Spelling suggestions: "subject:"équations""
291 |
Analyse de modèles en mécanique des fluides compressiblesFettah, Amal 18 December 2012 (has links)
Dans cette thèse on s'est intéressé à l'étude de problèmes concernant la théorie des écoulements compressibles. Dans une première partie on a traité le problème de transport instationnaire avec un champ de vitesse peu régulier, on a établi un résultat d'existence en passant à la limite sur des schémas numériques volumes finis avec un choix décentré amont qui garantie la positivité de la masse volumique. Pour le problème de Stokes, le résultat est démontré par deux approches : une approche par schéma numérique et une approche par régularité visqueuse.Dans la première méthode on propose une discrétisation qui combine la méthode des éléments finis et la méthode des volumes finis qui repose sur les espaces Crouzeix-Raviart. Une première difficulté de ce travail est de démontrer les estimations sur la solution discrète, en particulier à cause de la présence de la gravité dans le terme source de l'équation de quantité de mouvement. Le fait de considérer une loi d'état très générale conduit des difficultés supplémentaires en particulier dans le passage à la limite sur cette équation.Dans la deuxième méthode, le résultat d'existence est démontré en utilisant une approximation par viscosité. Ceci consiste essentiellement en deux parties : l'étude du problème de convection diffusion (qui apparait dans le problème régularisé) où on démontre l'existence et l'unicité de solution et en deuxième partie le passage à la limite sur le problème régularisé. / This thesis is concerned with the study of problems relating in the theory of compressible flows . We prove the existence of the considered problems in a first part by passing to the limit on the numerical schemes proposed for the discretisation of these problems. In the second part, the existence result is obtained by passing to the limit on the approximate solutions given by a corresponding regularized problem.The main result is to prove the existence of a solution of the stationnary compressible Stokes problem with a general equation of state.We first prove this result by passing to the limit on the numerical scheme as the mesh size tends to zero. The fact to consider a general E.O.S induces some additional difficulties in particular to get estimates on the discrete solution (which comes also from the presence of the gravity in the momentum equation) and in the passage to the limit on the E.O.S.We also prove the existence result by passing to the limit on a regularized problem. We first treat the convection-diffusion problem (which appears in the regularized problem), we give an existence and uniqueness result, and we then prove estimates on the approwimate solutions and pass to the limit on the regularized problem.
|
292 |
Asymptotic properties of the dynamics near stationary solutions for some nonlinear Schrödinger équations / Propriétés asymptotiques de la dynamique dans un voisinage des solutions stationnaires de certaines équations de Schrödinger non-linéairesOrtoleva, Cecilia Maria 18 February 2013 (has links)
Cette thèse est consacrée à l'étude de certains aspects du comportement en temps longs des solutions de deux équations de Schrödinger non-linéaires en dimension trois dans des régimes perturbatives convenables. Le premier modèle consiste en une équation de Schrödinger avec une non-linéarité concentrée obtenue en considérant une interaction ponctuelle de force $alpha$, c'est-à-dire une perturbation singulière du Laplacien décrite par un opérateur autoadjoint $H_{alpha}$, où la force $alpha$ dépend de la fonction d'onde : $ifrac{du}{dt}= H_alpha u$, $alpha=alpha(u)$. Il est bien connu que les éléments du domaine d'une interaction ponctuelle en trois dimensions peuvent être décrits comme la somme d'une fonction régulière et d'une fonction ayant une singularité proportionnelle à $|x - x_0|^{-1}$, où $x_0$ est l'emplacement du point d'interaction. Si $q$ est la charge d'un élément du domaine $u$, c'est-à-dire le coefficient de sa partie singulière, alors pour introduire une non-linéarité, on fait dépendre la force $alpha$ de $u$ selon la loi $alpha=-nu|q|^sigma$, avec $nu > 0$. Ce modèle est défini comme une équation de Schrödinger non-linéaire focalisant de type puissance avec une non-linéarité concentrée en $x_0$. Notre étude regarde la stabilité orbitale et asymptotique des ondes stationnaires de ce modèle. Nous prouvons l'existence d'ondes stationnaires de la forme $u (t)=e^{iomega t}Phi_{omega}$, qui soient orbitalement stables pour $sigma in (0,1)$ et orbitalement instables quand $sigma geq 1.$ De plus nous montrons que si $sigma in (0,frac{1}{sqrt 2}) cup (frac{1}{sqrt 2}, 1)$, alors chaque onde stationnaire est asymptotiquement stable, à savoir que pour des données initiales proches d'un état stationnaire dans la norme d'énergie et appartenant à un espace $L^p$ pondéré où les estimations dispersives sont valides, l'affirmation suivante est vérifiée : il existe $omega_{infty} > 0$ et $psi_{infty} in L^2(R^3)$ tel que $psi_{infty} = O_{L^2}(t^{-p})$ quand $t rightarrow +infty$, tel que $u(t) = e^{iomega_{infty} t +il(t)} Phi_{omega_{infty}} +U_t*psi_{infty} +r_{infty}$, où $U_t$ est le propagateur de Schrödinger libre, $p = frac{5}{4}$, $frac{1}{4}$ respectivement en fonction de $sigma in (0, 1/sqrt{2})$, $sigma in left( frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right)$, et $l(t)$ est une fonction à croissance logarithmique qui apparaît quand $sigma in (frac{1}{sqrt{2}}, sigma^*)$, où $sigma^* in left( frac{1}{sqrt{2}},frac{sqrt{3} +1}{2sqrt{2}} right]$. Notons que dans ce modèle les non-linéarités pour lesquelles on a la stabilité asymptotique sont sous-critiques dans le sens où quelle que soit la donnée initiale il n'y a pas de solutions explosives. Quant au deuxième modèle, il s'agit de l'équation de Schrödinger non-linéaire focalisant à énergie critique : $i frac{du}{dt}=-Delta u-|u|^4 u$. Pour ce cas, nous prouvons, pour tout $nu$ et $alpha_0$ suffisamment petits, l'existence de solutions radiales à énergie finie de la forme $u(t,x)=e^{ialpha(t)}lambda^{1/2}(t)W(lambda(t)x)+e^{iDelta t}zeta^*+o_{dot H^1} (1)$ tout $trightarrow +infty$, où $alpha(t)=alpha_0ln t$, $lambda(t)=t^{nu}$, $W(x)=(1+frac13|x|^2)^{-1/2}$ est l'état stationnaire et $zeta^*$ est arbitrairement petit en $dot H^1$ / The present thesis is devoted to the investigation of certain aspects of the large time behavior of the solutions of two nonlinear Schrödinger equations in dimension three in some suitable perturbative regimes. The first model consist in a Schrödinger equation with a concentrated nonlinearity obtained considering a {point} (or contact) interaction with strength $alpha$, which consists of a singular perturbation of the Laplacian described by a self adjoint operator $H_{alpha}$, and letting the strength $alpha$ depend on the wave function: $ifrac{du}{dt}= H_alpha u$, $alpha=alpha(u)$.It is well-known that the elements of the domain of a point interaction in three dimensions can be written as the sum of a regular function and a function that exhibits a singularity proportional to $|x - x_0|^{-1}$, where $x_0$is the location of the point interaction. If $q$ is the so-called charge of the domain element $u$, i.e. the coefficient of itssingular part, then, in order to introduce a nonlinearity, we let the strength $alpha$ depend on $u$ according to the law $alpha=-nu|q|^sigma$, with $nu > 0$. This characterizes the model as a focusing NLS with concentrated nonlinearity of power type. In particular, we study orbital and asymptotic stability of standing waves for such a model. We prove the existence of standing waves of the form $u (t)=e^{iomega t}Phi_{omega}$, which are orbitally stable in the range $sigma in (0,1)$, and orbitally unstable for $sigma geq 1.$ Moreover, we show that for $sigma in(0,frac{1}{sqrt 2}) cup left(frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right)$ every standing wave is asymptotically stable, in the following sense. Choosing an initial data close to the stationary state in the energy norm, and belonging to a natural weighted $L^p$ space which allows dispersive stimates, the following resolution holds: $u(t) =e^{iomega_{infty} t +il(t)} Phi_{omega_{infty}}+U_t*psi_{infty} +r_{infty}$, where $U_t$ is the free Schrödinger propagator,$omega_{infty} > 0$ and $psi_{infty}$, $r_{infty} inL^2(R^3)$ with $| r_{infty} |_{L^2} = O(t^{-p}) quadtextrm{as} ;; t right arrow +infty$, $p = frac{5}{4}$,$frac{1}{4}$ depending on $sigma in (0, 1/sqrt{2})$, $sigma in (1/sqrt{2}, 1)$, respectively, and finally $l(t)$ is a logarithmic increasing function that appears when $sigma in (frac{1}{sqrt{2}},sigma^*)$, for a certain $sigma^* in left(frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right]$. Notice that in the present model the admitted nonlinearities for which asymptotic stability of solitons is proved, are subcritical in the sense that it does not give rise to blow up, regardless of the chosen initial data. The second model is the energy critical focusing nonlinear Schrödinger equation $i frac{du}{dt}=-Delta u-|u|^4 u$. In this case we prove, for any $nu$ and $alpha_0$ sufficiently small, the existence of radial finite energy solutions of the form$u(t,x)=e^{ialpha(t)}lambda^{1/2}(t)W(lambda(t)x)+e^{iDeltat}zeta^*+o_{dot H^1} (1)$ as $tright arrow +infty$, where$alpha(t)=alpha_0ln t$, $lambda(t)=t^{nu}$,$W(x)=(1+frac13|x|^2)^{-1/2}$ is the ground state and $zeta^*$is arbitrarily small in $dot H^1$
|
293 |
Élaboration par projection plasma d'un revêtement bicouche d'alumine réfléchissant et diffusant. Contribution à la compréhension des phénomènes interaction rayonnement/matière / Manufacturing of a reflecting and scattering bilayer in alumina by plasma spraying process. Contribution to the understanding of interaction radiation/matterMarthe, Jimmy 20 December 2013 (has links)
Ces travaux de thèse sont consacrés à l'élaboration de revêtement réfléchissant et diffusant par projection plasma d'arc soufflé. Par la sélection des paramètres opératoires et le contrôle de la microstructure des revêtements élaborés, la première partie de cette étude présente la mise en forme d'un revêtement bicouche (micro/nano-structuré) d'alumine possédant une réflectance supérieure à 90% sur la gamme UV-Visible. Le transfert nécessaire à la démonstration pour démontrer la faisabilité d'élaboration de pièces de plus grandes dimensions (0.25 m2) a été entrepris. Dans une seconde partie et à partir de l'exploration de la microstructure des revêtements et de leur physicochimie, l'amélioration de la réflectance dans le proche UV par la couche nanostructurée est explicitée d'une part par la nature de la phase cristallographique moins absorbante et d'autre part par la présence en nombre de pores de faibles dimensions. De plus, la caractérisation des propriétés radiatives des revêtements par inversion de l'Equation du Transfert Radiatif a permis d'obtenir des éléments de compréhension des phénomènes d'interaction rayonnement/matière. Enfin, une dernière partie a pour objectif de mettre en place les différents éléments nécessaires à la prédiction des propriétés optiques de revêtements mis en forme par projection plasma. Un modèle tridimensionnel a été proposé pour représenter numériquement la structure de chacune des couches micro- et nanostructurée à partir des analyses microstructurales. Le code de résolution des équations de Maxwell par méthode FDTD (Finite Difference Time Domain) a été validé et de premières simulations ont été réalisées / This study deals with the manufacturing of reflecting and scattering coatings by plasma spraying process. By the selection of operating parameters and the control of the coatings microstructure, the first part of this work presents the elaboration of a micro/nanostructured bilayer material in alumina with a reflectance up to 90 % in the near UV-Visible range of wavelength. The feasibility of larger pieces (0.25m2) is demonstrated and the different characterizations for inserting the material in the Laser MegaJoule are performed. In a second part, from characterizations of the microstructure (by SEM, Hg Porosimetry, USAXS) and the chemical composition (DRX, X fluorescence), the improvement of the reflectance in the near-UV thanks to the nanostructured layer is explained, on the one hand, by the less absorbing crystallographic phase and, on the other hand, by the smaller and numerous pores. Moreover, the characterization of the radiation properties by the Radiation Transfer Equation inversion brings new elements for understanding the phenomena during radiation/porous media interaction and to determine the spatial repartition of the scattering radiation. The aim of the last part is to set up the different tools which are necessary to compute simulations of plasma-sprayed coatings optical behavior. From the microstructure analysis, a tridimensional numerical representation of each layer is suggested. The resolution of Maxwell equations is performed by FDTD (Finite Difference Time Domain) method. The model is validated and some first simulations are realized
|
294 |
Étude d’équations à retard appliquées à la régulation de la production de plaquettes sanguinesBoullu, Loïs 11 1900 (has links)
No description available.
|
295 |
Hamiltonian fluid reductions of kinetic equations in plasma physics / Réductions fluides hamiltoniennes des équations cinétiques en physique des plasmasPerin, Maxime 19 September 2016 (has links)
La réduction fluide des équations cinétiques est un procédé couramment utilisé en physique des plasmas qui a pour objectif de remplacer la fonction de distribution définie dans l'espace des phases par des grandeurs fluides comme la densité et la pression. Cette réduction diminue la complexité du système initial. En contrepartie, la réduction fluide s'accompagne de la nécessité d'effectuer une fermeture sur les moments d'ordre supérieur. Celle-ci est souvent construite ad hoc en se basant sur des arguments physiques (e.g., quantités conservées, existance d'un théorème H, ...). Dans ce manuscrit, on propose un procédé de réduction qui permet de préserver la structure hamiltonienne du modèle cinétique parent. Ceci est important pour assurer qu'aucune dissipation d'origine non physique est introduite dans le modèle fluide, le munissant ainsi d'une structure hamiltonienne dont l'origine peut être suivie jusqu'à celle de la dynamique microscopique des particules. On utilise cette méthode pour construire des modèles fluides non-adiabatiques pour les trois premiers moments de la fonction de distribution associée à l'équation de Vlasov-Poisson à une dimension, i.e., la densité, la vitesse fluide et la pression. Les résultats sont ensuite étendus pour inclure la dynamique du flux de chaleur en considérant des fermetures construites à partir de l'analyse dimensionnelle. On montre également, pour un nombre arbitraire de champs, la relation existant avec le modèle water-bags. L'extension à des dimensions supérieures est étudiée dans le cadre de l'équation drift-cinétique ainsi que de l'équation de Vlasov-Poisson à trois dimensions. / Fluid reduction of kinetic equations is a ubiquitous procedure in plasma physics which aims to replace the distribution function defined in phase space with more concrete fluid quantities defined solely in configuration space such as the density, the fluid velocity and the pressure. This reduction lowers the complexity of the initial system, leading to a gain of physical insight into the phenomena under investigation as well as a significant decrease of the cost of numerical simulations. On the other hand, in order for the fluid reduction to be complete, one needs to perform a closure on the higher order fluid moments. The choice of the closure usually relies on some ad hoc physical arguments (e.g., conserved quantities, existence of an H-theorem, ...). In this manuscript, we present a reduction procedure that preserves the Hamiltonian structure of the parent kinetic model. This is important in order to ensure that no non-physical dissipation is introduced in the resulting fluid model, providing it with a geometric structure that can be traced back to the microscopic dynamics of the particles. We use this procedure to derive non-adiabatic fluid models for the first three fluid moments of the distribution function of the one dimensional Vlasov-Poisson equation, namely the density, the fluid velocity and the pressure. The results are extended to include the dynamics of the heat-flux by considering a closure based on dimensional analysis. For an arbitrary number of fields, we demonstrate the relationship with the water-bags model. Finally, the extension to higher dimensions is investigated through the drift-kinetic equation and the three dimensional Vlasov-Poisson equation.
|
296 |
Flots stochastiques sur les graphes / Stochastic flows on graphsHajri, Hatem 28 November 2011 (has links)
Dans cette thèse nous étudions des équations différentielles stochastiques sur quelques graphes simples dont les solutions sont des flots de noyaux au sens de Le Jan et Raimond. Dans une première partie, nous définissons une extension de l'équation de Tanaka sur un nombre fini de demi-droites orientées et issues de l'origine. Utilisant certaines propriétés de régularité du flot associé au mouvement brownien biaisé, nous donnons une description complète de toutes les solutions. S'appuyant sur une transformation discrète introduite par Csaki et Vincze, nous donnons dans un cas d'orientation particulière (qui couvre déjà l'équation de Tanaka usuelle) une approche discrète à quelques solutions. La dernière partie de ce travail est effectuée avec O. Raimond. Par une méthode de couplage des flots, nous classifions les solutions de l'équation de Tanaka sur le cercle. Nous établissons aussi que ces flots sont coalescents. / In this thesis we study stochastic differential equations on some simple graphs whose solutions are stochastic flows of kernels in the sense of Le Jan and Raimond. In the first part, we define an extension of Tanaka's equation on a finite number of oriented half-lines issuing from the origin. Using some regularity properties of the skew Brownian motion flow, we give a complete description of all the solutions. Based on a discrete transformation introduced by Csaki and Vincze, we give for a particular orientation (which already covers the usual Tanaka's equation) a discrete approach to some solutions. The last part of this work is carried out with O. Raimond. By a method of coupling flows, we classify the solutions of Tanaka's equation on the circle. We also establish that all these flows are coalescing.
|
297 |
Explosion des solutions de Schrödinger de masse critique sur une variété riemannienne / Blow-up solutions for the 2-dimensional critical Schrödinger equation on a riemannian manifoldBoulenger, Thomas 12 November 2012 (has links)
Ce travail cherche a comprendre comment l'ajout d'une géométrie non euclidienne dans un problème de Schrödinger non linéaire influe sur l'existence et l'unicité des solutions explosives de masse critique. On s'inspire pour beaucoup des travaux de Merle et Raphaël sur la méthode de modulation des paramètres d'invariance géométrique pour une EDP qui possède de bonnes lois de conservations. On s'appuie ici plus particulièrement sur un article de Raphaël et Szeftel qui prouve l'existence et l'unicité d'une solution de masse critique en dimension 2 pour l'équation de Schrödinger non linéaire avec potentiel d'inhomogénéité devant la non-linéarité, et qui explose par ailleurs au maximum de l'inhomogénéité. Dans un premier temps, il s'agit de reprendre la méthode dans son ensemble afin de l'adapter à des cas où le Laplacien n'est plus plat, et est remplacé par un opérateur de type Laplace-Beltrami ou Laplacien généralisé. Ayant mis en avant le rôle de la courbure au point d'explosion, en termes de conditions sur les dérivées de termes métriques, on reprend dans un deuxième temps l'étude dans le cas plus général d'une variété riemannienne. Grâce à un ansatz sur la solution qui intègre maintenant la transformation induite par la métrique, on est capable d'énoncer un résultat d'existence et d'unicité en termes de conditions géométriques sur la variété elle même. Par soucis de simplicité, on se limite néanmoins au rôle local de la métrique, en la supposant globalement définie dans une certaine carte, et asymptotiquement équivalente a la métrique euclidienne. / The present work aims at investigating the effects of a non-euclidean geometry on existence and uniqueness results for critical blow up NLS solutions. We will use many ideas from the works of Merle and Raphaël, particularly ideas from modulation theory which describes a solution in terms of geometric invariants parameters. We will rely more specically on a paper from Raphaël and Szeftel for existence and uniqueness of a critical mass blow up solution in dimension two tothe nonlinear Schrödinger equation with inhomogeneous potential acting on the nonlinearity, and which blows up where the inhomogeneity reaches its maximum. At first, we consider a generalized Laplacian operator and deploy the classical ansatz method to point out difficulties inherited from the non-flat metric terms, and in particular the key role played by the curvature at the blow-up point. In a second part, we reproduce the method when modifying the geometrical ansatz on which the parametrix is constructed, and investigate more precisely what is needed for existence and then uniqueness when dealing with a Laplace-Beltrami operator associated to a riemannian manifold. For simplicity, we shall only consider the role of g locally around the blow up point we are constructing, by assuming g is globally defined in some map, and asymptotically equals the usual euclidean metric.
|
298 |
Synchronization analysis of complex networks of nonlinear oscillators / Analyse de la synchronisation dans un réseau complexe des oscillateurs non-linéairesEl Ati, Ali 04 December 2014 (has links)
Cette thèse porte sur l'analyse de la synchronisation des grands réseaux d'oscillateurs non linéaires et hétérogènes à l'aide d'outils et de méthodes issues de la théorie du contrôle. Nous considérons deux modèles de réseaux; à savoir, le modèle de Kuramoto qui considère seulement les coordonnées de phase des oscillateurs et des réseaux composés d'oscillateurs non linéaires de Stuart-Landau connectés par un couplage linéaire.Pour le modèle de Kuramoto nous construisons un système linéaire qui conserve les informations sur les fréquences naturelles et sur les gains d'interconnexion du modèle original de Kuramoto. Nous montrons en suite que l'existence de solutions à verrouillage de phase du modèle de Kuramoto est équivalente à l'existence d'un tel système linéaire avec certaines propriétés. Ce système est utilisé pour formuler les conditions d'existence de solutions à verrouillage de phase et de leur stabilité pour des structures particulières de l'interconnexion. Ensuite, cette analyse s'est étendue au cas où des interactions attractives et répulsives sont présentes dans le réseau. Nous considérons cette situation lorsque les gains d'interconnexion peuvent être à la fois positif et négatif. Dans le cadre de réseaux d'oscillateurs de Stuart-Landau, nous présentons une nouvelle transformation de coordonnées du réseau qui permet de réécrire le modèle du réseau en deux parties: une décrivant le comportement de l'oscillateur « moyenne » du réseau et la seconde partie présentant les dynamiques des erreurs de synchronisation par rapport à cet oscillateur « moyenne ». Cette transformation nous permet de caractériser les propriétés du réseau en termes de la stabilité des erreurs de synchronisation et du cycle limite de l'oscillateur « moyenne ». Pour ce faire, nous reformulons ce problème en un problème de stabilité de deux ensembles compacts et nous utilisons des outils issus de la stabilité de Lyapunov pour montrer la stabilité pratique de ces derniers pour des valeurs suffisamment grandes du gain d'interconnexion. / This thesis is devoted to the analysis of synchronization in large networks of heterogeneous nonlinear oscillators using tools and methods issued from control theory. We consider two models of networks; namely, the Kuramoto model which takes into account only phase coordinates of the oscillators and networks composed of nonlinear Stuart-Landau oscillators interconnected by linear coupling. For the Kuramoto model we construct an auxiliary linear system that preserves information on the natural frequencies and interconnection gains of the original Kuramoto model. We show next that existence of phase locked solutions of the Kuramoto model is equivalent to the existence of such a linear system with certain properties. This system is used to formulate conditions that ensure existence of phase-locked solutions and their stability for particular structures of network interconnections. Next, this analysis is extended to the case where both attractive and repulsive interactions are present in the network that is we consider the situation where some of the interconnection gains are allowed to be negative. In the context of networks of Stuart-Landau oscillators, we present a new coordinate transformation of the network which allows to split the network model into two parts, one describing behaviour of an "averaged" network oscillator and the second one, describing dynamics of the synchronization errors relative to this "averaged" oscillator. This transformation allows us to characterize properties of the network in terms of stability of synchronization errors and limit cycle of the "averaged" oscillator. To do so, we recast this problem as a problem of stability of compact sets and use Lyapunov stability tools to ensure practical stability of both sets for sufficiently large values of the coupling strength.
|
299 |
Modélisation couplée Compatibilité Électromagnétique - Thermique d’architectures de câblages électriques embarquées / Coupled EMC - Thermal Modeling of Electrical Wiring Architectures EmbeddedMahiddini, Florian 24 May 2018 (has links)
Le développement d’aéronefs « plus » voire « tout » électriques a pour conséquence la conception d’architectures électriques embarquées de plus en plus complexes entraînant une très nette augmentation du nombre de câbles électriques à déployer au sein des véhicules. Parmi les contraintes rencontrées lors des phases de définition et d’intégration des réseaux de câblages, les aspects de compatibilité électromagnétique et de gestion des échauffements thermiques deviennent de plus en plus critiques. Ainsi, ces travaux de thèse sont dédiés au développement d’une méthodologie permettant la prédiction d’une part, des courants induits par et sur les réseaux de câblages et d’autre part, de leur niveaux d’échauffement. En particulier, l’analyse bibliographique effectuée à cette occasion montre que les phénomènes électrostatiques (à la base de la théorie des lignes de transmission) et de conduction stationnaire de la chaleur sont strictement analogues, ce qui autorise une résolution simultanée de ces deux problèmes pour les réseaux de câblages considérés. Les présents travaux démontrent que le calcul des paramètres électriques primaires (p.u.l) du réseau et de la distribution de température dans le plan transverse peut se faire de manière totalement couplé à l’aide d’un schéma numérique basé sur la Méthode des Moments(MoM). Le choix de l’utilisation des équations intégrales pour la résolution de ce problème de potentiel se fonde sur plusieurs avantages tels qu’une utilisation optimisée des ressources de calcul et l’utilisation d’algorithmes efficaces de résolution, de surcroît naturellement parallélisables pour de futurs développements. Les outils de calculs thermiques développés dans le cadre de cette thèse, et qui ont vocation à être intégrés dans la suite logicielle CRIPTE de l’ONERA, ont fait l’objet d’une validation expérimentale pour plusieurs configurations de harnais électriques. Les comparaisons simulations-mesures présentent de bons accords bien que les expérimentations menées aient montré la difficulté d’obtenir précisément des valeurs du coefficient d’échange thermique,même dans des conditions parfaitement maîtrisées. Les travaux ouvrent enfin des perspectives nouvelles sur l’optimisation en terme de masse des réseaux de câblage (EWIS). / The on-going development of “more” or “all” electrical aircraft leads to the design of ever-complex embeddedelectrical networks, which causes a significant increase of electrical cables to be used within these innovativevehicles. Among the constraints encountered during the definition and integration phases of the network, thoserelated to the electromagnetic compatibility between equipment as well as the management of thermal heatingby Joule’s effect become more and more stringent. Thus, this thesis is dedicated to the development of anoriginal methodology enabling the prediction of both induced and crosstalk currents as well as the heating upstate in complex bundles of cables. Indeed, literature review explicitly shows that electrostatic and stationaryheat transfer phenomena are, from a mathematical standpoint, strictly the same which allows the simultaneouscomputation of these two problems for an arbitrary network. This research work demonstrates that the determinationof primary electrical parameters (per unit length) and the temperature distribution within a givencross-section can be handled with the numerical Method Of Moment (MoM). This choice is motivated by theseveral inherent advantages of the method like an optimized use of the computer resource and the naturalparallelization of the algorithms. The developed numerical tools, intended to be fully integrated in the in-housesoftware suite CRIPTE, has been validated during an experimental campaign that has involved several typesof bundles. Although the comparisons between experimental and simulated results comply with each other,experiments reveal the hard task of getting a precise estimation of the heat transfer coefficients, even in awell-controlled environment. Finally, these works open new and very promising perspectives for future EWIS(Electrical Wiring Interconnection System) in term of mass optimization.
|
300 |
Shape optimisation for the wave-making resistance of a submerged body / Optimisation de forme pour la résistance de vague d'un corps immergéNoviani, Evi 30 November 2018 (has links)
Dans cette thèse, nous calculons la forme d’un objet immergé d’aire donnée qui minimise la résistance de vague. Le corps, considéré lisse, avance à vitesse constante sous la surface libre d’un fluide qui est supposé parfait et incompressible. La résistance de vague est la traînée, c’est-à-dire la composante horizontale de la force exercée par le fluide sur l’obstacle. Nous utilisons les équations de Neumann-Kelvin 2D, qui s’obtiennent en linéarisant les équations d’Euler irrotationnelles avec surface libre. Le problème de Neumann-Kelvin est formulé comme une équation intégrale de frontière basée sur une solution fondamentale qui intègre la condition linéarisée à la surface libre. Nous utilisons une méthode de descente de gradient pour trouver un minimiseur local du problème de résistance de vague. Un gradient par rapport à la forme est calculé par la méthode de variation de frontières. Nous utilisons une approche level-set pour calculer la résistance de vague et gérer les déplacements de la frontière de l’obstacle. Nous obtenons une grande variété de formes optimales selon la profondeur de l’objet et sa vitesse. / In this thesis, we compute the shape of a fully immersed object with a given area which minimises the wave resistance. The smooth body moves at a constant speed under the free surface of a fluid which is assumed to be inviscid and incompressible. The wave resistance is the drag, i.e. the horizontal component of the force exerted by the fluid on the obstacle. We work with the 2D Neumann-Kelvin equations, which are obtained by linearising the irrotational Euler equations with a free surface. The Neumann-Kelvin problem is formulated as a boundary integral equation based on a fundamental solution which handles the linearised free surface condition. We use a gradient descent method to find a local minimiser of the wave resistance problem. A gradient with respect to the shape is calculated by a boundary variation method. We use a level-set approach to calculate the wave-making resistance and to deal with the displacements of the boundary of the obstacle. We obtain a great variety of optimal shapes depending on the depth of the object and its velocity.
|
Page generated in 0.0685 seconds