• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 35
  • 10
  • 1
  • Tagged with
  • 129
  • 87
  • 33
  • 29
  • 23
  • 23
  • 22
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Epidemiologia de la epilepsia en el Peru : Neurocisticercosis como causa de epilepsia secundaria en la region norte del Peru / Epidémiologie de l'épilepsie au Pérou : Neurocysticercose comme cause de l'épilepsie secondaire dans la région nord du Pérou / Epidemiology of epilepsy : Neurocysticercosis as a strong contributor of symptomatic epilepsy in the northern region of Peru

Moyano Vidal, Luz Maria 22 September 2016 (has links)
Introduction. La neurocysticercosis (NCC) est l'un des maladies helminthiques les plus courantes du SNC et elle cause de l'épilepsie symptomatique dans les régions pauvres. Il existe peu d'études communautaires sur cette zoonose et leurs comorbidités comme l'épilepsie et la NCC. Méthodologie. Dans la région nord du Pérou, trois études sur la communauté et une révision systématique ont été développés dont les objectifs étaient les suivants: a) évaluer la prévalence de la NCC asymptomatique, b) la prévalence de l'épilepsie associée à la cysticercose, c) la détermination de l'exposition à la cysticercose d) développer une intervention communautaire pour interrompre la transmission de la cysticercose. Résultats. 256 patients asymptomatiques qui avaient une tomodensitométrie (T) sans contraste, 48 (18%) avaient la NCC calcifiés. La prévalence de l'épilepsie trouvée était de 17.25 / 1000 habitants et la proportion de NCC en personnes atteintes d'épilepsie était de 39% (109/282). Le Western Blot (EITB-LLGP) pour la cysticercose a été positive dans le 40% des personnes atteintes d'épilepsie, et dans le 36,9% de la population générale. L'association entre la cysticercose et l'épilepsie avait un OR de 2,7 (95% CI 2.1 – 3.6, p <0,001). Le traitement massif avec niclosamide chez l'homme (n = 3), et plus la vaccination de la population porcine a été mis en oeuvre dans 107 communautés rurales de Tumbes. Aucun porc infecté avec la cysticercose n’a été trouvé en 105 des 107 communautés. Conclusions. (1) La NCC est un facteur contributeur de l'épilepsie, (2) La transmission de T. solium peut être réduite à échelle régionale. / Backgrounds. Neurocysticercosis is a parasitic infection of the brain and a common cause of epilepsy in poor regions. There are scarce community-based studies about its comorbidities as epilepsy and neurocysticercosis. Methods. In the northern region of Peru, we performed three community based-studies and one systematic review a) to assess the prevalence of asymptomatic NCC, b) the prevalence of epilepsy and epileptic seizures and NCC c) seroprevalence of cysticercosis (EITB-LLGP) and d) to perform a community intervention to interrupt the Taenia solium transmission. Results. Of the 256 residents who underwent CT scan, 48 (18.8%) had brain calcifications consistent with NCC. Lifetime prevalence of epilepsy was 17.25/1000, the proportion of NCC in people with epilepsy was 39% (109/282), and the seroprevalence of EITB-LLGP in individuals with epilepsy was 40% and between 23.4 to 36.9% in the general population. The association between CC and epilepsy had a OR of 2.7 (95% CI 2.1-3.6, p <0.001). Three rounds of mass treatment with niclosamida in humans and mass treatment and vaccination in pigs was implemented in 107 rural communities (n=81,170 people). No infected pigs with cysticercosis were found in 105 of 107 communities. Conclusion. NCC is a strong contributor of epilepsy and epileptic seizures. We showed that transmission of Taenia solium infection was interrupted on a regional scale in endemic regions in Peru / Introducción. La neurocisticercosis (NCC) es una de las enfermedades helmínticas más frecuentes del SNC y causa de epilepsia sintomática en regiones pobres. Hay escasos estudios basados en comunidad sobre esta zoonosis y sus comorbilidades la epilepsia y la NCC. Metodología. Se desarrollaron en la Región Norte del Perú tres estudios basados en la comunidad, y una revisión sistemática cuyos objetivos fueron: a) evaluar la prevalencia de NCC asintomática, b) la prevalencia de epilepsia asociada a cisticercosis, c) determinación de la exposición a cisticercosis y d) desarrollar una intervención comunitaria que interrumpa la transmisión de cisticercosis. Resultados. De 256 pacientes asintomáticos que tuvieron una tomografía axial computarizada (TAC) cerebral sin contraste, 48 (18%) tuvo una NCC calcificada. La prevalencia de epilepsia encontrada fue de 17.25/1000 habitantes y la proporción de NCC en personas con epilepsia fue de 39% (109/282). El Western Blot (EITB-LLGP) para cisticercosis fue positivo en el 40% de los individuos con epilepsia, y en el 36.9% de la población general. La asociación entre cisticercosis y epilepsia tuvo un OR de 2.7 (95% CI 2.1-3.6, p <0.001). El tratamiento masivo con niclosamida en humanos (n=3), y población porcina más vacunación fue implementada en 107 comunidades rurales de Tumbes; en 105 de 107 no hubo nuevos cerdos infectados con cisticercosis. Conclusiones. (1) La NCC es un factor contribuidor de epilepsia, (2) Se puede cortar la trasmisión de T. solium a escala regional.
62

Hippocampal structural reactive plasticity in a rat model of temporal lobe epilepsy : chloride homeostasis as a keystone

Kourdougli, Nazim 07 December 2015 (has links)
Cette thèse a pour objectif spécifique d’explorer les événements précoces pouvant être à l’origine du bourgeonnement aberrant des fibres moussues (FM) du gyrus denté, une réorganisation majeure dans l’Epilepsie du Lobe Tempora (ELT). Nous avons utilisé le modèle pilocarpine d’ELT chez le rat afin de montrer que la transmission GABAergique jouait un rôle prépondérant dans la formation des FM aberrantes au cours de l’épileptogenèse. Ceci étant due à une altération de l’homéostasie chlore, suite à une augmentation de l’expression du co-transporteur NKCC1 et une diminution du co-transporteur KCC2. Nos résultats ont démontré que le récepteur aux neurotrophines p75NTR était un médiateur de l’action trophique de la réponse GABAergique dépolarisante sur le bourgeonnement aberrant des FM. Le blocage de l’action dépolarisante de la transmission GABAergique via l’utilisation de la bumétanide, a permis de réduire le bourgeonnement aberrant des MF en réduisant l’expression de p75NTR. Enfin, l’application transitoire de la bumétanide au cours de l’épileptogenèse a abouti à la réduction du nombre de crises récurrentes et spontanées au cours de la phase chronique d’ELT chez le rat. Ce travail a permis de dévoiler les mécanismes moléculaires sous-jacents de la réorganisation du réseau neuronal glutamatergique consécutif à une crise inaugurale dans un modèle d’ELT. Dans l'ensemble, cette thèse apporte un éclairage nouveau sur l’importance de l’interaction de la signalisation GABAergique avec les neurotrophines afin d’orchestrer la plasticité réactive au sein de l’hippocampe dans TLE. / The present dissertation undertakes to investigate the early triggering events of the mossy fiber sprouting (MFS) in the dentate gyrus, a hallmark of hippocampal reactive plasticity in Temporal Lobe Epilepsy (TLE). We used the rat pilocarpine model of TLE to show that altered GABAA receptor-mediated transmission play a key role in the formation of early ectopic MFS during epileptogenesis. This is likely due to a compromised chloride homeostasis, as a result of increased expression of chloride loader NKCC1 and downregulation of the neuronal chloride extruder KCC2. We next addressed the mechanistic action of depolarizing GABAAR responses with regard to neurotrophin signaling. Our findings uncovered that the pan neurotrophin receptor p75 (p75NTR) mediated the sculpting action of depolarizing GABAAR responses on the ectopic MFS. Blockade of depolarizing GABAAR responses using the loop diuretic bumetanide reduced abnormal p75NTR subsequently decreased the ectopic MFS. Finally, transitory application of bumetanide during epileptogenesis resulted in reduction of spontaneous and recurrent seizures during the chronic phase of TLE. The rationale of this work is that unveiling the molecular mechanisms underlying the hippocampal post-seizure glutamatergic network rewiring will help to drive future novel therapeutic avenues involving chloride homeostasis and neurotrophin interplay. Overall, this dissertation shed a new light on how GABAergic transmission and neurotrophin signaling crosstalk can orchestrate reactive hippocampal plasticity in TLE.
63

Impact de l'oscillation lente corticale sur l'activité des cellules granulaires du gyrus denté dans un modèle animal d'épilepsie du lobe temporal

Ouedraogo, Wendpagnagde david 26 September 2013 (has links)
En plus des crises, les patients atteints d'épilepsie du lobe temporale (ELT) souffrent de déficits cognitifs tels que des troubles de l'apprentissage et de la mémoire épisodique. La formation de la mémoire épisodique nécessite des interactions entre le cortex et l'hippocampe pendant le sommeil. Ces interactions sont orchestrées par l'oscillation lente qui est générée dans le réseau thalamocortical. L'oscillation lente se propage dans d'autres structures sous corticales mais l'hippocampe semble être moins influencé. Cela pourrait être du à la fonction de filtre du gyrus denté. Dans l'ELT, le gyrus denté subit une réorganisation structurelle et fonctionnelle qui pourrait altérer sa fonction de filtre et aussi modifier la propagation d'activités épileptiformes du cortex vers l'hippocampe. Cependant, la propagation de rythmes physiologiques du cortex vers le réseau hippocampique pendant l'épileptogenèse a été peu étudié. Ce travail de thèse a eu pour but d'étudier l'influence des oscillations lentes corticales sur le potentiel de membrane et la décharge des cellules granulaires du gyrus denté dans un modèle d'ELT sous anesthésie. Nos résultats montrent une augmentation de la modulation du potentiel de membrane et ainsi que de la décharge des cellules granulaires du gyrus par l'oscillation lente corticale pendant l'épileptogenèse. Les changements qui s'opèrent dans le gyrus denté pendant l'épileptogenèse le rendraient plus permissif aux informations en provenance du cortex facilitant ainsi la propagation des oscillations lentes du cortex vers l'hippocampe. / In addition to seizures, patients with temporal Lobe Epilepsy (TLE) suffer from cognitive deficits such as learning and episodic memory impairment. The functional interactions between the cortex and the hippocampus notably during sleep are thought to be important for episodic memory formation. These interactions are orchestrated by the slow oscillation which is generated in thalamo-cortical networks. The slow oscillation is not confined to thalamo-neocortical networks but propagates to other subcortical structures but the hippocampus seems however less strongly influenced by the widespread propagation of the slow oscillation. This could result from the gate function of the dentate gyrus. In TLE, the dentate gyrus is associated with profound structural and functional network alterations which can alter the propagation of pathological activities such as epileptiform discharges from the cortex to the hippocampus. However, whether and how epilepsy modifies the impact of physiological activities on hippocampal networks remains to be investigated. This work was designed to study the influence of slow cortical oscillations on the membrane potential and discharge of granule cells in the dentate gyrus in an animal model of TLE. Our results show an increase in the modulation of membrane potential and as well as the discharge of granule cells in the dentate gyrus by the cortical slow oscillation during epileptogenesis. The changes that occur in the dentate gyrus during epileptogenesis would make it more permissive facilitating the spread of slow oscillations from the cortex to the hippocampus.
64

Implication des circuits neuronaux du cortex somatosensoriel dans l’initiation de l’activité paroxystique de l’épilepsie absence / Implication of somatosensory cortex neuronal circuits in the initiation of paroxystic activity in absence epilepsy

Studer, Florian 26 April 2018 (has links)
Les neurones du cortex sont organisés en réseaux qui permettent de réaliser des fonctions complexes. Des anomalies des connexions neuronales qui forment ces réseaux peuvent altérer son fonctionnement et générer des activités pathologiques comme c’est le cas dans certaines formes d’épilepsie. L’épilepsie-absence est caractérisée par des crises généralisées non-convulsives présentant lors d’un enregistrement électroencéphalographique des décharges de pointes-ondes (DPO) bilatérales et synchrones qui s’accompagnent d’une altération de la conscience. Plusieurs équipes ont montré chez l’Homme et dans des modèles animaux que ces DPO sont initiées au niveau du cortex. Cependant, notre connaissance des altérations de connectivité neuronale qui sous-tendent ces activités reste encore très limitée. Nous avons émis l’hypothèse que les DPO sont favorisées par une connectivité neuronale exacerbée. Nous avons examiné cette hypothèse dans un modèle génétique d’épilepsie-absence, le rat GAERS. En étudiant la connectivité structurelle du cortex somatosensoriel primaire, aire d’initiation des DPO chez le GAERS, par traçage rétrograde monosynaptique ainsi que sa connectivité fonctionnelle par enregistrements électrophysiologiques extracellulaires multi-canaux in vivo, nous avons caractérisé le circuit de génération et de propagation des DPO entre les couches corticales. Ce circuit pathologique est différent du circuit canonique d’intégration de l’information sensorielle puisque les DPO sont initiées par les neurones des couches profondes. Ces neurones présentent une hyperconnectivité intralaminaire globale et translaminaire GABAergique et lorsque l’on altère ces connexions pathologiques par microtransection rayon-X synchrotron on réduit la puissance des DPO. Nous nous sommes ensuite intéressés à l’interférence que pouvait avoir le circuit pathologique sur l’intégration sensorielle. En utilisant un test de discrimination de texture nous avons monté que le traitement de l’information sensorielle liée aux vibrisses n’est pas altéré chez le GAERS. Grâce à des stimulations des vibrisses pendant des enregistrements électrophysiologiques extracellulaires multi-canaux in vivo, nous avons pu montrer que le circuit canonique est fonctionnel chez le GAERS. L’ensemble de nos données suggèrent que, chez le GAERS, les DPO sont sous-tendues par un réseau structurellement anormal au sein du cortex somatosensoriel mais que ce circuit pathologique n’empêche pas la fonction physiologique de cette région du cortex. / Cortical neurons are organized in networks which allow complex functions. Abnormalities of neuronal connections composing these networks can lead to functional alterations and pathological activities as in some forms of epilepsy. Absence-epilepsy is characterized by non-convulsive generalized seizures associated with synchronous and bilateral spike-and-wave discharges (SWD) on electroencephalographic recordings and impairment of consciousness. Many studies in patients and animal models have shown that SWD are initiated in the cortex but our understanding of underlying neuronal connection alterations remain limited. We hypothesized that SWD may result from an increased neuronal connectivity. To test this hypothesis, we used a genetic model of absence-epilepsy, the GAERS rat. By studying the structural connectivity of primary somatosensory cortex, the SWD-initiating area in GAERS, by retrograde monosynaptic tracers and the functional connectivity by in vivo multi-channel extracellular electrophysiology, we were able to describe the circuit of SWD generation and propagation across cortical layers. This pathological circuit is different from the canonical circuit of sensory information processing as SWD are initiated by deep layer neurons. These neurons present an intralaminar global and a translaminar GABAergic hyperconnectivity and by decreasing these connections by synchrotron-generated microtransections we were able to reduce the power of SWD. We next investigated if the pathological circuit would interfere with sensory integration. By using a texture discrimination task we showed that sensory information integration is unaltered in GAERS. By using vibrissae stimulations during in vivo multi-channel extracellular electrophysiology recordings we showed that the canonical circuit remain functional in GAERS. Altogether, our data suggest that SWD in GAERS are generated by an abnormal structural network in the somatosensory cortex but that this pathological circuit do not interfere with the physiological function of this brain area.
65

FASN mutations in epileptic encephalopathies

Tene Tadoum, Samuel Boris 05 1900 (has links)
L’acide gras synthase, codé par le gène FASN, est une protéine multi-enzyme homodimérique responsable de la lipogenèse de novo à partir de l’acétyl-CoA et du malonyl- CoA. La finalité de cette lipogenèse est la production de l’acide palmitique, un acide gras simple, précurseur des acides gras à très longues chaînes. L’acide palmitique est impliqué dans plusieurs processus biologiques, dont la palmitoylation qui permet d’ancrer diverses protéines à la membrane cellulaire sous-tendant, entre autres, la transmission synaptique. Le rôle de l’acide gras synthase dans le développement embryonnaire est bien établi. En effet, il est exprimé de manière ubiquitaire dans l’embryon, principalement dans les tissus en pleine croissance et soumis à un remodelage, participant ainsi activement au développement cérébral. Par conséquent, des mutations du gène FASN ont été associées à plusieurs maladies, incluant divers types de cancers, les maladies cardiovasculaires, mais également, plus récemment, à certaines maladies du neurodéveloppement, incluant les troubles du spectre de l’autisme. Des données récentes des laboratoires Rossignol et Campeau, au CHU Ste-Justine, suggèrent un lien entre des mutations récessives ou de novo du gène FASN et des formes précoces d’épilepsie avec atteinte cognitive (encéphalopathies épileptogènes). Nous postulons que les mutations du gène FASN modifient la synthèse de l’acide palmitique et perturbent le développement des réseaux neuronaux, en altérant la migration, le développement morphologique, l’excitabilité et/ou la fonction synaptique de populations neuronales spécifiques, résultant en une hyperexcitabilité neuronale et à l’épilepsie. Pour explorer cette hypothèse, nous avons recueilli les informations cliniques de dix patients porteurs de mutations du gène FASN dans le cadre d’études génomiques en cours au CHU Ste- Justine et à travers le monde. Nous avons également généré un nouveau modèle murin de la maladie, exprimant une mutation retrouvée chez un membre de notre cohorte clinique, que nous avons caractérisé sur les plans histochimique et électrophysiologique. Nos données suggèrent que les mutations du gène FASN induisent chez l’humain un phénotype clinique de retard global du développement évoluant vers une déficience intellectuelle, s’accompagnant d’un éventail de signes neurologiques (déficit moteur, spasticité, réflexes ostéotendineux vifs, hypotonie et ataxie) et d’un risque accru d’épilepsie. De plus, notre modèle de souris knock-in Fasn.S154N révèle la fonction critique de ce gène dans le développement embryonnaire puisqu’une mutation homozygote entraîne une mortalité in utero. Par ailleurs, les souris porteuses de mutations hétérozygotes survivent et présentent un phénotype clinique rappelant celui observé chez les patients, incluant un comportement anxieux, une activité épileptique interictale à l’électroencéphalogramme ainsi qu’un abaissement du seuil convulsif lors d’une exposition au pentylenetetrazole (PTZ). Nous discutons certains mécanismes sous-jacents contribuant potentiellement au développement de l’épilepsie dans cette maladie, incluant une altération de l’activité de l’acide gras synthase au niveau du cortex préfrontal et de l’amygdale, une palmitoylation aberrante des protéines synaptiques, une plus grande vulnérabilité des cellules granulaires du gyrus denté, un dysfonctionnement des cellules souches neurales, une neurogénèse insuffisante, ainsi qu’une altération de la myélinisation et de la croissance axonale impactant la migration des interneurones. Ces mécanismes sont prédits pour altérer l’excitabilité neuronale et la transmission synaptique, perturbant la fonction des circuits. Des études subséquentes permettront d’élucider lesquels de ces divers mécanismes contribuent au phénotype clinique dans notre nouveau modèle murin de la maladie. / Fatty Acid Synthase is a large protein complex encoded by the FASN gene, which is responsible for de novo lipogenesis from acetyl-CoA and malonyl-CoA in the presence of NADPH. The endpoint of this process is the production of palmitic acid. The roles of fatty acid synthase in embryonic development are well established: it is ubiquitously expressed in early embryos, particularly in tissues undergoing active proliferation, outgrowth, and remodelling, and it is thus essential for normal brain development and neuronal function. Consequently, FASN gene mutations have been associated with several neurodevelopmental conditions, including autism spectrum disorders (ASD). Recently, the laboratories of Drs. E. Rossignol and P. Campeau at the CHU Ste-Justine (Université de Montréal), with their international collaborators, have identified 10 patients with neurodevelopmental disorders (i.e., developmental delay, intellectual disability and/or epilepsy) carrying recessive or de novo mutations in the FASN gene, supporting a critical role of FASN in regulating neuronal circuit development and function. However, the mechanisms by which mutations in the FASN gene result in epilepsy are unknown. We postulate that FASN mutations alter palmitic acid synthesis and disrupt neuronal network development, resulting in network hyperexcitability and epilepsy. In this study, we expand the phenotypic description of patients carrying FASN mutations, while generating a novel mouse model carrying a patient-derived FASN mutation to explore the underlying cellular and network mechanisms. Our data reveal that FASN mutations, in humans, generate neurodevelopmental disorders characterized by epilepsy, global developmental delay (GDD), intellectual disability (ID), and a broad range of neurological signs (motor deficit, spasticity, hyperreflexia, hypotony, and ataxia). In our knock-in FasnS154N mouse model, homozygous mutations resulted in prenatal lethality. In contrast, heterozygous mutations caused a clinical phenotype reminiscent of the patient phenotype, with anxiety-like behaviors, spontaneous interictal spikes on electroencephalograms (EEG), and a tendency to a reduced PTZ-induced seizure threshold. We discuss the potential underlying mechanisms, including an altered FAS activity within the prefrontal cortex and the amygdala, aberrant palmitoylation of postsynaptic density proteins, the vulnerability of dentate gyrus granules cell, altered neural stem cells activity and neurogenesis, improper axonal growth and myelination, resulting in altered neuronal excitability and synaptic function, aberrant network activities and epilepsy. These mechanisms will be explored in subsequent studies using our novel animal model.
66

Dysfonction synaptique des interneurones GABAergiques corticaux : implications des mutations du gène Cacna1a dans le développement de l’épilepsie et des déficits cognitifs

Lupien-Meilleur, Alexis 12 1900 (has links)
Les mutations héréditaires causant une perte de fonction du gène CACNA1A, encodant la sous-unité α1 du canal CaV2.1, entraînent chez l’humain le développement d’une ataxie épisodique s’accompagnant parfois d’épilepsie et d’atteintes cognitives. Également, des mutations de novo de CACNA1A ont été rapportées chez près de 1 % des enfants souffrant d’encéphalopathies épileptogènes, ainsi que chez des enfants présentant un trouble du spectre de l’autisme isolé. Ensemble, ces données suggèrent que les altérations de CACNA1A peuvent jouer un rôle central dans la pathogenèse de divers troubles neurodéveloppementaux avec atteintes cognitives et développementales. D’ailleurs, notre évaluation de 16 patients, issus de quatre familles non consanguines, porteurs de différentes mutations induisant une perte de fonction de CACNA1A a révélé l’existence de déficits neurocognitifs modérés à sévères chez la majorité des individus atteints, allant de déficits d’attention avec difficultés d’apprentissage à une déficience intellectuelle avec ou sans trouble du spectre de l’autisme. Alors que les mécanismes pathologiques exacts par lesquels l’haploinsuffisance de CACNA1A induit de tels troubles cognitifs sont encore indéterminés, les mécanismes conduisant à l’épilepsie ont été mieux étudiés. La délétion embryonnaire du canal CaV2.1 dans les interneurones (IN) émanant de l’éminence ganglionnaire médiale (MGE), incluant les IN exprimant la parvalbumine (IN PV) et ceux exprimant la somatostatine (IN SOM), entraîne une épilepsie avec crises tonico-cloniques ainsi que des crises de type absences résultant en une mortalité précoce chez la souris Nkx2.1Cre; Cacna1ac/c. Cependant, la perte du canal dans les IN SOM, chez le modèle SOMCre; Cacna1ac/c, n’induit pas d’épilepsie et la perte ciblée aux IN PV, chez le modèle PVCre; Cacna1ac/c, entraîne une épilepsie caractérisée par des crises d’absence et de rares crises motrices. L’objectif de cette thèse consistait donc, dans un premier temps, de comprendre les mécanismes sous-jacents aux différences épileptiques entre les modèles Nkx2.1Cre; Cacna1ac/c et PVCre; Cacna1ac/c. Les techniques combinées d’imagerie immunohistochimique, d’imagerie 2-photon, d’électrophysiologie, d’analyse d’électroencéphalogramme et de croisement de modèles conditionnels nous ont permis d’identifier les conséquences cellulaires et électrophysiologiques de la délétion de Cacna1a de manière précoce ou tardive dans les IN PV. Elles ont dévoilé, chez le modèle PVCre; Cacna1ac/c, un gain d’inhibition dendritique dans les cellules pyramidales (CP) résultant d’une arborescence axonale accrue des IN SOM. Ce remodelage, dépendant de mTORC1, suffit à prévenir l’apparition de crises motrices et l’inhibition de cette croissance axonale à l’aide de rapamycine renverse l’effet protecteur observé chez la souris PVCre; Cacna1ac/c. Enfin, nous démontrons que l’activation chémogénétique des IN SOM corticaux prévient l’apparition de crises motrices dans un modèle d’épilepsie induite à l’acide kaïnique. Puisque les IN PV en panier du cortex sont essentiels à plusieurs processus cognitifs, telles la flexibilité cognitive et l’attention, qu’ils sont affectés par la perte de fonction homozygote de CaV2.1 et afin de reproduire une condition semblable à celle de nos patients, nous avons exploré dans un deuxième temps l’implication pathologique de ces neurones dans les troubles cognitifs associés à l’haploinsuffisance de Cacna1a. À l’aide du modèle murin portant une délétion hétérozygote de Cacna1a ciblée aux populations neuronales exprimant la PV (PVCre; Cacna1ac/+), nous démontrons par électrophysiologie que la perte du canal CaV2.1 dans ces neurones suffit à réduire l’inhibition corticale. Les tests comportementaux incluant l’Openfield, l’Elevated Plus Maze, le Morris Water Maze, une tâche testant la rigidité cognitive ainsi qu’une tâche évaluant l’attention, ont démontré que les mutants PVCre; Cacna1ac/+ présentent de l’impulsivité, de la rigidité cognitive ainsi qu’un déficit d’attention sélective. Bien que l’ablation homozygote du canal réduise la relâche synaptique des CP chez le mutant homozygote Emx1Cre; Cacna1ac/c, aucun déficit de relâche synaptique, comportemental ou cognitif n’a été observé chez les souris Emx1Cre; Cacna1ac/+ suggérant qu’au niveau cortical, la délétion hétérozygote de Cacna1a affecte sélectivement les IN PV. De plus, à l’aide de délétions ciblées au cortex orbito-frontal (OFC) et au cortex préfrontal médial (mPFC), nous démontrons que l’haploinsuffisance de Cacna1a dans ces régions entraîne de la rigidité cognitive et des troubles de l’attention, respectivement. Enfin, nous révélons que ces deux atteintes peuvent être corrigées via une activation chémogénétique locale des IN PV. Dans son ensemble, ce travail contribue au développement des connaissances portant sur les délétions de Cacna1a. Il présente également de nouvelles avenues pour le traitement de crises épileptiques motrices et pour la prise en charge des atteintes cognitives chez les patients souffrant d’haploinsuffisance de CACNA1A. / Loss-of-function mutations in the CACNA1A gene, encoding the α1 subunit of voltage-gated CaV2.1 channels, result in epilepsy and neurocognitive impairments, including attention deficits, intellectual deficiency and autism. Also, de novo mutations in CACNA1A have been reported in nearly 1% of children with epileptogenic encephalopathies, as well as in children with isolated autism spectrum problems. Taken together, these data suggest that alterations in CACNA1A may play a central role in the pathogenesis of various neurodevelopmental disorders with cognitive and developmental impairment. Moreover, our evaluation of 16 patients, from four non-consanguineous families, carriers of different mutations inducing a loss of function of CACNA1A have shown the existence of moderate to severe neurocognitive deficits in the majority of affected individuals, ranging from deficits from attention with learning difficulties to intellectual disabilities with or without an autism spectrum problem. While the exact pathological mechanisms by which CACNA1A haploinsufficiency induces such cognitive impairment are still unknown, the mechanisms leading to epilepsy have been better studied. Embryonic deletion of CaV2.1 in interneurons (IN) emanating from the medial ganglionic eminence (MGE), including INs expressing parvalbumin (PV IN) and those expressing somatostatin (SOM IN), causes epilepsy with tonic-clonic seizures and absence seizures resulting in early mortality in the Nkx2.1Cre; Cacna1ac/c mice model. However, loss of the channel in SOM IN (SOMCre; Cacna1ac/c) does not induce epilepsy whereas targeted loss in PV IN (PVCre; Cacna1ac/c) causes epilepsy with absence and rare motor seizures. The objective of this thesis was therefore, first of all, to understand the mechanisms underlying the epileptic differences between the Nkx2.1Cre ;Cacna1ac/c and the PVCre; Cacna1ac/c mice. The combined techniques of immunohistochemistry, 2-photon imaging, electrophysiology, electroencephalogram analysis and the crossing of different conditional models identified the cellular and electrophysiological consequences of the deletion of Cacna1a in the IN PV. Compared to Nkx2.1Cre; Cacna1ac/c mice, PVCre; Cacna1ac/c mice have a net increase in cortical inhibition, with a gain of dendritic inhibition through sprouting of SOM IN axons, largely preventing motor seizures. This beneficial compensatory remodeling of cortical GABAergic innervation is mTORC1-dependent and its inhibition with rapamycin leads to a striking increase in motor seizures. Furthermore, we show that a direct chemogenic activation of cortical SOM-INs prevents motor seizures in a model of kainate-induced seizures. Cortical PV IN basket cells are essential for several cognitive processes, such as cognitive flexibility and attention and they are affected by CaV2.1 knock-out. CACNA1A haploinsufficiency also causes cause epilepsy, ataxia, and a range of neurocognitive deficits, including inattention, impulsivity, intellectual deficiency and autism. Therefore, this thesis had for second objective to clarify the consequences of Cacna1a haploinsufficiency in PV IN. Using the mice model carrying a heterozygous deletion of Cacna1a targeted at neuronal populations expressing PV (PVCre; Cacna1ac/+), we demonstrated by electrophysiology that the loss of the CaV2.1 in this neuronal population is sufficient to reduce cortical inhibition. Behavioral tests including the OpenField, the Elevated Plus Maze, the Morris Water Maze, a cognitive rigidity task as well as an attention set-shifting task have shown that PVCre; Cacna1ac/+ exhibit impulsivity, cognitive rigidity, and selective attention deficit. Although Cacna1a homozygous ablation reduced synaptic release of PC in the Emx1Cre; Cacna1ac/c mice mutant, no synaptic, behavioural or cognitive relaxation deficits were observed in the Emx1Cre; Cacna1ac/+ mice suggesting that, at the cortical level, the heterozygous deletion of Cacna1a selectively affects PV IN. These findings have enabled us to determine, using targeted deletions within the orbitofrontal cortex (OFC) and the medial prefrontal cortex (mPFC), that the haploinsufficiency of Cacna1a in PV IN results in reversal learning deficits and impairs selective attention, respectively. These deficits can be rescued by the selective chemogenetic activation of cortical PV IN respectively in the OFC or mPFC of PVCre; Cacna1ac/+ mutants As a whole, this work contributes to the development of knowledge on Cacna1a deletions. It also presents new avenues for the treatment of motor epileptic seizures and for the management of cognitive impairment in patients with CACNA1A haploinsufficiency.
67

Biochemical regulatory mechanisms of the GATOR1 complex

Bélanger, Jasmine 06 November 2023 (has links)
Titre de l'écran-titre (visionné le 30 octobre 2023) / L'épilepsie est une condition neurologique caractérisée par la survenue spontanée de crises résultant d'une activité neuronale synchrone et excessive. Récemment, des mutations dans les gènes du complexe GATOR1 (DEPDC5, NPRL2 et NPRL3) ont été impliquées dans les épilepsies focales familiales (EFF). Bien que les mécanismes moléculaires sous-jacents de la maladie ne soient pas encore compris, une hyperactivité de la voie de signalisation mTORC1 constitue une caractéristique bien établie des EFF reliées à GATOR1. Dans la cellule, GATOR1 est un complexe protéique essentiel dans la détection des acides aminés et il agit comme répresseur de la voie de signalisation mTORC1 lorsque les niveaux d'acides aminés intracellulaires sont bas. mTORC1 joue un rôle central dans la régulation de la croissance cellulaire et contrôle plusieurs processus cellulaires incluant la synthèse protéique et l'autophagie. Une dérégulation de la voie mTORC1 est impliquée dans plusieurs maladies, dont l'épilepsie. Malgré l'importance biologique et clinique de GATOR1, les mécanismes régulant son activité demeurent peu connus. Par l'utilisation de lignées de cellules mutantes, ce projet vise donc à identifier de nouveaux mécanismes biochimiques de régulation de GATOR1 afin de contrôler l'activité de mTORC1 et de mieux comprendre les conséquences moléculaires des mutations de GATOR1 contribuant à l'EFF. En déterminant l'impact fonctionnel de variants de NPRL2 reliés à l'EFF, j'ai montré qu'une portion de ces variants ont perdu leur capacité à réprimer mTORC1 dans des conditions nutritionnelles sous-optimales, ce qui supporte l'hyperactivité de mTORC1 comme mécanisme pathogénique sous-jacents de la maladie. Ce projet a également montré que le variant pathogénique L105P de NPRL2 est incapable de s'associer avec NPRL3 and DEPDC5, ce qui semble souligner le rôle crucial du résidu leucine 105 (Leu105) de NPRL2 dans la formation du complexe GATOR1. Par ailleurs, ce projet a montré que l'acétylation se produit sur certains résidus lysine de NPRL2 retrouvés à proximité du site Leu105. L'acétylation sur ces résidus s'est révélée plus abondante sur le mutant L105P que sur la protéine sauvage. Ces résultats proposent donc NPRL2 comme une cible potentielle sujette à la régulation par l'acétylation, laquelle pourrait avoir pour effet d'abolir les interactions protéiques entre les membres de GATOR1. / Epilepsy is a complex neurological disorder characterized by spontaneous seizures due to excessive neuronal activity. Mutations in the GATOR1 genes (DEPDC5, NPRL2 and NPRL3) have recently been linked to familial focal epilepsy (FFE). The molecular mechanisms underlying the disease are currently unknown, yet hyperactive mTORC1 signaling is an established feature of GATOR1-related epilepsies. The GATOR1 complex is an essential amino acids sensor that acts to repress the mTORC1 signaling pathway when intracellular amino acids levels are low. mTORC1 is a master regulator of cell growth that controls multiple cellular processes such as protein synthesis and autophagy. Dysregulation of mTORC1 contributes to many diseases including epilepsy. Despite the clinical and biological importance of GATOR1, little is known about its regulation. Through the use of mutant cell lines, this project aims to investigate novel biochemical regulatory mechanisms of GATOR1 that control mTORC1 activity, and to understand the molecular mechanisms underlying GATOR1-dependent epilepsies. Functional assessments of FFE-related NPRL2 variants in NPRL2-null cells revealed that some variants completely prevent the ability of GATOR1 to repress mTORC1 under starvation conditions. This further supports the dysregulation of mTORC1 as the main pathogenic mechanism underlying the disease. Additionally, I demonstrated that the pathogenic NPRL2 variant L105P is unable to associate with NPRL3 and DEPDC5, suggesting the critical role of NPRL2 Leu105 residue in organizing the assembly of GATOR1 complex. Finally, I showed that NPRL2 is acetylated on conserved lysine residues that are adjacent to the Leu105 site. Acetylation on Lys103 and Lys104 residues was more abundant in the mutant L105P compared to the wild-type NPRL2. These results suggest NPRL2 as a potential novel target of regulation by lysine acetylation, which may act as an impediment to protein interactions within the GATOR1 complex. Future work aimed at determining the functional consequences of lysine acetylation in NPRL2 will be necessary.
68

Utilisation des potentiels évoqués visuels stationnaires pour mieux évaluer la neurotoxicité visuelle chez les enfants exposés au vigabatrin

Hébert-Lalonde, Noémie 07 1900 (has links)
Le traitement de l’épilepsie chez le jeune enfant représente un enjeu majeur pour le développement de ce dernier. Chez la grande majorité des enfants atteints de spasmes infantiles et chez plusieurs atteints de crises partielles complexes réfractaires, le vigabatrin (VGB) représente un traitement incontournable. Cette médication, ayant démontré un haut taux d’efficacité chez cette population, semble toutefois mener à une atteinte du champ visuel périphérique souvent asymptomatique. L’évaluation clinique des champs visuels avec la périmétrie chez les patients de moins de neuf ans d’âge développemental est toutefois très difficile, voire impossible. Les études électrophysiologiques classiques menées auprès de la population épileptique pédiatrique suggèrent l’atteinte des structures liées aux cônes de la rétine. Les protocoles standards ne sont toutefois pas spécifiques aux champs visuels et les déficits soulignés ne concordent pas avec l’atteinte périphérique observée. Cette thèse vise donc à élaborer une tâche adaptée à l’évaluation des champs visuels chez les enfants en utilisant un protocole objectif, rapide et spécifique aux champs visuels à partir des potentiels évoqués visuels (PEVs) et à évaluer, à l’aide de cette méthode, les effets neurotoxiques à long terme du VGB chez des enfants épileptiques exposés en bas âge. La validation de la méthode est présentée dans le premier article. La stimulation est constituée de deux cercles concentriques faits de damiers à renversement de phase alternant à différentes fréquences temporelles. La passation de la tâche chez l’adulte permet de constater qu’une seule électrode corticale (Oz) est nécessaire à l’enregistrement simultané des réponses du champ visuel central et périphérique et qu’il est possible de recueillir les réponses électrophysiologiques très rapidement grâces l’utilisation de l’état-stationnaire (steady-state). La comparaison des données d’enfants et d’adultes normaux permet de constater que les réponses recueillies au sein des deux régions visuelles ne dépendent ni de l’âge ni du sexe. Les réponses centrales sont aussi corrélées à l’acuité visuelle. De plus, la validité de cette méthode est corroborée auprès d’adolescents ayant reçu un diagnostic clinique d’un déficit visuel central ou périphérique. En somme, la méthode validée permet d’évaluer adéquatement les champs visuels corticaux central et périphérique simultanément et rapidement, tant chez les adultes que chez les enfants. Le second article de cette thèse porte sur l’évaluation des champs visuels, grâce à la méthode préalablement validée, d’enfants épileptiques exposés au VGB en jeune âge en comparaison avec des enfants épileptiques exposés à d’autres antiépileptiques et à des enfants neurologiquement sains. La méthode a été bonifiée grâce à la variation du contraste et à l’enregistrement simultané de la réponse rétinienne. On trouve que la réponse corticale centrale est diminuée à haut et à moyen contrastes chez les enfants exposés au VGB et à haut contraste chez les enfants exposés à d’autres antiépileptiques. Le gain de contraste est altéré au sein des deux groupes d’enfants épileptiques. Par contre, l’absence de différences entre les deux groupes neurologiquement atteints ne permet pas de faire la distinction entre l’effet de la médication et celui de la maladie. De plus, la réponse rétinienne périphérique est atteinte chez les enfants épileptiques exposés au Sabril® en comparaison avec les enfants neurologiquement sains. La réponse rétinienne périphérique semble liée à la durée d’exposition à la médication. Ces résultats corroborent ceux rapportés dans la littérature. En somme, les résultats de cette thèse offrent une méthode complémentaire, rapide, fiable, objective à celles connues pour l’évaluation des champs visuels chez les enfants. Ils apportent aussi un éclairage nouveau sur les impacts à long terme possibles chez les enfants exposés au VGB dans la petite enfance. / Epilepsy control is a major issue for the normal development in children. For the vast majority of children with infantile spasms and for some with refractory complex partial seizures, vigabatrin (VGB) represents the main treatment. VGB, which have shown high efficiency rate in this population, may, however, induce a peripheral visual field deficit, often asymptomatic. Clinical visual field assessment with perimetry is practically impossible in patients less than nine years of developmental age. Electrophysiological studies in epileptic children suggest an impact on the retinal structures related to the cones. However, standard protocols are not field-specific and the deficits reported in the literature are not coherent with the peripheral deficit observed. Thus, this thesis aims to develop a fast and efficient electrophysiological protocol to examine the visual field’s integrity, which would be useful in pediatric testing and to assess the visual field long-term effects of the VGB in school-aged epileptic children exposed early in life. The first article concerns the method’s validation. The stimulation is made of two high-contrast radial checks reversing at two different temporal frequencies. Adult testing reveals that only one electrode (Oz) is needed to record simultaneously both central and peripheral visual fields and that steady-state use allows fast gathering of both electrophysiological responses. No effect of age or sex was found in the comparison of adult and child’ responses. Moreover, the visual acuity, as calculated by the binocular visual acuity index, was related to the central signal when comparing healthy participants with central visual impaired adolescents. Our method presents several advantages in evaluating visual fields integrity, as it is fast, reliable and efficient, and applicable in children. The aim of the second article of the thesis is the assessment of the long term visual effect on the visual field in children exposed to VGB in infancy in comparison to epileptic children exposed to other antiepileptics and with healthy children using the previously validated electrophysiology method with the addition of contrast variation and simultaneous recording of electroretinograms. Results reveal a cortical central deficit at high and mid-range contrast in VGB exposed-children and at high contrast in other antiepileptic exposed group. The contrast gain is also affected in both epileptic groups. The absence of difference between both epileptic groups does not allow distinguishing the impact of medication and/or seizure disorder. The peripheral retinal response is also altered in the VGB-exposed group in comparison to the healthy group. The peripheral retinal response is related to the exposition duration. This result concurs with previous studies in the literature. Finally, the results of the thesis offer an objective, fast, efficient and alternative method to assess visual fields in children. They also bring a new point of view on the likely long term impacts of the VGB in children exposed in infancy.
69

Rôle et implication du courant sodique cardiaque dans la genèse de phénomènes arythmogéniques en conditions physiopathologiques

Biet, Michaël January 2015 (has links)
Le potentiel d’action cardiaque est un phénomène électrique finement régulé par des modifications du voltage membranaire engendré par l’ouverture de différents canaux ioniques (sodium, calcium, chlore et potassium) présents à la surface des cardiomyocytes. Les transferts d’ions, de part et d’autre de la membrane via ces canaux, génèrent des courants pouvant être mesurés par la technique de patch clamp. L’activité électrique cardiaque est donc la résultante d’un équilibre de différents flux d’ions qui peut également être modulé par les systèmes sympathique et parasympathique afin de permettre l’adaptation du rythme cardiaque. Le courant sodique (I[indice inférieur Na]) est responsable de l’initiation des potentiels d’action (PA) et module sa durée. Il joue donc un rôle prépondérant dans l’excitabilité cardiaque et la conduction de l’influx électrique. De par ce fait, une modification des propriétés biophysiques d’I[indice inférieur Na] lors de conditions physiopathologiques peut engendrer des troubles du rythme. I[indice inférieur Na] est divisé en phases rapide (I[indice inférieur Na] pic) et soutenue (I[indice inférieur NaL]) qui interviennent respectivement dans l’excitabilité et la durée d’un PA (phase de plateau). De plus, notre laboratoire a démontré que les canaux sodiques de types cardiaque ([indice inférieur Na]V1.5) et neuronaux (n[indice inférieur Na]Vs) contribuent à I[indice inférieur Na]. Chacun se différencie par leurs propriétés biophysiques, leurs contributions à I[indice inférieur Na] (pic et soutenu) ainsi qu’à leurs sensibilités à la tétrodotoxine (TTX). Nous avons étudié les effets précoces d’un diabète de type II, de l’exposition in-utero à la nicotine des nouveau-nés, de l’épilepsie et de l’ischémie sur les propriétés biophysiques du courant sodique cardiaque I[indice inférieur Na] responsable de l’impulsion électrique menant au battement cardiaque. Ces pathologies ont comme point commun l’apparition de troubles du rythme cardiaque tels que des bradycardies, des troubles de conduction menant parfois à des blocs auriculo-ventriculaires (BAV), des insuffisances cardiaques ou encore des problèmes d’excitabilité pouvant tous être reliés au courant sodique. Nos résultats montrent que toutes ces conditions physiopathologiques altèrent les propriétés du courant sodique en augmentant l’amplitude du courant I[indice inférieur Na] (diabète, exposition in-utero à la nicotine, épilepsie), l’excitabilité (diabètes, exposition in-utero à la nicotine, épilepsie) ou en augmentant le taux de participation des nNaVs à I[indice inférieur NaL] (épilepsie, ischémie). Nos données concordent avec la littérature et les observations cliniques et permettent d’expliquer en partie l’apparition de ces anomalies de troubles du rythme survenant chez les personnes atteintes de ces pathologies.
70

Rôle de l’altération des récepteurs de NMDA dans l’épilepsie associée à la Sclérose Tubéreuse de Bourneville étudié sur un modèle animal et le tissu humain / The role of NMDA receptors alteration in the epilepsy related to Tuberos Sclerosis Complex studied on the animal model and human tissue

Gataullina, Svetlana 27 January 2015 (has links)
La sclérose tubéreuse de Bourneville (STB) est une maladie génétique et multi-systémique à transmission autosomique dominante due à des mutations d’un gène TSC1 ou TSC2 qui codent respectivement pour hamartine et tuberine ayant une action inhibitrice sur la voie de signalisation mTOR. L’épilepsie précoce et pharmacorésistante est la manifestation neurologique la plus fréquente et la plus délétère de la STB. Elle débute souvent dans la première année de vie par des spasmes infantiles qui évoluent avec l’âge et en absence de traitement vers des crises toniques ou tonico-cloniques. Bien que les crises soient supposées être générées dans des tubers corticaux, les mécanismes de l’épilepsie ne sont pas bien élucidés et le traitement reste souvent inefficace. Des études morphologiques ont montré une altération de l’expression ARNm des récepteurs au glutamate dans les cellules géantes et les neurones dysplasiques des tubers, mais leur implication fonctionnelle restait à montrer. Les différentes sous-unités NMDA ont une expression âge-dépendante et région-spécifique, les plus grands changements survenant au début de la vie quand l’épilepsie de la STB apparaît. Ce travail avait pour but d’étudier à l’aide de méthodes électrophysiologiques in vitro et in vivo l’expression fonctionnelle des sous-unités NMDA aberrantes et de déterminer leur rôle dans l’épileptogènese chez les souris hétérozygotes Tsc1+/- et sur le tissu humain STB post-opératoire. Nous avons pu démontrer que : i) Les souris hétérozygotes pour le gène Tsc1 sont spontanément épileptiques in vivo et in vitro dans une courte fenêtre dévelopmentale de P9 à P18. ii) Elles présentent une altération d’expression des récepteurs NMDA couche-spécifique et mTOR dépendante avec une surexpression des sous-unités GluN2C/D dans la couche 4 et 2/3 et GluN2B dans les couches 2/3. Cette expression anormale est prévenue par l’administration d’un inhibiteur de la voie mTOR, la rapamycine. iii) Les mêmes altérations d’expression des récepteurs NMDA, sont montrées sur les tissus post-opératoires, non seulement de tubers de STB mais aussi des dysplasies corticales focales (DCF), ces deux malformations ayant des similarités étiologiques et physiopathologiques. iv) La RT-PCR quantitative confirme une expression excessive de GluN2C dans le cortex de souris Tsc1+/- et sur le tissu humain des tubers et DCF. v) Les décharges épileptiques chez la souris Tsc1+/- sont générées dans la couche granulaire 4 du cortex avant de se propager vers les couches superficielles et les couches profondes, empruntant ainsi les microcircuits corticaux. vi) L’expression excessive de la sous-unité GluN2C dans le cortex contribue à l’hyperexcitabilité neuronale chez la souris Tsc1+/- et sur des tissus humains de tubers et de DCF puisque les crises et les décharges sont bloquées par les antagonistes sélectifs de GluN2C/D. vii) Les crises chez la souris Tsc1+/- suivent une séquence âge-dépendante évoluant du type «spasms-like» vers «tonic-clonic like», rappelant celle de l’épilepsie humaine, avec deux pics de haute incidence de crises à P13 et P16 correspondant chez l’homme respectivement l’âge des spasmes infantiles et celui des crises toniques. L’évolution avec l’âge du délai de propagation inter-hémisphérique pourrait contribuer à ce changement de types de crises. Ces résultats montrent donc pour la première fois qu’une happloinsuffisance pour le gène Tsc1 chez les souris Tsc1+/- sans tubers suffit à produire une altération de l’expression des récepteurs NMDA de manière mTOR dépendante et contribuer ainsi à l’épileptogènese dans la STB. La souris Tsc1+/- est le premier modèle génétique sans anomalies morphologiques présentant une épilepsie spontanée qui évolue des spasmes vers des crises toniques et tonico-cloniques. Néanmoins cette épilepsie diffère de l’épilepsie humaine de la STB par l’absence de crises focales et de pharmacorésistance, ce qui pourrait être expliqué par l’absence de tubers chez la souris Tsc1+/-. (...) / Tuberous sclerosis complex (TSC) is a genetic multisystemic disease with autosomal dominant transmission due to mutations in a gene TSC1 or TSC2 respectively which encode hamartin and tuberin proteins having an inhibitory action on the mTOR signaling pathway. Early refractory epilepsy is the most common and most deleterious neurological manifestation. The epilepsy often begins in the first year of life by infantile spasms that change in the lack of treatment to tonic or tonic-clonic seizures in age-dependent manner. Although seizures are thought to be generated in cortical tubers, epilepsy mechanisms are not well understood and treatment is often ineffective. Morphological studies showed the altered expression of glutamate receptor mRNA in the giant cells and dysplastic neurons of tubers, but their functional involvement remains unknown. The different NMDA subunits have an age-dependent and region-specific expression, the greatest changes occurring early in life when the TSC epilepsy appears. This work aimed to study the functional expression of aberrant NMDA subunits expression and their role in the epileptogenesis in heterozygous Tsc1+/- mice and post-surgical human tissue of TSC patients using in vitro and in vivo electrophysiological methods. The study reveal that: i) Heterozygous tuber-free Tsc1+/- mice show spontaneous epilepsy in vivo and in vitro in a short developmental window from P9 to P18. ii) These mice exhibit an altered NMDA receptor expression in mTOR dependent and layer-specific manner with GluN2C/D subunits overexpression in layers 4 and 2/3, and GluN2B ovexpression in layers 2/3. This abnormal NMDA receptors expression is prevented by the administration of an mTOR inhibitor, rapamycin. iii) The same alterations of NMDA receptors’ expression are shown in post-surgical tissues not only in tubers from TSC patients, but also in focal cortical dysplasia (FCD), these two malformations sharing etiological and pathophysiological similarities. iv) Quantitative RT-PCR confirms the excessive GluN2C subunit expression in Tsc1+/- mouse cortex and human tissue of tubers and DCF. v) Epileptic discharges in Tsc1+/- mice are generated in the granular layer 4 of the cortex before spreading to the superficial and then to deep layers, thus borrowing the cortical microcircuits. vi) Excessive expression of GluN2C subunit in the cortex contributes to neuronal hyperexcitability in Tsc1+/- mice, as well as in human tubers and DCF tissues, since epileptic discharges are blocked by selective GluN2C/D antagonists. vii) Seizures in Tsc1+/- mice follow the age-dependent sequence, evolving from "spasms-like" to "tonic-clonic like" thus reminding the human epilepsy, with two peaks of highest seizure incidence at P13 and P16 corresponding respectively to age of infantile spasms and of tonic seizures in human. The age-dependent evolution of interhemispheric propagation delay could contribute to this change in seizure type. These results show for the first time that TSC1 happloinsuffisancy in tuber-free Tsc1+/- mice is sufficient to produce an alteration in NMDA receptor expression in an mTOR dependent manner, and thus contributes to epileptogenesis in TSC. The Tsc1+/- mouse line is the first genetic model of TSC without morphological abnormalities presenting with early spontaneous seizures which evolves from “spasms-like” to “tonic-clonic like” seizures. However, the epilepsy in Tsc1+/- mice differs from human TSC epilepsy by the absence of focal seizures and of drug-resistance. Both could be explained by the lack of tubers in the Tsc1+/- mice. It remains to determine whether the expression of GluN2C subunit is also transitional in Tsc1+/- mice and whether other factors contribute to determine the age-dependent epilepsy. This study opens new therapeutic perspectives of TSC epilepsy targeting GluN2C subunit of NMDA receptors.

Page generated in 0.0633 seconds