• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • Tagged with
  • 14
  • 14
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Résolution de l'équation de convection-diffusion et d'un modèle de circulations océaniques générales par des méthodes d'éléments finis

Telias Hasson, Mauricio 06 June 1983 (has links) (PDF)
Dans la première partie de ce travail on présente des méthodes numériques pour résoudre l'équation de convection-diffusion et on propose une méthode qui ramène le problème à une formulation symétrique qui permet de traiter les cas de faible viscosité. Les problèmes unidimensionnel, bidimensionnel stationnaires et unidimensionnel non stationnaire sont abordes. La deuxième partie est consacrée à la résolution d'un modèle test de circulation océanique aux latitudes moyennes dont le mouvement est du au vent. On introduit une condition d'adhérence aux parois est et ouest qui représentent les cotes terrestres. On utilise une méthode d'éléments finis qui permet de résoudre le modèle comme une "cascade" des problèmes très simples. On compare avec des méthodes de différences finies du point de vue de la précision, du cout de calcul et de l'applicabilité.
2

Algorithme de reconstruction itératif pour tomographie optique diffuse avec mesures dans le domaine temporel

Allali, Anthony January 2016 (has links)
L'imagerie par tomographie optique diffuse requiert de modéliser la propagation de la lumière dans un tissu biologique pour une configuration optique et géométrique donnée. On appelle cela le problème direct. Une nouvelle approche basée sur la méthode des différences finies pour modéliser numériquement via l'équation de la diffusion (ED) la propagation de la lumière dans le domaine temporel dans un milieu inhomogène 3D avec frontières irrégulières est développée pour le cas de l'imagerie intrinsèque, c'est-à-dire l'imagerie des paramètres optiques d'absorption et de diffusion d'un tissu. Les éléments finis, lourds en calculs, car utilisant des maillages non structurés, sont généralement préférés, car les différences finies ne permettent pas de prendre en compte simplement des frontières irrégulières. L'utilisation de la méthode de blocking-off ainsi que d'un filtre de Sobel en 3D peuvent en principe permettre de surmonter ces difficultés et d'obtenir des équations rapides à résoudre numériquement avec les différences finies. Un algorithme est développé dans le présent ouvrage pour implanter cette approche et l'appliquer dans divers cas puis de la valider en comparant les résultats obtenus à ceux de simulations Monte-Carlo qui servent de référence. L'objectif ultime du projet est de pouvoir imager en trois dimensions un petit animal, c'est pourquoi le modèle de propagation est au coeur de l'algorithme de reconstruction d'images. L'obtention d'images requière la résolution d'un problème inverse de grandes dimensions et l'algorithme est basé sur une fonction objective que l'on minimise de façon itérative à l'aide d'une méthode basée sur le gradient. La fonction objective mesure l'écart entre les mesures expérimentales faites sur le sujet et les prédictions de celles-ci obtenues du modèle de propagation. Une des difficultés dans ce type d'algorithme est l'obtention du gradient. Ceci est fait à l'aide de variables auxiliaire (ou adjointes). Le but est de développer et de combiner des méthodes qui permettent à l'algorithme de converger le plus rapidement possible pour obtenir les propriétés optiques les plus fidèles possible à la réalité capable d'exploiter la dépendance temporelle des mesures résolues en temps, qui fournissent plus d'informations tout autre type de mesure en TOD. Des résultats illustrant la reconstruction d'un milieu complexe comme une souris sont présentés pour démontrer le potentiel de notre approche.
3

Équation de réaction-diffusion en milieux hétérogènes : persistence, propagation et effet de la géométrie

Bouhours, Juliette 08 July 2014 (has links) (PDF)
Dans cette thèse nous nous intéressons aux équations de réaction-diffusion et à leurs applications en sciences biologiques et médicales. Plus particulièrement on étudie l'existence ou la non-existence de phénomènes de propagation en milieux hétérogènes à travers l'existence d'ondes progressives ou plus généralement l'existence de fronts de transition généralisés. On obtient des résultats d'existence de phénomènes de propagation dans trois environnements différents. Dans un premier temps on étudie une équation de réaction-diffusion de type bistable dans un domaine extérieur. Cette équation modélise l'évolution de la densité d'une population soumise à un effet Allee fort dont le déplacement suit un processus de diffusion dans un environnement contenant un obstacle. On montre que lorsque l'obstacle satisfait certaines conditions de régularité et se rapproche d'un domaine étoilé ou directionnellement convexe alors la population envahit tout l'espace. On se questionne aussi sur les conditions optimales de régularité qui garantissent une invasion complète de la population. Dans un deuxième travail, nous considérons une équation de réaction-diffusion avec vitesse forcée, modélisant l'évolution de la densité d'une population quelconque qui se diffuse dans l'espace, soumise à un changement climatique défavorable. On montre que selon la vitesse du changement climatique la population s'adapte ou s'éteint. On montre aussi que la densité de population converge en temps long vers une onde progressive et donc se propage (si elle survit) selon un profile constant et à vitesse constante. Dans un second temps on étudie une équation de réaction-diffusion de type bistable dans des domaines cylindriques variés. Ces équations modélisent l'évolution d'une onde de dépolarisation dans le cerveau humain. On montre que l'onde est bloquée lorsque le domaine passe d'un cylindre très étroit à un cylindre de diamètre d'ordre 1 et on donne des conditions géométriques plus générales qui garantissent une propagation complète de l'onde dans le domaine. On étudie aussi ce problème d'un point de vue numérique et on montre que pour les cylindres courbés la courbure peut provoquer un blocage de l'onde pour certaines conditions aux bords.
4

Équation de réaction-diffusion en milieux hétérogènes : persistence, propagation et effet de la géométrie / Reaction diffusion equation in heterogeneous media : persistance, propagation and effect of the geometry

Bouhours, Juliette 08 July 2014 (has links)
Dans cette thèse nous nous intéressons aux équations de réaction-diffusion et à leurs applications en sciences biologiques et médicales. Plus particulièrement on étudie l'existence ou la non-existence de phénomènes de propagation en milieux hétérogènes à travers l'existence d'ondes progressives ou plus généralement l'existence de fronts de transition généralisés. On obtient des résultats d'existence de phénomènes de propagation dans trois environnements différents. Dans un premier temps on étudie une équation de réaction-diffusion de type bistable dans un domaine extérieur. Cette équation modélise l'évolution de la densité d'une population soumise à un effet Allee fort dont le déplacement suit un processus de diffusion dans un environnement contenant un obstacle. On montre que lorsque l'obstacle satisfait certaines conditions de régularité et se rapproche d'un domaine étoilé ou directionnellement convexe alors la population envahit tout l'espace. On se questionne aussi sur les conditions optimales de régularité qui garantissent une invasion complète de la population. Dans un deuxième travail, nous considérons une équation de réaction-diffusion avec vitesse forcée, modélisant l'évolution de la densité d'une population quelconque qui se diffuse dans l'espace, soumise à un changement climatique défavorable. On montre que selon la vitesse du changement climatique la population s'adapte ou s'éteint. On montre aussi que la densité de population converge en temps long vers une onde progressive et donc se propage (si elle survit) selon un profile constant et à vitesse constante. Dans un second temps on étudie une équation de réaction-diffusion de type bistable dans des domaines cylindriques variés. Ces équations modélisent l'évolution d'une onde de dépolarisation dans le cerveau humain. On montre que l'onde est bloquée lorsque le domaine passe d'un cylindre très étroit à un cylindre de diamètre d'ordre 1 et on donne des conditions géométriques plus générales qui garantissent une propagation complète de l'onde dans le domaine. On étudie aussi ce problème d'un point de vue numérique et on montre que pour les cylindres courbés la courbure peut provoquer un blocage de l'onde pour certaines conditions aux bords. / In this thesis we are interested in reaction diffusion equations and their applications in biology and medical sciences. In particular we study the existence or non-existence of propagation phenomena in non homogeneous media through the existence of traveling waves or more generally the existence of transition fronts.First we study a bistable reaction diffusion equation in exterior domain modelling the evolution of the density of a population facing an obstacle. We prove that when the obstacle satisfies some regularity properties and is close to a star shaped or directionally convex domain then the population invades the entire domain. We also investigate the optimal regularity conditions that allow a complete invasion of the population. In a second work, we look at a reaction diffusion equation with forced speed, modelling the evolution of the density of a population facing an unfavourable climate change. We prove that depending on the speed of the climate change the population keeps track with the climate change or goes extinct. We also prove that the population, when it survives, propagates with a constant profile at a constant speed at large time. Lastly we consider a bistable reaction diffusion equation in various cylindrical domains, modelling the evolution of a depolarisation wave in the brain. We prove that this wave is blocked when the domain goes from a thin channel to a cylinder, whose diameter is of order 1 and we give general conditions on the geometry of the domain that allow propagation. We also study this problem numerically and prove that for curved cylinders the curvature can block the wave for particular boundary conditions.
5

Méthodes de décomposition de domaine de type relaxation d'ondes pour des équations de l'océanographie

Martin, Véronique 15 December 2003 (has links) (PDF)
L'objectif de ce travail est de développer des algorithmes de décomposition de domaine pour des équations de l'océanographie. Les méthodes de décomposition de domaine consistent à décomposer un domaine de calcul de grand taille en plusieurs sous-domaines plus petits. Elles s'appliquaient jusqu'à présent à des problèmes stationnaires, nous généralisons ici ce type de méthodes aux problèmes en temps ('Schwarz Waveform Relaxation Methods'). Le principal but de cette nouvelle approche est de simuler des problèmes multiphysiques pour lesquels il est intéressant d'avoir une discrétisation temporelle différente dans chaque sous-domaine. Nous généralisons aux équations d'évolution une méthode récente qui consiste à écrire les conditions transparentes (Conditions aux Limites Absorbantes) puis les approche par des opérateurs différentiels d'ordre 1 dans la direction normale à l'interface et d'ordre 0 ou 1 dans la direction tangentielle. Nous développons cette méthode premièrement pour l'équation de convection diffusion qui traduit notamment l'advection des traceurs (température, salinité, traceurs passifs) dans l'océan. Nous approchons les opérateurs exacts par développement de Taylor, ou par optimisation du taux de convergence. Nous démontrons que les problèmes aux limites introduits sont bien posés. Puis nous montrons la convergence des algorithmes correspondants. Des résultats numériques sont implémentés dans le cas avec ou sans recouvrement et mettent en évidence la réelle efficacité des méthodes optimisées. Nous faisons ensuite un premier pas vers le couplage d'équations en implémentant un algorithme de couplage de l'équation de convection avec l'équation de convection diffusion. Ensuite nous traitons les équations de Saint Venant, moyennes verticales des équations de Navier-Stokes en milieu tournant. Nous introduisons pour ce système un algorithme de décomposition de domaine avec des conditions d'interface qui s'obtiennent par des considérations physiques. Nous montrons que cet algorithme est bien posé puis nous en démontrons la convergence. Des résultats numériques concluants sont également exposés.
6

étude théorique de la transduction mécano-chimique dans l'adhérence cellulaire

Ali, Olivier 08 July 2010 (has links) (PDF)
Les systèmes complexes propres à la biologie moléculaire sont des sujets d'investigations privilégiés pour la physique statistique hors équilibre. En particulier la dynamique des systèmes d'adhérents qui a déjà été l'objet de description théorique. Ces descriptions sont restreintes au comportement des plaques d'adhérence focales matures, dont la durée caractéristique est la dizaine de minutes et où beaucoup d'acteurs moléculaires différents interviennent, notamment le cortex d'actine. Cependant, la question des mécanismes moléculaires précoces, précédant la mise en place de ces structures, reste entière et ouverte. L'objectif de cette thèse est de proposer un modèle de transduction mécano-chimique bidirectionnelle — de l'intérieur de la cellule vers l'extérieur et inversement — en se basant sur le caractère allostérique de l'interaction entre les intégrines (sensibles aux propriétés des matrices extracellulalires) et un partenaire cytoplasmique activable, la taline. Ce travail se divise en trois parties : i) une modélisation du bord cellulaire qui repose sur le calcul du potentiel chimique du partenaire activable et de son cycle d'activation, ii) la résolution numérique et analytique des équations précédemment définies et iii) une évolution du précédent modèle où les intégrines sont laissés libres de diffuser et qui vont dans ce cas là se regrouper dans les zones de fortes contraintes.
7

Méthodes de décomposition de domaine pour la formulation mixte duale du problème critique de la diffusion des neutrons

Guérin, Pierre 03 December 2007 (has links) (PDF)
La simulation de la neutronique d'un coeur de réacteur nucléaire est basée sur l'équation du transport des neutrons, et un calcul de criticité conduit à un problème à valeur propre. Parmi les méthodes de résolution déterministes, l'approximation de la diffusion est souvent utilisée. Le solveur MINOS basé sur une méthode d'éléments finis mixte duale, a montré son efficacité dans la résolution de ce problème. Afin d'exploiter les ordinateurs parallèles, et de réduire les coûts en temps de calcul et en mémoire, nous proposons dans ce mémoire deux méthodes de décomposition de domaine pour la résolution du problème à valeur propre de la diffusion des neutrons sous forme mixte duale. La première méthode est inspirée d'une méthode de synthèse modale : la solution est cherchée dans une base constituée d'un nombre fini de modes propres locaux calculés par MINOS sur des sous-domaines recouvrants. La deuxième méthode est un algorithme itératif de Schwarz modifié qui utilise des sous-domaines non recouvrants et des conditions de Robin aux interfaces entre sous-domaines. A chaque itération, le problème est résolu par MINOS sur chaque sous-domaine avec des conditions aux interfaces calculées à partir des solutions sur les sous-domaines adjacents à l'itération précédente. Les itérations permettent la convergence simultanée de la décomposition de domaine et du problème à valeur propre. Les résultats numériques obtenus sur des modèles 2D et 3D de coeurs réalistes montrent la précision et l'efficacité en parallèle de ces deux méthodes.
8

Contribution à la modélisation des écoulements en eaux peu profondes, avec transport de polluant. (Application à la baie de Tanger)

Elmiloud, Chaabelasri 26 February 2011 (has links) (PDF)
Cette thèse est une contribution à la résolution numérique d'une loi de conservation hyperbolique résultante d'un couplage entre les équations de Saint-Venant, associée à la modélisation des écoulements en eaux peu profondes, et l'équation de transport-diffusion d'un polluant non actif. Le modèle mathématique utilisé est bi-dimensionnel, intégrant des termes de friction, de diffusion, des tensions de surface et un terme tenant compte la variation de la bathymétrie. Nous présentons un modèle numérique basé sur un schéma volumes finis bidimensionnel d'ordres deux, conservatif et consistant, sur un maillage non structuré adaptatif. Ce modèle préserve la positivité de la hauteur d'eau et l'état stationnaire associé au lac au repos, il permet de capturer avec précision les ondes de chocs. Dans le temps une extension à l'ordre deux est garantie en utilisant un schéma de Runge-Kutta ce qui permettra de prendre en compte les différentes vitesses de propagation de l'information présentes dans les différents problèmes traités. Nous appliquons le modèle numérique développé sur plusieurs problèmes. Entre autre, la simulation d'une propagation d'une onde de crue, écoulement autour d'une singularité géométrique, écoulement sur des fonds variables et présentant des fronts raides. Et en fin, L'étude numérique s'achève par une application du modèle pour la simulation du transport de polluant dans une géométrie réelle avec une bathymétrie fortement variable telle que présente la baie de Tanger.
9

Etude expérimentale et modélisation de la longueur de bon mélange. Application à la représentativité des points de prélèvement en conduit / Experimental study and modelling of the well-mixing length. Application to the representativeness of sampling points in duct

Alengry, Jonathan 20 March 2014 (has links)
La surveillance des rejets gazeux des installations nucléaires dans l'environnement et de contrôle des dispositifs d'épuration reposent sur des mesures régulières de concentrations des contaminants en sortie de cheminées et dans les réseaux de ventilation. La répartition de la concentration peut être hétérogène au niveau du point de mesure si la distance d'établissement du mélange est insuffisante. La question se pose sur l'évaluation du positionnement des points de piquage et sur l'erreur commise par rapport à la concentration homogène en cas de non-respect de cette distance. Cette étude définit cette longueur dite de « bon mélange » à partir d'expériences menées en laboratoire. Le banc dimensionné pour ces essais a permis de reproduire des écoulements dans des conduits longs circulaire et rectangulaire, comprenant chacun un coude. Une technique de mesure optique a été développée, calibrée puis utilisée pour mesurer la distribution de la concentration d'un traceur injecté dans l'écoulement. Les résultats expérimentaux en conduit cylindrique ont validé un modèle analytique basé sur l'équation de convection-diffusion d'un traceur, et ont permis de proposer des modèles de longueur de bon mélange et de représentativité de points de prélèvement. Dans le conduit à section rectangulaire, les mesures acquises constituent une première base de données sur l'évolution de l'homogénéisation d'un traceur, dans la perspective de simulations numériques explorant des conditions plus réalistes des mesures in situ. / Monitoring of gaseous releases from nuclear installations in the environment and air cleaning efficiency measurement are based on regular measurements of concentrations of contaminants in outlet chimneys and ventilation systems. The concentration distribution may be heterogeneous at the measuring point if the distance setting of the mixing is not sufficient. The question is about the set up of the measuring point in duct and the error compared to the homogeneous concentration in case of non-compliance with this distance. This study defines the so-called "well mixing length" from laboratory experiments. The bench designed for these tests allowed to reproduce flows in long circular and rectangular ducts, each including a bend. An optical measurement technique has been developed, calibrated and used to measure the concentration distribution of a tracer injected in the flow. The experimental results in cylindrical duct have validated an analytical model based on the convection-diffusion equation of a tracer, and allowed to propose models of good mixing length and representativeness of sampling points. In rectangular duct, the acquired measures constitute a first database on the evolution of the homogenization of a tracer, in the perspective of numerical simulations exploring more realistic conditions for measurements in situ.
10

Contributions à l'analyse numérique des méthodes quasi-Monte Carlo

Coulibaly, Ibrahim 03 November 1997 (has links) (PDF)
Les méthodes de type quasi-Monte Carlo sont des versions déterministes des méthodes de Monte Carlo. Les nombres aléatoires sont remplacés par des nombres déterministes qui forment des ensembles ou des suites à faible discrepance, ayant une meilleure distribution uniforme. L'erreur d'une méthode quasi-Monte Carlo dépend de la discrepance de la suite utilisée, la discrepance étant une mesure de la déviation par rapport à la distribution uniforme. Dans un premier temps nous nous intéressons à la résolution par des méthodes quasi-Monte Carlo d'équations différentielles pour lesquelles il y a peu de régularité en temps. Ces méthodes consistent à formuler le problème avec un terme intégral pour effectuer ensuite une quadrature quasi-Monte Carlo. Ensuite des méthodes particulaires quasi-Monte Carlo sont proposées pour résoudre les équations cinétiques suivantes : l'équation de Boltzmann linéaire et le modèle de Kac. Enfin, nous nous intéressons à la résolution de l'équation de la diffusion à l'aide de méthodes particulaires utilisant des marches quasi-aléatoires. Ces méthodes comportent trois étapes : un schéma d'Euler en temps, une approximation particulaire et une quadrature quasi-Monte Carlo à l'aide de réseaux-$(0,m,s)$. A chaque pas de temps les particules sont réparties par paquets dans le cas des problèmes multi-dimensionnels ou triées si le problème est uni-dimensionnel. Ceci permet de démontrer la convergence. Les tests numériques montrent pour les méthodes de type quasi-Monte Carlo de meilleurs résultats que ceux fournis par les méthodes de type Monte Carlo.

Page generated in 0.1248 seconds