Spelling suggestions: "subject:"équations""
311 |
Solution of the variable coefficients Poisson equation on Cartesian hierarchical meshes in parallel : applications to phase changing materials. / Problème de Poisson à coefficients variables sur maillages Cartésiens hiérarchiques en parallèle : applications aux matériaux à changement de phase.Raeli, Alice 05 October 2017 (has links)
On s'interesse aux problèmes elliptiques avec coéficients variables à travers des interfaces intérieures. La solution et ses dérivées normales peuvent subir des variations significatives à travers les frontières intérieures. On présente une méthode compacte aux différences finies sur des maillages adaptés de type octree conçues pour une résolution en parallèle. L'idée principale est de minimiser l'erreur de troncature sur la discretisation locale, en fonction de la configuration du maillage, en rapprochant une convergence à l'ordre deux. On montrera des cas 2D et 3D des résultat liés à des applications concrètes. / We consider problems governed by a linear elliptic equation with varying coéficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second order accuracy. Numerical illustrations relevant for actual applications are presented in two and three-dimensional configurations.
|
312 |
Etude de l'activité neuronale : optimisation du temps de simulation et stabilité des modèles / Study of neuronal activity : optimization of simulation time and stability of modelsSarmis, Merdan 04 December 2013 (has links)
Les neurosciences computationnelles consistent en l’étude du système nerveux par la modélisation et la simulation. Plus le modèle sera proche de la réalité et plus les ressources calculatoires exigées seront importantes. La question de la complexité et de la précision est un problème bien connu dans la simulation. Les travaux de recherche menés dans le cadre de cette thèse visent à améliorer la simulation de modèles mathématiques représentant le comportement physique et chimique de récepteurs synaptiques. Les modèles sont décrits par des équations différentielles ordinaires (EDO), et leur résolution passe par des méthodes numériques. Dans le but d’optimiser la simulation, j’ai implémenté différentes méthodes de résolution numérique des EDO. Afin de faciliter la sélection du meilleur algorithme de résolution numérique, une méthode nécessitant un minimum d’information a été proposée. Cette méthode permet de choisir l’algorithme qui optimise la simulation. La méthode a permis de démontrer que la dynamique d’un modèle de récepteur synaptique influence plus les performances des algorithmes de résolution que la structure cinétique du modèle lui-même. De plus, afin de caractériser des comportements pathogènes, une phase d’optimisation est réalisée. Cependant, certaines valeurs de paramètres rendent le modèle instable. Une étude de stabilité a permis de déterminer la stabilité du modèle pour des paramètres fournis par la littérature, mais également de remonter à des contraintes de stabilité sur les paramètres. Le respect de ces contraintes permet de garantir la stabilité des modèles étudiés, et donc de garantir le succès de la procédure permettant de rendre un modèle pathogène. / Computational Neuroscience consists in studying the nervous system through modeling and simulation. It is to characterize the laws of biology by using mathematical models integrating all known experimental data. From a practical point of view, the more realistic the model, the largest the required computational resources. The issue of complexity and accuracy is a well known problem in the modeling and identification of models. The research conducted in this thesis aims at improving the simulation of mathematical models representing the physical and chemical behavior of synaptic receptors. Models of synaptic receptors are described by ordinary differential equations (ODE), and are resolved with numerical procedures. In order to optimize the performance of the simulations, I have implemented various ODE numerical resolution methods. To facilitate the selection of the best solver, a method, requiring a minimum amount of information, has been proposed. This method allows choosing the best solver in order to optimize the simulation. The method demonstrates that the dynamic of a model has greater influence on the solver performances than the kinetic scheme of the model. In addition, to characterize pathogenic behavior, a parameter optimization is performed. However, some parameter values lead to unstable models. A stability study allowed for determining the stability of the models with parameters provided by the literature, but also to trace the stability constraints depending to these parameters. Compliance with these constraints ensures the stability of the models studied during the optimization phase, and therefore the success of the procedure to study pathogen models.
|
313 |
Modélisation d’aquifères peu profonds en interaction avec les eaux de surfaces / Modeling of shallow aquifers in interaction with surface watersTsegmid, Munkhgerel 26 June 2019 (has links)
Nous présentons une classe de nouveaux modèles pour décrire les écoulements d’eau dans des aquifères peu profonds non confinés. Cette classe de modèles offre une alternative au modèle Richards 3d plus classique mais moins maniable. Leur dérivation est guidée par deux ambitions : le nouveau modèle doit d’une part être peu coûteux en temps de calcul et doit d’autre part donner des résultats pertinents à toute échelle de temps. Deux types d’écoulements dominants apparaissent dans ce contexte lorsque le rapport de l’épaisseur sur la longueur de l’aquifère est petit : le premier écoulement apparaît en temps court et est décrit par un problème vertical Richards 1d ; le second correspond aux grandes échelles de temps, la charge hydraulique est alors considérée comme indépendante de la variable verticale. Ces deux types d’écoulements sont donc modélisés de manière appropriée par le couplage d’une équation 1d pour la partie insaturée de l’aquifère et d’une équation 2d pour la partie saturée. Ces équations sont couplées au niveau d’une interface de profondeur h (t,x) en dessous de laquelle l’hypothèse de Dupuit est vérifiée. Le couplage est assuré de telle sorte que la masse globale du système soit conservée. Notons que la profondeur h (t,x) peut être une inconnue du problème ou être fixée artificiellement. Nous prouvons (dans le cas d’aquifères minces) en utilisant des développements asymptotiques que le problème Richards 3d se comporte de la même manière que les modèles de cette classe à toutes les échelles de temps considérées (courte, moyenne et grande). Nous décrivons un schéma numérique pour approcher le modèle couplé non linéaire. Une approximation par éléments finis est combinée à une méthode d’Euler implicite en temps. Ensuite, nous utilisons une reformulation de l’équation discrète en introduisant un opérateur de Dirichlet-to-Neumann pour gérer le couplage non linéaire en temps. Une méthode de point fixe est appliquée pour résoudre l’équation discrète reformulée. Le modèle couplé est testé numériquement dans différentes situations et pour différents types d’aquifère. Pour chacune des simulations, les résultats numériques obtenus sont en accord avec ceux obtenus à partir du problème de Richards original. Nous concluons notre travail par l’analyse mathématique d’un modèle couplant le modèle Richards 3d à celui de Dupuit. Il diffère du premier parce que nous ne supposons plus un écoulement purement vertical dans la frange capillaire supérieure. Ce modèle consiste donc en un système couplé non linéaire d’équation Richards 3d avec une équation parabolique non linéaire décrivant l’évolution de l’interface h (t,x) entre les zones saturées et non saturées de l’aquifère. Les principales difficultés à résoudre sont celles inhérentes à l’équation 3D-Richards, la prise en compte de la frontière libre h (t,x) et la présence de termes dégénérés apparaissant dans les termes diffusifs et dans les dérivées temporelles. / We present a class of new efficient models for water flow in shallow unconfined aquifers, giving an alternative to the classical but less tractable 3D-Richards model. Its derivation is guided by two ambitions : any new model should be low cost in computational time and should still give relevant results at every time scale.We thus keep track of two types of flow occurring in such a context and which are dominant when the ratio thickness over longitudinal length is small : the first one is dominant in a small time scale and is described by a vertical 1D-Richards problem ; the second one corresponds to a large time scale, when the evolution of the hydraulic head turns to become independent of the vertical variable. These two types of flow are appropriately modelled by, respectively, a one-dimensional and a two-dimensional system of PDEs boundary value problems. They are coupled along an artificial level below which the Dupuit hypothesis holds true (i.e. the vertical flow is instantaneous below the function h(t,x)) in away ensuring that the global model is mass conservative. Tuning the artificial level, which even can depend on an unknown of the problem, we browse the new class of models. We prove using asymptotic expansions that the 3DRichards problem and eachmodel of the class behaves the same at every considered time scale (short, intermediate and large) in thin aquifers. We describe a numerical scheme to approximate the non-linear coupled model. The standard Galerkin’s finite element approximation in space and Backward Euler method in time are used for discretization. Then we reformulate the discrete equation by introducing the Dirichlet to Neumann operator to handle the nonlinear coupling in time. The fixed point iterative method is applied to solve the reformulated discrete equation. We have examined the coupled model in different boundary conditions and different aquifers. In the every situations, the numerical results of the coupled models fit well with the original Richards problem. We conclude our work by the mathematical analysis of a model coupling 3D-Richards flow and Dupuit horizontal flow. It differs from the first one because we no longer assume a purely vertical flow in the upper capillary fringe. This model thus consists in a nonlinear coupled system of 3D-Richards equation with a nonlinear parabolic equation describing the evolution of the interface h(t,x) between the saturated and unsaturated zones of the aquifer. The main difficulties to be solved are those inherent to the 3D-Richards equation, the consideration of the free boundary h(t,x) and the presence of degenerate terms appearing in the diffusive terms and in the time derivatives.
|
314 |
Méthodes numériques pour la simulation d'écoulements de gaz raréfiés autour d'obstacles mobiles / Numerical methods for rarefied gas flow simulation around moving obstaclesDechriste, Guillaume 10 December 2014 (has links)
Ce travail est dédié à la simulation d’écoulements multidimensionnels de gaz raréfiés dans un domaine où l’interface avec le solide est mobile. Le comportement du gaz est modélisé par un modèle de type BGK de l’équation de Boltzmann et une méthode déterministe de vitesses discrètes est utilisée pour discrétiser l’espace des vitesses microscopiques.Dans ce document, nous proposons tout d’abord trois discrétisations spatiales du modèle qui permettent la prise en compte du mouvement des parois solides, grâce à un traitement spécifique des conditions aux limites. Ces approches sont implémentées et validées pour plusieurs cas unidimensionnels et à la suite de cette étude, la méthode maille coupée est choisie pour une extension à des écoulements de dimensions plus élevées.La suite du travail présente l’algorithme utilisé pour la simulation d’écoulements 2D et 3D. La précision et la robustesse de l’implémentation sont mises en avant grâce à la simulation de nombreux cas tests, dont les résultats sont comparés à ceux issus de la littérature. La méthode maille coupée a notamment été optimisée par une technique de raffinement de maillage adaptatif. La simulation instationnaire 3D de la rotation des pâles du radiomètre de Crookes illustre pleinement le potentiel de la méthode. / This work is devoted to the multidimentional simulation of rarefied gases in a domain with moving boundary. The governing equation is given by BGKtype model of Boltzmann equation and velocity space is discretized with a standard discrete velocity method.We first propose three space discretizations that take boundary motion into account by specific treatment of the boundary conditions. These approaches are implemented and validated for several 1D flows. Based on this study, the cut cell method is chosen to be extend to multidimentional flows.Then we detail the cut cell algorithm for 2D and 3D flow simulations. Robustness and accuracy of the implementation are investigated through the simulation of numerous test cases. Our results are rigorously compared to the ones coming from the literature and good agreement is shown. The cut cell method has been optimized with an adaptive refinement mesh technique. The 3D unstationary simulation of the Crookes radiometer rotating vanes is a perfect illustration of the method potential.
|
315 |
Tests d'Électrodynamique Quantique et Étalons de Rayons-X à l'Aide des Atomes Pioniques et des Ions MultichargésTrassinelli, Martino 12 December 2005 (has links) (PDF)
L'objet de cette thèse est de présenter une nouvelle mesure de la masse du pion en utilisant la spectroscopie X de l'hydrogène pionique et des résultats de spectroscopie de l'argon et du soufre héliumoïdes. La nouvelle masse du pion a été mesurée avec une précision 30% supérieure à la moyenne mondiale actuelle, c'est-à-dire égale à 1.7 ppm. Elle a été obtenue par spectroscopie de Bragg des transitions 5 -> 4 de l'azote pionique en utilisant les prédictions théoriques de QED. Je présente le calcul de la structure hyperfine et celui de la correction de recul du noyau pour les atomes pioniques au moyen d'une nouvelle méthode de perturbation de l'équation Klein-Gordon.Le spectromètre utilisé pour cette mesure a été caractérisé grâce aux transitions relativistes des atomes héliumoïdes produits dans un nouveau type de source d'ions à résonance cyclotronique des électrons. Les spectres haute statistique de ces ions permettent de mesurer les énergies de transition avec une précision de quelques ppm, ce qui permet de tester, avec un degré de précision jamais atteint, les prédictions théoriques. L'émission de rayons-X des atomes pioniques et des ions multichargés peut ainsi être utilisée pour la définition de nouveaux étalons de rayons-X de quelques keV.
|
316 |
Polymères Dirigés et Réseaux Conducteurs de Chaleur - Systèmes de mécanique statistique à l'équilibre et hors équilibreCamanes, Alain 02 December 2008 (has links) (PDF)
Dans cette thèse, nous étudions deux exemples issus de la mécanique statistique. Les polymères dirigés en environnement aléatoire sont un modèle de système se trouvant à l'état d'équilibre. Nous donnons un critère de comparaison entre les entropies du réseau et de l'environnement permettant d'améliorer la borne inférieure sur la température critique. Nous utilisons également certains résultats connus dans le cadre de l'équation d'Anderson parabolique pour obtenir le comportement asymptotique de l'énergie libre. Par ailleurs, nous utilisons les polymères dirigés pour donner une preuve simple de l'indépendance de la fonction de Lyapunov de l'équation d'Anderson parabolique par rapport à la condition initiale.<br /><br />Les réseaux conducteurs de chaleur sont étudiés hors équilibre. Lorsque les potentiels d'interaction sont harmoniques, nous donnons une interprétation géométrique de la condition d'existence et d'unicité de la mesure invariante via un théorème de complétude. Dans le cas où cette condition fait défaut, nous explicitons une quantité invariante par le flot hamiltonien. Nous généralisons ensuite les résultats d'unicité à des potentiels analytiques. Nous montrons que la condition de Hörmander est suffisante pour avoir l'unicité de la mesure invariante via la contrôlabilité. Le principe de Lasalle est ensuite utilisé pour montrer l'unicité sans la condition d'Hörmander. Nous évoquons également le problème de l'existence de telles mesures.
|
317 |
Contribution à l'étude des équations différentielles et aux différences dans le champ complexeBarkatou, My Abdelfattah 06 June 1989 (has links) (PDF)
Un logiciel pour les solutions formelles d'équations différentielles linéaires d'ordre 2 au voisinage de points singuliers est présenté. Pour les équations d'ordre quelconque on donne une version modifiée de l'algorithme de newton. Un algorithme permettant d'obtenir une base de solutions asymptotiques d'une équation récurrente linéaire à coefficients polynomiaux est ensuite présenté. Ceci mène à l'étude des systèmes linéaires aux différences à coefficients séries de factorielles
|
318 |
Modélisation probabiliste des écoulements atmosphériques turbulents afin d'en filtrer la mesure par approche particulaire.Baehr, Christophe 23 September 2008 (has links) (PDF)
Le filtrage non-linéaire des mesures ponctuelles d'un fluide turbulent était un sujet vierge, nous donnons ici des modélisations stochastiques et des filtres pertinents. Nous avons défini et étudié le processus d'acquisition d'un champ vectoriel le long d'un chemin aléatoire. Nous avons proposé des algorithmes de filtrage non-linéaire pour les processus à champ moyen et démontré la convergence des approximations particulaires. Nous avons remanié les modèles Lagrangiens du fluide proposés par les physiciens en fermant ces équations par un conditionnement en les couplant à l'observation et au processus d'acquisition. Nos algorithmes permettent alors de filtrer les mesures de vitesses d'un fluide turbulent simulées ou réelles en écoulement 1D à 3D.
|
319 |
Courbes rationnelles et hypersurfaces de l'espace projectifConduché, Denis 30 November 2006 (has links) (PDF)
Une variété algébrique est dite unirationnelle si elle est dominée par un espace projectif ; elle est dite séparablement unirationnelle si on peut prendre le morphisme précédent séparable. Cette dernière propriété n'a d'intérêt qu'en caractéristique positive. En reprenant la démonstration de Paranjape et Srinivas de l'unirationalité des hypersurfaces de degré très petit devant la dimension, nous remarquons qu'elle montre en fait l'unirationalité séparable. Nous nous intéressons aussi à la séparabilité des morphismes fournis par différentes constructions classiques de l'unirationalité des hypersurfaces cubiques.<br /><br />Dans la troisième partie, nous étudions la connexité rationnelle séparable : une variété projective lisse X sur un corps algébriquement clos est dite séparablement rationnellement connexe s'il existe une courbe rationnelle très libre (c'est-à-dire à fibré normal ample) sur X. Nous testons sur les hypersurfaces de Fermat de dimension N-1 et de degré q+1, où q est une puissance de la caractéristique du corps de base, la conjecture que toutes les hypersurfaces lisses de dimension N-1 et de degré plus petit que N sont séparablement rationnellement connexes. Nous montrons que pour N plus grand que 2q-1, l'hypersurface de Fermat de degré q+1 contient une courbe rationnelle très libre définie sur le sous-corps premier ; elle est donc séparablement rationnellement connexe.
|
320 |
Résolution numérique des équations des ondes longues dans un réseau de caractéristiquesChenin-Mordojovitch, Maria-Isabel 26 June 1980 (has links) (PDF)
.
|
Page generated in 0.0606 seconds