Spelling suggestions: "subject:"algebra."" "subject:"álgebra.""
731 |
Uma proposta de ensino de álgebra abstrata moderna, com a utilização da metodologia de ensino-aprendizagem-avaliação de matemática através da resolução de problemas, e suas contribuições para a formação inicial de professores de matemática /Ferreira, Nilton Cezar. January 2017 (has links)
Orientador: Lourdes de la Rosa Onuchic / Banca: Rosa Lúcia Sverzut Baroni / Banca: Henrique Lazari / Banca: Glen César Lemos / Banca: José Pedro Machado Ribeiro / Resumo: Este trabalho teve como principal objetivo investigar as contribuições que a Álgebra Abstrata Moderna (onde se trabalham as teorias de Grupos, Anéis e Corpos, dentre outras), ministrada como uma disciplina em cursos de Licenciatura em Matemática no Brasil, poderia dar à Formação Inicial de Professores de Matemática. Esta pesquisa teve caráter qualitativo e foi apoiada no Modelo Metodológico de Romberg-Onuchic. Visando alcançar esse objetivo, propusemos uma pesquisa de campo, desenvolvida em 2015, com uma turma do quinto período de Licenciatura em Matemática do Instituto Federal de Goiás (IFG). Para isso, elaboramos e implementamos um projeto de ensino com o propósito de levar os alunos dessa turma a construírem um conhecimento satisfatório de Álgebra Abstrata Moderna e mostrar a relação de seus conteúdos com os da Educação Básica. Para a construção desse conhecimento, fizemos uso da Metodologia de Ensino-Aprendizagem-Avaliação de Matemática através da Resolução de Problemas, figurada no campo da Educação Matemática e consolidada por diversas pesquisas como eficiente no processo de ensino, aprendizagem e avaliação de Matemática em diversos níveis - Fundamental, Médio e Superior. A correlação entre os conteúdos de Álgebra Abstrata Moderna e os da Educação Básica se deu através da proposição, aos estudantes da referida turma, de atividades extraclasse, que, sempre, em um momento posterior, eram discutidas, em sala de aula, por todos os integrantes desse processo: alunos, pesquis... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The main purpose of the present work was to investigate the contributions that Modern Abstract Algebra (which the theories of Groups, Rings and Fields, among others, are worked on), as a discipline in Degree courses in Mathematics in Brazil, might give to initial Teacher Education in Mathematics. The present research has a qualitative approach and it was grounded on the Methodological Model of Romberg-Onuchic. In order to achieve that goal, we proposed a field research, developed in 2015, involving a class of fifth semester students of Degree in Mathematics at Instituto Federal de Goiás (IFG). To that end, we elaborated and implemented a teaching project with the purpose of enabling that group of students to build satisfactory knowledge on Modern Abstract Algebra and showing the relationship of its contents to the ones of Elementary Education. In order to build such knowledge, we used the Methodology of Teaching-Learning-Evaluation in Mathematics through Problem Solving, found in the field of Mathematics Education and consolidated by several researches as effective in the process of Mathematics teaching, learning and evaluation in several levels - Elementary, Middle and Higher Education. The correlation between the contents of Modern Abstract Algebra and the ones of Elementary Education came about through the proposition to that group of students of extracurricular activities which were always discussed further in classroom by all people involved in that process: students, researcher and teacher. There were also two meetings with the only purpose of working, discussing and analysing this association - Modern Abstract Algebra and Elementary Education. The evidence-gathering was made through the researcher's observation during the project application, the materials produced by the students, the media (audio and video recordings of the meetings) and a diagnostic ... (Complete abstract electronic access below) / Doutor
|
732 |
Sistema de información ejecutivo para mejorar la toma de decisiones en el proceso de evaluación a través de la construcción de escenarios virtuales en tópicos de álgebra en el 3er grado de educación secundariaMoreno Descalzi, Julio César January 2011 (has links)
La forma cómo se enseña y se evalúa en el área de matemática han sido siempre dos puntos de principal atención. La investigación se realizó atendiendo a estas preocupaciones. Teniendo en cuenta que los procesos de enseñanza y evaluación van de la mano, basados en el diagnóstico y evaluación. Por ello, se diseñó e implementó a través de dos sistemas: uno a nivel transaccional, que atiende la gestión de enseñanza haciendo uso de la plataforma Moodle; y el otro a nivel ejecutivo, que tiene en cuenta el proceso de evaluación a través de una plataforma de reportes, mediante un sistema de información ejecutiva. La población estuvo constituida por 30 estudiantes del tercer grado de secundaria, con una muestra de 10 estudiantes que formaron el grupo experimental. El tipo de investigación fue diagnóstico propositiva aplicada. Asimismo, las técnicas de recolección de datos fueron la entrevista, desarrollo de exámenes y la observación directa. Los resultados indicaron que se aumentó el número de participaciones en las actividades académicas y se mejoró significativamente el rendimiento de los estudiantes.
|
733 |
Primeigenschaften von Algebren in Modulkategorien über Hopfalgebren (Heinrich-Heine Universität Düsseldorf)Christian Lomp January 2002 (has links)
No description available.
|
734 |
Subvariedades de álgebras de De Morgan Heyting y p-álgebras de KleeneCastaño, Valeria Marcela 28 June 2017 (has links)
El objetivo de esta tesis es abordar distintos problemas algebraicos acerca de
algunas subvariedades de las álgebras de De Morgan Heyting y de las álgebras pseudocomplementadas
de Kleene utilizando dualidades topológicas tipo Priestley correspondientes
a dichas variedades. Se investiga la sucesión de subvariedades SDHn de
las álgebras de De Morgan Heyting caracterizadas por la identidad xn(1*) = x(n+1)(1*)
definidas por H.P. Sankappanavar en [26]. Se obtienen condiciones necesarias y sufi-
cientes sobre el espacio de filtros primos para que un álgebra de De Morgan Heyting
pertenezca a la variedad SDH1 y se caracterizan las álgebras subdirectamente irreducibles
y simples de dicha variedad. Todos estos resultados son extendidos para las
álgebras finitas en el caso general SDHn.
La clase de las álgebras de Boole es un ejemplo familiar de álgebras de Heyting y
es bien conocido que existe una correspondencia entre las subálgebras de un álgebra
de Boole y ciertas relaciones de equivalencia definidas sobre su espacio Booleano
(ver, por ejemplo [13]). En esta tesis se extiende esta correspondencia tanto para la
clase de las álgebras de Heyting como para la clase de las álgebras de De Morgan
Heyting, es decir, se caracterizan las subálgebras de las álgebras de Heyting y de
De Morgan Heyting definiendo ciertas relaciones de equivalencia sobre los espacios
topológicos de sus respectivas representaciones tipo Priestley. Como caso particular
de este resultado, se obtiene la caracterización para subálgebras maximales de las
álgebras de Heyting finitas dada por M. Adams en [2].
Se estudian las álgebras subdirectamente irreducibles en la variedad PCDM de
las álgebras pseudocomplementadas de De Morgan a través de sus pm-espacios. Se
introduce la noción de body de un álgebra L 2 PCDMy se caracteriza completamente
Body(L) cuando L es subdirectamente irreducible, directamente indescomponible
o simple. Como consecuencia de esto, en el caso particular de las álgebras pseudocomplementadas
de Kleene, surgen naturalmente tres subvariedades de la misma
para las cuales se determinan identidades que las caracterizan. Se define la subvariedad
BPK, de particular interés ya que sus álgebras subdirectamente irreducibles son
suma ordinal de álgebras de Boole y cadenas, realizándose un estudio de la misma. Se
determina completamente el reticulado de sus subvariedades y se encuentran bases
ecuacionales para cada una de ellas. Una de estas subvariedades, llamada BPK0 es
aquella cuyos miembros subdirectamente irreducibles son de la forma B B, donde
B es un álgebra de Boole. La última parte de la tesis está destinada al estudio de
la variedad BPK0 resolviéndose problemas tales como la obtención de las álgebras
libres con una cantidad finita de generadores libres y la descripción completa del
reticulado de cuasivariedades junto con una base de cuasi-identidades para cada
cuasivariedad. / The objective of this thesis is to study several algebraic problems regarding
some subvarieties of De Morgan Heyting algebras and pseudocomplemented Kleene
algebras using the corresponding Priestley dualities as a main tool. We focus on the
sequence of subvarieties SDHn, which consist of the De Morgan Heyting algebras
characterized by the identity xn(1*) =x(n+1)(1*), as defined by H. P. Sankappanavar
in [26]. We give necessary and suficient conditions on the space of prime filters for
a De Morgan Heyting algebra to belong to the variety SDH1. We also characterize
the subdirectly irreducible and simple members of this variety. These results are all
further extended for finite algebras in the general case of the varieties SDHn.
The class of Boolean algebras is a familiar example of Heyting algebras and it
is well known that there exists a correspondence between subalgebras of a Boolean
algebra and certain equivalence relations on its Boolean space (see, for example,
[13]). In this thesis, we extend this correspondence both for the class of Heyting
algebras and for the class of De Morgan Heyting algebras, that is, we characterize
the subalgebras of a Heyting algebra and a De Morgan Heyting algebra by defining
certain equivalence relations on their respective Priestley spaces. The characterization
of maximal subalgebras in finite Heyting algebras given by M. Adams in [2]
follows now as a special case of our characterization.
We also study the subdirectly irreducible members of the variety PCDM of
pseudocomplemented De Morgan algebras in terms of their pm-spaces. We introduce
the notion of body of an algebra L 2 PCDM and characterize completely the
body of L when L is subdirectly irreducible, directly indecomposable or simple. As
a consequence of this, in the case of pseudocomplemented Kleene algebras, three
special subvarieties arise naturally, for which we give explicit identities that characterize
them. We also define the variety BPK which is of particular interest because
its subdirectly irreducible algebras are ordinal sums of Boolean algebras and chains.
We study this variety in depth. We determine the whole subvariety lattice and find
explicit equational bases for each of the subvarieties. The subdirectly irreducible
members of one of these subvarieties, called BPK0, are of the form B B, where
B is a Boolean algebra. The last part of this thesis is devoted to the study of this
variety: we characterize the finitely generated free algebras and give a full description
of the quasivariety lattice as well as the corresponding quasi-equational basis
for each of the quasivarieties.
|
735 |
Elementos de dinámica de iteración de funcionesVergaray Albujar, César Augusto 20 June 2016 (has links)
En este trabajo desarrollaremos dos aspectos de Dinámica: El primero que trata sobre la dinámica de funciones que van de un intervalo en si mismo, introduciremos las cadenas de Markov y algunos resultados previos para alcanzar al final el teorema de Sharkovsky demostrado con grafos, el cual lo haremos en la primera parte de este trabajo. La segunda parte de este trabajo
tratará sobre la teoría ergódica, nos enfocaremos en dos de los teoremas fundamentales que son el teorema de recurrencia de Poincaré y el teorema de Birkhoff. / Tesis
|
736 |
Análisis del tratamiento del álgebra en el primer año de secundaria : su correspondencia con los procesos de algebrización y modelizaciónRicaldi Echevarria, Myrian Luz 28 August 2013 (has links)
El presente trabajo de investigación analiza el tratamiento que se da al álgebra en el primer año de secundaria.
La investigación es de tipo cualitativo y utiliza como marco teórico fundamental la Teoría Antropológica de lo Didáctico (TAD), además de algunos aportes del Enfoque Ontosemiótico para el análisis de la idoneidad didáctica del proceso de estudio. El estudio fue realizado con 63 estudiantes del primer año de secundaria de un colegio privado en la ciudad de Lima.
La investigación describe y analiza las diferentes organizaciones matemáticas y didácticas presentes en libros de textos y programas curriculares, además de incluir una entrevista estructurada a los docentes sobre su práctica pedagógica. La problemática detectada es que los contenidos se presentan aislados, mayormente se utilizan técnicas algorítmicas y existe sólo interés por el manejo tecnológico puntual, perdiéndose la oportunidad de aprovechar las situaciones que amplíen el conocimiento.
En este contexto, la investigación describe y analiza si el tratamiento del álgebra en el primer año de secundaria corresponde a un proceso de algebrización y si la modelización está presente en el proceso de instrucción estudiado. Además, pretende mostrar que el álgebra puede surgir como instrumento para modelizar y resolver situaciones específicas de complejidad creciente.
Luego de este análisis, se propone un modelo didáctico alternativo en el que se considerará la introducción de los temas algebraicos a través de tipos de problemas.
Finalmente, se concluye que las situaciones que tradicionalmente se plantean en aula tienen un carácter fuertemente aislado y no refuerzan la importancia
de la justificación de los procedimientos empleados. Además, también se refuerza la idea de que los modelos planteados para una situación son específicos para esa situación; no se plantea la generalidad de los mismos. En referencia al análisis epistémico, concluimos que el desarrollo de algoritmos para resolver ecuaciones particulares fue el hecho que abrió caminos hacia la construcción de significado y hacia la generalidad. Desde la llamada matemática sabia, se consideran los polinomios como una estructura con propiedades y relaciones especiales. Por otro lado, a nivel escolar no se expone un tratamiento riguroso al tema de polinomios; afirmamos esto porque los temas se presentan por separado en forma aislada, sin que formen parte de una estructura (anillo de polinomios); esto evidencia los procesos transpositivos y de adaptación para su estudio a nivel escolar. En vista de ello, consideramos que debiera buscarse un punto intermedio, a fin de evitar generar conflictos en estudios posteriores a otro nivel. Frente a esto la TAD tampoco propone un tratamiento riguroso y estructural de los contenidos algebraicos, sino más bien plantea introducir el álgebra como un instrumento de modelización de situaciones planteadas en tipos de problemas.
En la modelización de los problemas, se debe primero distinguir lo que es propio de cada problema, y lo que es común a todos ellos; para luego verbalizar y escribir en forma simbólica las relaciones cuantitativas que se presentan. Además, la evaluación de la pertinencia de los problemas luego del contraste de las respuestas esperadas y los resultados observados, nos lleva a sugerir la revisión de un problema, debido a que no cumple con admitir sólo soluciones algebraicas.
|
737 |
Desingularización de superficies casi ordinarias irreduciblesPaucar Rojas, Rina Roxana 25 January 2018 (has links)
The aim of this thesis is to describe the resolution (partial and strict) of
irreducible quasi ordinary surfaces (algebroids), by Lipman's approach.
To achieve our goal, we de ne to the quasi ordinary surfaces (algebroids)
and describe their parametrization by quasi ordinary branches, we also de ne
the quasi ordinary rings, local rings of the quasi ordinary irreducible surfaces,
and we study the relationship that exists between the tangent cone and singular
locus of a quasi ordinary ring (invariants that appear in these resolutions)
and the distinguished pairs of a quasi ordinary normalized branch that represents
this ring. Also, we de ne the special transforms of a quasi ordinary ring
and show that they are again quasi ordinary. We conclude with an example
of these resolutions. / El objetivo de este trabajo de tesis es describir la resolución (parcial y estricta) de superficies (algebroides) casi ordinarias irreducibles, mediante el enfoque de Lipman. Con dicho objetivo, definimos a las superficies (algebroides) casi ordinarias y describimos su parametrización por ramas casi ordinarias, también definimos a los anillos casi ordinarios, anillos locales de las superficies casi ordinarias irreducibles, y estudiamos la relación que existe entre el cono tangente y lugar singular de un anillo casi ordinario (invariantes que aparecen en estas resoluciones) y los pares distinguidos de una rama casi ordinaria normalizada que representa a este anillo. Asimismo, definimos las transformadas especiales de un anillo casi ordinario y mostramos que ellas son otra vez casi ordinarias. Concluimos con un ejemplo de estas resoluciones. / Tesis
|
738 |
Obstrucción cohomológica para extensión de deformaciones de algebras asociativasMuñoz Ugarte, Bernardo Luis 16 July 2024 (has links)
En el estudio de la teoría de deformaciones se observa que hay por lo menos tres tipos distintos,
estos tipos aparecen en análisis, algebra y geometría algebraica. La teoría de deformaciones es
una idea que proviene desde Riemann con el estudio de las deformaciones de estructuras complejas de variedades Riemannianas. Por otro lado, las deformaciones en el área de la geometría
algebraica datan casi desde la aparición de esta área, ya que los objetos algebro-geométricos
pueden ser “deformados” con una variación de los coeficientes de sus ecuaciones de definición.
En el estudio de la teoría de deformaciones formales de algebras aparecen algunas preguntas
que aún se encuentran abiertas. Es en el caso particular de algebras asociativas donde aparece
un problema, no resuelto en general. Para explicar de que trata este problema debemos partir de
la definición de deformación de un álgebra asociativa. Es a partir de la condición de asociatividad, donde se observa que el “infinitesimal” de una deformación es un cociclo de Hochschild.
Se plantea entonces la pregunta “¿Dado un cociclo de Hochschild, resulta ser este cociclo el
“infinitesimal” de una deformación?”.
Desglosaremos el problema en una construcción recursiva de deformaciones truncadas. La
obstrucción a extender una deformación truncada de grado n a una de grado n+1 es un cociclo
de Hochschild. Este resultado que es uno de los resultados principales en la teoría de deformaciones, se probara en la Proposición 10. 2. Para ello empleamos la teoría de algebras graduadas
y conceptos como anillos de Lie y pre-Lie graduados así como sistemas pre-Lie. En el desarrollo de este trabajo se mostrará, además del resultado, la manera de trabajar con distintos
conceptos y como trabajar con operadores que aparecerán a lo largo del desarrollo. / In the study of the theory of deformations it is observed that there are at least three different
types, these types appear in analysis, algebra and algebraic geometry. The theory of deformations is an idea that comes from Riemann with the study of deformations of complex structures
of Riemannian varieties. On the other hand, deformations in the area of algebraic geometry date
almost from the appearance of this area since algebro-geometric objects can be "deformed" with
a variation of the coefficients of their defining equations.
In the study of the theory of formal deformations of algebras, some questions remain open.
In the particular case of associative algebras a problem appears that is not solved in general.
To explain what this problem is about, we must start from the definition of deformation of an
associative algebra. Considering the condition of associativity, where it is observed that the "infinitesimal" of a deformation is a Hochschild cocycle, the question arises "Given a Hochschild
cocycle, does this cocycle happens to be the "infinitesimal" of a deformation?".
One can decompose the problem into a recursive construction of truncated deformations.
The obstruction to extending a truncated deformation of degree n to a truncated deformation
of degree n+1, is a Hochschild cocyle. This result, wich is one of the most important results
in deformation theory, is proven in Prop.10.2. For this purpose, the theory of graded algebras
and concepts such as graded Lie and pre-Lie rings, pre-Lie systems will be used used. In the
development of this work we will also show, the ways of working with these different concepts
and how to work with operators that will appear throughout the development.
|
739 |
K teoría algebraica de anillos de grupos y sus aplicacionesHurtado Amaya, Carlos Arturo 11 November 2016 (has links)
La K teoría algebraica de anillos de grupo ha sido ampliamente tratada en los últimos 40 años. Esto se debe en parte a las aplicaciones existentes en topología, teoría de números y teoría de representaciones.
Se presenta los anillos de grupo y algunos problemas relacionados con estos, en particular, la conjetura de idempotencia de Kaplansky. Por otro lado, se introduce la K teoría algebraica de un anillo de grupo y se presenta una aplicación a la teoría de representaciones de grupos finitos. / Tesis
|
740 |
Ideales generados por R-sucesionesAngulo Pérez, Josué 09 May 2011 (has links)
En este trabajo buscamos condiciones razonables para que un ideal de un anillo R sea generado por una R-sucesión sobre un R-módulo A, donde una R-sucesión sobre A es una sucesión ordenada x1, x2,...,xn de elementos en R tales que xi no es un divisor de cero con respecto a A/(x1,...,xi-1)A / Tesis
|
Page generated in 0.0701 seconds