grunde liegen. Zu der Gruppe von Kandidatengenen, die möglicherweise von Bedeutung für die Zink-hypertoleranten und -hyperakkumulierenden Eigenschaften von A. halleri sind, gehört AhHMA3, ein Gen mit großer Ähnlichkeit zu AtHMA3 (AGI Nummer: At4g30120) aus A. thaliana. Es kodiert ein Protein aus der Familie transmembraner Übergangsmetall-Transportproteine, den P-typ IB ATPasen. Im Gegensatz zu den niedrigen AtHMA3 Transkriptmengen in A. thaliana wird das AhHMA3 Gen in A. halleri in Gegenwart verschiedener Zn Konzentrationen konstitutiv hoch exprimiert, insbesondere im Spross der Pflanze.
Diese Arbeit beschreibt die Klonierung und Charakterisierung des HMA3 Gens und seines Promoters aus A. halleri und A. thaliana. Es wurde gezeigt, dass heterolog exprimiertes AhHMA3 Protein in metallsensitiven Hefestämmen eine erhöhte Toleranz gegenüber Zink und zu einem geringen Grad gegenüber Kadmium (Cd) jedoch nicht gegenüber Kobalt (Co) vermittelt.Weiterhin wurden im Genom von A. halleri mindestens vier AhHMA3 Genkopien, AhHMA3-1 bis AhHMA3-4, nachgewiesen. Eine Genkopie-spezifische Echtzeit-RT-PCR (real-time RT-PCR) deutete darauf hin, dass eine zu AhHMA3-1 und nicht zu AhHMA3-2 oder AhHMA3-4 ähnliche Genkopie die Quelle der konstitutiv hohen Transkriptmengen in A. halleri ist.
In Übereinstimmung mit erhöhten mRNS Transkriptmengen inWurzeln von A. thaliana, vermittelte ein AtHMA3 Promoter-GUS (ß-Glucuronidase) Genkonstrukt GUS-Aktivität hauptsächlich in den Leitgeweben der Wurzeln jedoch nicht des Sprosses. Die vermittelte GUS-Aktivität durch Promoterfragmente von AhHMA3-1 und AhHMA3-2 in A. thaliana oder A. halleri Pflanzen spiegelte jedoch nicht die konstitutiv hohe AhHMA3 Expression im Spross von A. halleri wieder. Es wird vermutet, dass andere Faktoren die konstitutiv hohe Expression ermöglichen wie zum Beispiel die gefundenen kopiespezifischen Sequenzinsertionen innerhalb des ersten AhHMA3-1 Introns. Weiterhin ist es denkbar, dass der unbekannte Promoter der AhHMA3-3 Genkopie die Quelle der konstitutiv hohen AhHMA3 Transkriptmengen ist. In diesem Fall wird eine sehr hohe Ähnlichkeit zwischen den Sequenzen von AhHMA3-3 und der AhHMA3-1 vorhergesagt.
Es konnten keine deutlichen Ergebnisse zur intrazellulären Lokalisierung gemacht werden, die eine exakte Einordnung der Funktion des AhHMA3 Proteins erlauben würden. Die bisher ermittelten Ergebnisse schlagen jedoch mehrere mögliche Funktionen für AhHMA3 vor: Ähnlich den AhHMA3 homologen Proteinen, AtHMA2 und AtHMA4, könnte AhHMA3 in der Plasmamembran der Zelle sitzen und dort zur effizienten Translokation von Zink aus der Wurzel in den Spross und/oder zur Zell-zu-Zell Verteilung von Zn im Spross beitragen. Falls AhHMA3 in der Membran der Vakuole sitzt, könnte es eine Rolle bei der Aufrechterhaltung niedriger zytoplasmatischer Zinkkonzentrationen durch vakuoläre Zinksequestrierung spielen. Zusätzlich ist es denkbar, dass AhHMA3 an der Abgabe von Zinkionen an Trichome und Blattmesophyllzellen beteiligt ist, die die Haupteinlagerungsorte für Zink in A. halleri darstellen.
|
5 |
Koordinationsverbindungen von Schiff-Basen des 3-Aminopropyltriethoxysilans und 3-(2-Aminoethylamino)-propyl-trimethoxysilans mit α-Hydroxybenzocarbonyl-VerbindungenEfendi, Jon 31 July 2009 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit Untersuchungen zur Komplexbildung von Cu2+, Zn2+, sowie Sn2+ und B(OMe)3 mit den Schiff-Basen aus 3-Aminopropyl-triethoxysilan (APTES) und 3-(2-Aminoethyl-amino)-propyl-trimethoxysilan (AEPTMS) mit α-Hydroxybenzocarbonylverbindungen. Die Liganden und die Komplexe wurden mit IR-, UV/VIS- und NMR-Spektroskopie charakterisiert. IR-Untersuchungen zeigen die charakteristischen C=N- und C=O-Valenzschwingungen. Sie werden durch die Komplexbildung deutlich verschoben. Die 1H- und 13C-NMR-Messungen indizieren die Komplexbildung mit einer signifikanten Verschiebung in den Signallagen der H- und C-Nachbaratome der Donatoratome. 29Si-NMR-Messungen indizieren keine Hydrolyse- und Kondensationsreaktionen im Verlauf der Synthese. Bei der Komplex-Synthese mit wasserhaltigen Übergangsmetallsalzen wurden Produkte von Sol-Gel-Prozessen gefunden. UV/VIS-spektroskopische Untersuchungen an den Mischungen der Übergangsmetallsalze mit APTES bzw. AEPTMS zeigen die Bildung typischer Aminkomplexe.
|
6 |
New Developments in the Crystal Chemistry of Selected Borophosphates and PhosphatesMenezes, Prashanth W. 19 October 2009 (has links)
Borophosphates are intermediate compounds of systems MxOy–B2O3–P2O5–(H2O) (M = main group or transition metal) which contain complex anionic structures built of interconnected trigonal–planar BO3 and / or BO4 and PO4 groups and their partially protonated species. The main objective of the present work was to synthesize, characterize and to study the properties of new selected 3d transition metal borophosphates. The selected four elements are scandium (Sc), iron (Fe), cobalt (Co) and nickel (Ni) due to their interesting contributions to borophosphate structural chemistry. The mild hydrothermal method was employed for the syntheses.
During the investigation of borophosphates containing alkali–metals and scandium, the following three compounds were prepared and structurally characterized:
MISc[BP2O8(OH)] (MI = K, Rb), CsSc[B2P3O11(OH)3]
The anionic partial structure of MISc[BP2O8(OH)] (MI = K, Rb) consists of the well known open–branched four–membered rings of alternating borate and phosphate tetrahedra (a loop–branched hexamer with B : P = 1 : 2). The anionic partial structure of CsSc[B2P3O11(OH)3] represents the new type of oligomer containing boron in three– and four– fold coordination (B : P = 2 : 3). This is also the first time that a BO3 group is not only linked to borate species but also to a phosphate tetrahedron. This kind of oligomer was already predicted for borates but was never observed. By this, CsSc[B2P3O11(OH)3] is a special compound with regard to the structural building principles of borates and borophosphates. The significant differences in the crystal structures of MISc[BP2O8(OH)] (MI = K, Rb) and CsSc[B2P3O11(OH)3] may be due to the higher coordination number of cesium. Thermal treatment (up to 1000 ºC) of these compounds resulted in white crystalline products containing new phases with unknown crystal structures.
Besides the discovery of alkali–metal scandium borophosphates, five new alkali metal scandium hydrogenphosphates were synthesized and structurally characterized:
Li2Sc[(PO4)(HPO4)], MISc(HPO4)2 (MI = K, Rb, Cs, NH4)
It was already predicted that open framework scandium phosphates should be isotypes of the respective indium phosphates. It was also stated that there should be a whole family of scandium hydrogenphosphates as we were able to confirm with the five novel compounds. Our systematic study reveals the structural changes of the anionic partial frameworks with increasing ionic radii of the alkali–metal ion. With respect to the M―T connections (M = six coordinated central metal atom, T = four coordinated phosphorous atom) the channel size increases from 8–membered rings in Li2Sc[(PO4)(HPO4)] to 12–membered rings in MISc(HPO4)2 (MI = K, Rb, Cs, NH4). KSc(HPO4)2 exhibits a new structure type in the family of monohydrogenphosphates with the general formula MIMIII(HPO4)2. This provides further evidence that scandium is a suitable element for the synthesis of framework structures with different channel sizes. The observation that in analogy to MISc(HPO4)2 (MI = Rb, Cs, NH4) a compound exists where the MI site is replaced by H3O+ gives rise to the hope that ion exchange properties could be of interest in this class of compounds. In addition, the possible existence of further modifications (as reported for the element–combinations RbV, NH4V, RbFe, and CsIn) shoud be investigated by thermoanalytical and X–ray methods.
The extensive studies on borophosphate containing the transition metals Fe, Co, Ni together with alkaline earth–metals (Mg, Ca, Sr, Ba) led to the preparation of 13 compounds containing the combination of two different divalent M1IIM2II ions:
CaM2II[BP2O7(OH)3] (M2II = Fe, Ni), BaM2II[BP2O8(OH)] (M2II = Fe, Co),
SrFe[BP2O8(OH)2], CaCo(H2O)[BP2O8(OH)]•H2O,
M1II0.5M2II(H2O)2[BP2O8]•H2O (M1II0.5 = Ca, Sr, Ba; M2II = Fe, Co, Ni)
The anionic partial structure of CaM2II[BP2O7(OH)3] (M2II = Fe, Ni) consists of a tetrahedral triple [BP2O7(OH)3]4-, built from a central (HO)2BO2 tetrahedron sharing common vertices with two (H0.5)OPO3 tetrahedra. The complex anions in the crystal structure of BaM2II[BP2O8(OH)] (M2II = Fe, Co) comprises open–branched four–membered rings, [B2P4O16(OH)2]8-, which are formed by alternating (HO)BO3 and PO4 tetrahedra sharing common corners with two additional PO4 branches. The interconnection of these complex anions with M2II coordination octahedra (M2II = Fe, Co, Ni) by sharing common corners results in overall three–dimensional frameworks which contain channels filled with the M1II ions (M1II = Ca, Ba). The anionic partial structure of SrFe[BP2O8(OH)2] is built from a central (HO)2BO2 tetrahedron sharing common vertices with two PO4 tetrahedra. Surprisingly, SrFe[BP2O8(OH)2] represents the first example in the structural chemistry of borophosphates where the charge of the anionic partial structure is balanced by a divalent and a trivalent species (MIIMIII). Although being a member of the M1IIM2II[BP2O8(OH)] family the crystal structure of CaCo(H2O)[BP2O8(OH)]•H2O is different. Interestingly, this is the first case in the borophosphate structural chemistry where dimers of cobalt coordination octahedra together with borophosphate oligomers form a (two–dimensional) layered structure.
The helical borophosphates M1II0.5M2II(H2O)2[BP2O8]•H2O (M1II0.5 = Ca, Sr, Ba; M2II = Fe, Co, Ni) contain one–dimensional infinite loop–branched borophosphate helices built of alternatively distorted borate and phosphate tetrahedra. Up to now, the group of compounds with 1[BP2O8]3– helical chain anions has been synthesized only in combination with different cations MIMII and MIII (MI = Li, Na, K; MII = Mg, Mn, Fe, Co, Ni, Zn; MIII = Sc, In, Fe). The systematic investigation on helical borophosphates of transition metals (Fe, Co, Ni) and alkaline–earth metals showed that it is also possible to accommodate divalent metal cations within the structure without disturbing the anionic partial structure. It was not possible to find the completely ordered structural model for the compounds M1II0.5M2II(H2O)2[BP2O8]•H2O (M1II0.5 = Ca, Sr, Ba; M2II = Co) but the substructure presented shows good agreement with the ordered known helical borophosphate compounds. Interestingly, it was also possible to judge the “kind of superstructure” against the crystal morphology.
Syntheses of one of the few examples of borophosphates containing layered anionic partial structures (63 net topology) containing transition metal cations (Fe, Co, Ni) was realized with 6 isotypic compounds:
MII(H2O)2[B2P2O8(OH)2]•H2O (MII = Fe, Co, Ni, Ni0.5Co0.5, Ni0.8Zn0.2, Ni0.5Mg0.5)
The compounds MII(H2O)2[B2P2O8(OH)2]•H2O (MII = Fe, Co, Ni) adopt the structure type of Mg(H2O)2[B2P2O8(OH)2]•H2O characterized by a two–dimensional borophosphate anion. Substitution on the transition metal sites was shown to be possible (Ni0.5Co0.5) realized for this structure type. With the synthesis of Ni0.8Zn0.2(H2O)2[B2P2O8(OH)2]•H2O and Ni0.5Mg0.5(H2O)2[B2P2O8(OH)2]•H2O it was also proved that magnetically diluted samples can be prepared in analogy to Mg1–x Cox(H2O)2[B2P2O8(OH)2]•H2O (x = 0.25). The thermal stability of these compounds is very similar with a slight shift to higher decomposition temperatures for the Ni0.5Mg0.5(H2O)2[B2P2O8(OH)2]•H2O. In contrast to other borophosphates such as MIMII(H2O)2[BP2O8]∙H2O and MIII(H2O)2[BP2O8]∙H2O, it is not possible to rehydrate partially dehydrated samples even though the crystal structure may suggest this property. This shows that the aqua–ligands significantly contribute to the stability of the structure. The magnetic behavior of MII(H2O)2[B2P2O8(OH)2]•H2O (MII = Fe, Ni) corresponds well with separated 3d ions without strong magnetic interactions down to 1.8 K. Quite surprising was the remarkable change in the crystal habit that was observed during the synthesis upon addition of alkali–metal cations. Syntheses with the absence of alkali–metals lead to a change in the crystal habit by reducing of the number of faces in direction of the more simple prismatic morphology.
Our research on borophosphates containing mixed transition metals led to the preparation of a borophosphate and a phosphate:
FeCo(H2O)[BP3O9(OH)4], Fe1.3Co0.7[P2O7]∙2H2O
The anionic partial structure of FeCo(H2O)[BP3O9(OH)4] is an open–branched tetramer built from (HO)BO3 sharing common O–corners with one (HO)PO3, one (HO)2PO2 and one PO4 group. The crystal structure is an isotype to Mg2(H2O)[BP3O9(OH)4]. Fe1.3Co0.7[P2O7]∙2H2O contains the diphosphate composed of two corner–sharing tetrahedra (isotypic to MII[X2O7]∙2H2O (MII = Mg, Mn, Co, Fe and X = P, As). However, the crystal structure of both, FeCo(H2O)[BP3O9(OH)4] and Fe1.3Co0.7[P2O7]∙2H2O, contains octahedral zigzag chains, which are interconnected by the respective tetrahedral anions. The octahedral chains in these crystal structures are closely related to the octahedral arrangements in MIIH2P2O7 (MII = Co, Ni) which exhibit a field-induced metamagnetic behavior from an antiferromagnetic state to a ferromagnetic state and to MII[BPO4(OH)2] (MII = Mn, Fe, Co) which indicate a low-dimensional antiferromagnetic correlation of the MII ions by dominant exchange interactions within the one–dimensional octahedral chain structure. Therefore, due to the similar structural features, FeCo(H2O)[BP3O9(OH)4] and Fe1.3Co0.7[P2O7]∙2H2O may exhibit interesting magnetic properties. Thermal investigation revealed that both compounds are stable until 300 ºC and transform into pyrophosphates at higher temperatures. Fe1.3Co0.7[P2O7]∙2H2O represents the first hydrated mixed divalent cation diphosphate.
|
7 |
Electrochemistry and magnetism of lithium doped transition metal oxides / Elektrochemie und Magnetismus von Lithium dotierten ÜbergangsmetalloxidenPopa, Andreia Ioana 11 January 2010 (has links) (PDF)
The physics of transition metal oxides is controlled by the combination and competition of several degrees of freedom, in particular the charge, the spin and the orbital state of the electrons. One important parameter responsible for the physical properties is the density of charge carriers which determines the oxidization state of the transition metal ions. The central objective in this work is the study of transition metal oxides in which the charge carrier density is adjusted and controlled via lithium intercalation/deintercalation using electrochemical methods. Lithium exchange can be achieved with a high degree of accuracy by electrochemical methods. The magnetic properties of various intermediate compounds are studied.
Among the materials under study the mixed valent vanadium-oxide multiwall nanotubes represent a potentially technologically relevant material for lithium-ion batteries. Upon electron doping of VOx-NTs, the data confirm a higher number of magnetic V4+ sites. Interestingly, room temperature ferromagnetism evolves after electrochemical intercalation of Li, making VOx-NTs a novel type of self-assembled nanoscaled ferromagnets. The high temperature ferromagnetism was attributed to formation of nanosize interacting ferromagnetic spin clusters around the intercalated Li ions. This behavior was established by a complex experimental study with three different local spin probe techniques, namely, electron spin resonance (ESR), nuclear magnetic resonance (NMR) and muon spin relaxation spectroscopies.
Sr2CuO2Br2 was another compound studied in this work. The material exhibits CuO4 layers isostructural to the hole-doped high-Tc superconductor La2-xSr2CuO4. Electron doping is realized by Li-intercalation and superconductivity was found below 9K. Electrochemical treatment hence allows the possibility of studying the electronic phase diagram of LixSr2CuO2Br2, a new electron doped superconductor. The effect of electrochemical lithium doping on the magnetic properties was also studied in tunnel-like alpha-MnO2 nanostructures. Upon lithium intercalation, Mn4+ present in alpha-MnO2 will be reduced to Mn3+, resulting in a Mn mixed valency in this compound. The mixed valency and different possible interactions arising between magnetic spins give a complexity to the magnetic properties of doped alpha-MnO2.
|
8 |
Struktur-/Eigenschafts-Beziehungen in ternären Übergangs- und Seltenerdmetall-Pniktid-ChalkogenidenCzulucki, Andreas 28 April 2010 (has links) (PDF)
Ziel dieser Arbeit war es, Beziehungen zwischen den kristallchemischen Eigenschaften und dem beobachteten anomalen Verhalten im spezifischen elektrischen Widerstand (nicht-magnetischer Kondo-Effekt) aufzuzeigen und zusammenhängend zu interpretieren. Verbindungen, an denen dieser Effekt beobachtet wurde, werden aus einem Übergangs-, oder Actinidmetall mit je einem Vertreter der 15. (Pniktogene) und 16. Gruppe (Chalkogene) des Periodensystems gebildet und kristallisieren im PbFCl-Strukturtyp. Da zu ternären Actinidmetall-Pniktid-Chalkogeniden (z.B. ThAsSe, UPS) nur sehr wenige chemische und kristallographische Informationen existieren, wurden in dieser Arbeit umfassende Untersuchungen zur Kristallchemie ternärer Phasen aus den Systemen M-Pn-Q (M = Zr, Hf, La-Ce; Pn = As, Sb; Q = Se, Te durchgeführt. Der Schwerpunkt lag dabei auf der strukturellen Lokalisierung der beobachteten Widerstandsanomalie und der Erarbeitung chemisch-physikalischer Eigenschaftsbeziehungen. Die Darstellung der untersuchten ternären Phasen in Form von Einkristallen gelang über exothermen Chemischen Transport mit Jod. Da die erhaltenen Kristalle bis zu mehreren Millimetern groß sind, konnten an ein und demselben Kristallindividuum sowohl die stoffliche Charakterisierung (EDXS, WDXS, ICP-OES, LA-ICP-MS, CIC) und die strukturelle Charakterisierung, als auch die Messung der physikalischen Eigenschaften erfolgen. Es konnte u.a. gezeigt werden, dass ZrAs1,4Se0,5 und HfAs1,7Se0,2 ein ähnlich ungewöhnliches Verhalten im temperaturabhängigen elektrischen Widerstand zeigen, welches bereits an Thorium-Arsenid-Seleniden und Uran-Phosphid-Sulfiden beobachtet wurde. Desweiteren gelang es den beobachteten Verlauf im elektrischen Widerstand, mit seinem Minium bei etwa T = 15 K, auf intrinsische strukturelle Merkmale in der anionischen Arsen-Teilstruktur zurückzuführen. / The aim of this work was, to evaluate and interpret a relationship between the crystal-chemical properties and the observed unusual behavior in the electrical resistivity (non-magnetic Kondo-effect). Compounds, which show such an effect, are formed by a transition- or actinide-metal with both a group 15 element and a group 16 element of the periodic table. All these compounds crystallizing in the PbFCl type of structure. Because of less crystallographic and chemical information about actinide-metal-pnictide-chalcogenides (i.e. ThAsSe, UPS), intensive investigation were made concerning the crystal-chemistry of ternary phases of the systems M-Pn-Q (M = Zr, Hf, La-Ce; Pn = As, Sb; Q = Se, Te. Our studies were focused on the structurally localization of the observed anomaly in the electrical resistivity and the evaluation of chemical-physical relations of properties. The synthesis of the investigated ternary phases was realized by exothermically Chemical Transport with iodine as transport agent. The dimension of the synthesized crystals allowed a chemical (EDXS, WDXS, ICP-OES, LA-ICP-MS, CIC) and structurally characterization, as well as a determination of the physical properties on one large single crystal. It could be shown, that ZrAs1,4Se0,5 and HfAs1,7Se0,2 reveal a similar unusual behavior in the temperature dependent electrical resistivity, as it was observed in thorium-arsenide-selenides and uranium-phosphide-sulphides. In conclusion, the non-magnetic Kondo-effect, which was found in the low-temperature range (about 15 K), arises from structurally features of the anionic sublattice with arsenic.
|
9 |
Koordinationsverbindungen von Schiff-Basen des 3-Aminopropyltriethoxysilans und 3-(2-Aminoethylamino)-propyl-trimethoxysilans mit α-Hydroxybenzocarbonyl-VerbindungenEfendi, Jon 17 March 2003 (has links)
Die vorliegende Arbeit befasst sich mit Untersuchungen zur Komplexbildung von Cu2+, Zn2+, sowie Sn2+ und B(OMe)3 mit den Schiff-Basen aus 3-Aminopropyl-triethoxysilan (APTES) und 3-(2-Aminoethyl-amino)-propyl-trimethoxysilan (AEPTMS) mit α-Hydroxybenzocarbonylverbindungen. Die Liganden und die Komplexe wurden mit IR-, UV/VIS- und NMR-Spektroskopie charakterisiert. IR-Untersuchungen zeigen die charakteristischen C=N- und C=O-Valenzschwingungen. Sie werden durch die Komplexbildung deutlich verschoben. Die 1H- und 13C-NMR-Messungen indizieren die Komplexbildung mit einer signifikanten Verschiebung in den Signallagen der H- und C-Nachbaratome der Donatoratome. 29Si-NMR-Messungen indizieren keine Hydrolyse- und Kondensationsreaktionen im Verlauf der Synthese. Bei der Komplex-Synthese mit wasserhaltigen Übergangsmetallsalzen wurden Produkte von Sol-Gel-Prozessen gefunden. UV/VIS-spektroskopische Untersuchungen an den Mischungen der Übergangsmetallsalze mit APTES bzw. AEPTMS zeigen die Bildung typischer Aminkomplexe.
|
10 |
Electrochemistry and magnetism of lithium doped transition metal oxidesPopa, Andreia Ioana 16 December 2009 (has links)
The physics of transition metal oxides is controlled by the combination and competition of several degrees of freedom, in particular the charge, the spin and the orbital state of the electrons. One important parameter responsible for the physical properties is the density of charge carriers which determines the oxidization state of the transition metal ions. The central objective in this work is the study of transition metal oxides in which the charge carrier density is adjusted and controlled via lithium intercalation/deintercalation using electrochemical methods. Lithium exchange can be achieved with a high degree of accuracy by electrochemical methods. The magnetic properties of various intermediate compounds are studied.
Among the materials under study the mixed valent vanadium-oxide multiwall nanotubes represent a potentially technologically relevant material for lithium-ion batteries. Upon electron doping of VOx-NTs, the data confirm a higher number of magnetic V4+ sites. Interestingly, room temperature ferromagnetism evolves after electrochemical intercalation of Li, making VOx-NTs a novel type of self-assembled nanoscaled ferromagnets. The high temperature ferromagnetism was attributed to formation of nanosize interacting ferromagnetic spin clusters around the intercalated Li ions. This behavior was established by a complex experimental study with three different local spin probe techniques, namely, electron spin resonance (ESR), nuclear magnetic resonance (NMR) and muon spin relaxation spectroscopies.
Sr2CuO2Br2 was another compound studied in this work. The material exhibits CuO4 layers isostructural to the hole-doped high-Tc superconductor La2-xSr2CuO4. Electron doping is realized by Li-intercalation and superconductivity was found below 9K. Electrochemical treatment hence allows the possibility of studying the electronic phase diagram of LixSr2CuO2Br2, a new electron doped superconductor. The effect of electrochemical lithium doping on the magnetic properties was also studied in tunnel-like alpha-MnO2 nanostructures. Upon lithium intercalation, Mn4+ present in alpha-MnO2 will be reduced to Mn3+, resulting in a Mn mixed valency in this compound. The mixed valency and different possible interactions arising between magnetic spins give a complexity to the magnetic properties of doped alpha-MnO2.
|
Page generated in 0.0811 seconds