• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 16
  • 3
  • Tagged with
  • 69
  • 69
  • 69
  • 26
  • 24
  • 19
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Comportement en temps long des fluides visqueux bidimensionnels.

Rodrigues, Luis Miguel 07 December 2007 (has links) (PDF)
Ce mémoire se propose d'examiner le comportement asymptotique en temps long des fluides visqueux bidimensionnels, homogènes ou faiblement inhomogènes. On y examine souvent la dynamique des écoulements en fonction de l'évolution de la densité et, plutôt que de la vitesse, du vecteur de rotation instantanée appelé tourbillon ou vorticité. Les travaux de Thierry Gallay et C. Eugene Wayne ont mis en relief le rôle primordial d'une famille de solutions auto-similaires --- les tourbillons d'Oseen ou vortex --- pour décrire l'asymptotique des écoulements à densité constante. Toute solution de l'équation de Navier-Stokes, ayant une mesure finie comme tourbillon initial et de circulation non nulle, est asymptotique en temps long à un tourbillon d'Oseen. Le résultat de Gallay et Wayne ne présente que l'inconvénient de ne pas être explicite, la première tâche de ce mémoire est de l'expliciter, ce qui fournit ainsi une borne sur le temps de vie de la turbulence bidimensionnelle. On montre ensuite que les tourbillons d'Oseen sont asymptotiquement stables en tant que fluides à densité variable, retrouvant également, par là-même, le résultat de Gallay et Wayne pour des écoulements incompressibles faiblement inhomogènes et lents. Quant aux fluides compressibles faiblement inhomogènes, on établit qu'ils se comportent essentiellement comme des fluides à densité constante dès lors que l'on considère des écoulements lents et de circulation nulle.
52

Schémas à deux-grilles pour la résolution du problème de Navier-Stokes instationnaire incompressible

Abboud, Hyam 03 July 2006 (has links) (PDF)
Dans ce travail nous nous intéressons à la résolution du problème d'évolution de Navier-Stokes incompressible totalement discrétisé en temps et en espace, en dimension deux par une méthode à deux grilles. Dans un premier temps, nous étendons la méthode à deux grilles, appliquée par V. Girault et J.-L. Lions au problème de Navier-Stokes instationnaire semi-discrétisé au problème de Navier-Stokes totalement discrétisé en temps (par un schéma d'ordre un) et en espace (par une méthode d'éléments finis d'ordre un). Dans la première étape, le problème non-linéaire est discrétisé en espace et en temps sur une grille grossière de pas d'espace H avec un pas de temps Delta t. Puis dans la deuxième étape, le problème, linéarisé autour de la vitesse u_H calculée à l'étape précédente, est discrétisé en espace sur une grille fine de pas d'espace h et le même pas de temps. L'idée de la méthode à deux grilles est que, sous des hypothèses adéquates, la contribution de u_H à l'erreur dans le terme non-linéaire en espace, est mesurée en norme L^2 en espace et en temps et a un ordre plus élevé que si elle était mesurée en norme H^1. Dans un deuxième temps, vu que le but est de gagner en ordre de convergence de l'erreur totale du schéma ainsi qu'en complexité nous étudions un schéma à deux grilles d'ordre deux en temps du problème totalement discrétisé en temps et en espace de Navier-Stokes. Nous présentons les résultats suivants: dans le cas de la résolution du schéma d'ordre un en temps, si h = H^2 = Delta t, alors l'erreur globale de l'algorithme à deux grilles est de l'ordre de h. Dans le cas du schéma d'ordre deux en temps, si h^2 = (Delta t)^2 = H^3, alors l'erreur globale de l'algorithme à deux grilles est de l'ordre de h^2: résultats identiques à ceux de la résolution directe du problème non-linéaire sur une grille fine.
53

Modélisation, simulation et assimilation de données autour d'un problème de couplage hydrodynamique-biologie

Boulanger, Anne-Céline 13 September 2013 (has links) (PDF)
Les sujets abordés dans cette thèse s'articulent autour de la modélisation numérique du couplage entre l'hydrodynamique et la biologie pour la culture industrielle de microalgues dans des raceways. Ceci est fait au moyen d'un modèle multicouches qui disrétise verticalement les équations de Navier-Stokes hydrostatiques couplé avec un modèle de Droop photosensible pour représenter la croissance des algues, notamment la production de carbone. D'un point de vue numérique, une méthode volumes finis avec schémas cinétiques est appliquée. Elle permet d'obtenir un schéma équilibre qui préserve la positivité de la hauteur d'eau et des quantités biologiques et qui satisfait une inégalité d'énergie. Des simulations sont effectuées en 2D et en 3D, au moyen d'un code C++ développé à cet effet. Du point de vue de l'intérêt pratique de ce travail, ces simulations ont permis de mettre en évidence l'utilité de la roue à aube présente dans les raceways, mais aussi d'exhiber les trajectoires lagrangiennes réalisées par les microalgues, qui permettent de connaitre l'historique lumineux des algues, information d'une grande importance pour les biologistes car elle leur permet d'adapter leurs modèles de croissance phytoplanctoniques à ce contexte très particulier et non naturel. Afin de valider les modèles et les stratégies numériques employées, deux pistes on été explorées. La première consiste à proposer des solutions analytiques pour les équations d'Euler à surface libre, ainsi qu'un modèle biologique spécifique permettant un couplage analytique. La deuxième consiste à faire de l'assimilation de données. Afin de tirer partie de la description cinétique des lois de conservation hyperboliques, une méthode innovante basée sur la construction d'un observateur de Luenberger au niveau cinétique est développée. Elle permet d'obtenir un cadre théorique intéressant pour les lois de conservation scalaires, pour lesquelles on étudie les cas d'observations complètes, partielles en temps, en espace, et bruitées. Pour les systèmes, on se concentre particulièrement sur le système de Saint-Venant, système hyperbolique non linéaire et un observateur basé sur l'observation des hauteurs d'eau uniquement est construit. Des simulations numériques dans les cas scalaires et systèmes, en 1D et 2D sont effectuées et valident l'efficacité de la méthode.
54

Une nouvelle mise en oeuvre de la méthode IIM pour les équations de Navier-Stokes en présence d'une force singulière

Conti, Marc January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
55

Contrôle des écoulements par modèles d'ordre réduit, en vue de l'application à la ventilation naturelle des bâtiments / Flow control using reduced models, in order to its application in natural ventilation of buildings

Tallet, Alexandra 08 April 2013 (has links)
Afin d’élaborer des stratégies de contrôle des écoulements en temps réel, il est nécessaire d’avoir recours à des modèles d’ordre réduit (ROMs), car la résolution des équations complètes est trop coûteuse en temps de calcul (des jours, des semaines) et en espace mémoire. Dans cette thèse, les modèles réduits ont été construits avec la méthode POD (Proper Orthogonal Decomposition). Une méthode de projection basée sur la minimisation des résidus, initiée par les travaux de Leblond et al. [134] a été proposée. Dans certaines configurations, la précision des résultats est significativement augmentée, par rapport à une projection de Galerkin classique. Dans un second temps, un algorithme d’optimisation non-linéaire, à direction de descente basée sur la méthode des équations adjointes, a été couplé avec des modèles réduits utilisant des bases POD. Deux méthodes de construction de base POD ont été employées : soit avec un paramètre (un nombre de Reynolds,. . . ), soit avec plusieurs paramètres (plusieurs nombres de Reynolds, . . . ). Les ROMs obtenus ont été utilisés pour contrôler la dispersion d’un polluant dans une cavité ventilée puis pour contrôler le champ de température dans une cavité entraînée différentiellement chauffée. Le contrôle est réalisé en temps quasi-réel et les résultats obtenus sont plutôt satisfaisants. Néanmoins, ces méthodes sont encore trop coûteuses en espace mémoire pour être aujourd’hui embarquées dans les boîtiers de contrôle utilisés dans le bâtiment. Une autre stratégie de contrôle, s’appuyant sur les contrôleurs actuels, a ainsi été développée. Celle-ci permet d’obtenir la température (ainsi que la vitesse) dans la zone d’occupation du bâtiment, en utilisant une décomposition des champs par POD et un algorithme d’optimisation de Levenberg-Marquardt. Elle a été validée sur une cavité différentiellement chauffée, puis appliquée sur une cavité ventilée 3D, proche d’un cas réel. / In order to control flows in real-time, it is necessary to resort to reduced-order models (ROMs) because the classical method of simulations is too expensive in CPU time (several days, weeks) and memory storage. In this thesis, the ROMs have been built with the POD (Proper Orthogonal Decomposition) technique. First, a projection method based on the minimization of the equations residuals and established starting from the works of Leblond et al. [134] have been developed. In some cases, the results accuracy is significantly increased. Secondly, a direct descent optimization algorithm based on adjoint-equations has been coupled with POD/ROMs. Two construction methods of POD bases has been employed: either with simulations for only one parameter (one Reynolds number, . . . ), or with simulations for several parameters (several Reynolds numbers,. . . ). The obtained ROMs have been applied in order to control the pollutant dispersion and then to control the temperature field in a lid-driven cavity heated by the left. The control is realized in quasi-real time and the results are rather satisfying. Nevertheless, these methods are still too expensive in memory storage to be embedded in the current controllers. Thus, another control strategy has been proposed, using POD and an optimization algorithm (Levenberg-Marquardt). This one enables to obtain the temperature (and the velocity) in the occupation zone of the building and has been validated on the lid-driven cavity heated by the left and applied on a 3D-ventilated cavity, similar to a real case.
56

Une nouvelle mise en oeuvre de la méthode IIM pour les équations de Navier-Stokes en présence d'une force singulière

Conti, Marc January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
57

Génération de modèles vasculaires cérébraux : segmentation de vaisseaux et simulation d’écoulements sanguins / Generation of cerebral vascular models : vessel segmentation and blood flowsimulation.

Miraucourt, Olivia 03 November 2016 (has links)
Ce travail a pour objectif de générer des modèles vasculaires et de simuler des écoulements sanguins réalistes à l'intérieur de ces modèles. La première étape consiste à segmenter/reconstruire le volume 3D du réseau vasculaire. Une fois de tels volumes vasculaires segmentés et maillés, il est alors possible de simuler des écoulements sanguins à l'intérieur de ceux-ci. Pour la segmentation, nous utilisons une approche variationnelle. Nous proposons un premier modèle qui inclut un a priori de tubularité dans les modèles de débruitage ROF et TV-L1. Néanmoins, bien que ces modèles permettent de réhausser les vaisseaux, ils ne permettent pas de les segmenter. C'est pourquoi nous proposons un deuxième modèle amélioré qui inclut à la fois un a priori de tubularité et de direction dans le modèle de segmentation de Chan-Vese. Les résultats sont présentés sur des images synthétiques 2D, ainsi que sur des images rétiniennes. En ce qui concerne la simulation, nous nous intéressons d'abord au réseau veineux cérébral, encore peu étudié. Les équations de la dynamique des fluides qui régissent les écoulements sanguins dans notre géométrie sont alors les équations de Navier-Stokes. Pour résoudre ces équations, la méthode classique des caractéristiques est comparée avec un schéma d'ordre plus élevé. Ces deux schémas sont validés sur des solutions analytiques avant d'être appliqués aux cas réalistes du réseau veineux cérébral premièrement, puis du polygone artériel de Willis. / The aim of this work is to generate vascular models and simulate blood flows inside these models. A first step consists of segmenting/reconstructing the 3D volume of the vascular network. Once such volumes are segmented and meshed, it is then possible to simulate blood flows. For segmentation purposes, we use a variational approach. We first propose a model that embeds a vesselness prior in the denoising models ROF and TV-L1. Although these models can enhance vessels, they are not designed for segmentation. Then, we propose a second, improved model that includes both vesselness and direction priors in the Chan-Vese segmentation model. The results are presented on 2D synthetic images, as well as retinal images. In the second part, devoted to simulation, we first focus on the cerebral venous network, that has not been intensively studied. The equations governing blood flows inside our geometry are the Navier-Stokes equations. For their resolution, the classical method of characteristics is compared with a high-order scheme. Both schemes are validated on analytical solutions before their application on the realistic cases of the cerebral venous network, and the arterial polygon of Willis.
58

Fluid flow control by visual servoing / Commande des écoulements fluides par asservissement visuel

Dao, Xuan Quy 30 September 2014 (has links)
Cette thèse a pour but l'étude de la mise en œuvre de commandes par asservissement visuel pour le contrôle actif d'un écoulement de Poiseuille. D'un point de vue général, le contrôle d'écoulements vise à modifier ou à maintenir l'état de l'écoulement, malgré une éventuelle perturbation extérieure. Une des situations d'intérêt concerne par exemple la transition vers la turbulence où l'écoulement peut devenir turbulent avec la croissance de sa densité d'énergie cinétique. La réduction de la traînée est également une application potentielle dans des problèmes d'ingénierie. Un des buts applicatifs de cette thèse cherchera ainsi à minimiser à la fois la densité d'énergie cinétique et la traînée. Des modèles numériques peuvent être utilisés pour générer un modèle d'état des équations aux dérivées partielles d'un écoulement de Poiseuille. Le modèle d'état considéré dans cette thèse s'appuie sur une représentation spectrale afin de transformer les équations aux dérivées partielles originelles en un système d'équations différentielles ordinaires. Le vecteur d'état rassemble dans notre cas la vitesse et la vorticité. Les signaux de commande dépendent eux de conditions aux limites de type Dirichlet non homogènes qui correspondent à des actions de soufflage/aspiration. Le nombre de degrés de liberté commandé du problème correspond à la dimension du signal de commande. La densité d'énergie cinétique et la traînée sont modélisées en fonction du vecteur d'état et du signal de commande. Dans cette thèse nous avons plus particulièrement considéré un asservissement visuel partitionné. Celui-ci est appliqué au modèle d'état de l'écoulement avec deux degrés de liberté afin de minimiser simultanément la densité d'énergie cinétique et la traînée. La traînée, contrairement à l'énergie cinétique, diminue de façon monotone en fonction du temps. Une augmentation du nombre de degrés de liberté permet d'améliorer la décroissance de la densité d'énergie cinétique. Lorsque le nombre de degré de liberté correspond à la dimension du vecteur d'état, et en s'appuyant sur une commande par asservissement visuel, nous montrons que la densité d'énergie cinétique décroit de façon monotone au cours du temps. Le modèle d'état de l'écoulement de Poiseuille vit dans un espace de très grande dimension. Par conséquent, il est nécessaire d'un point de vue pratique de réduire la dimension du contrôleur. Nous démontrons que la loi de commande s'appuyant sur un modèle réduit peut être appliquée au système complet. Dans ce cas la densité d'énergie cinétique décroit presque de façon monotone au cours du temps en utilisant une commande par asservissement visuel à deux degrés de liberté. / The visual servoing control approach is formulated for the flow control of the plane Poiseuille flow. Generally, the flow control can lead the flow from its current state to a desired state. In transition to turbulence, the growth of kinetic energy density can lead the flow to turbulence. Moreover, the drag reduction is a potential application in the engineering applications. Therefore, this thesis aims to minimize the kinetic energy density and the skin friction drag. The governing equations of the plane Poiseuille flow are modeled to a standard form in the automatic control. More precisely, the partial differential equations of the plane Poiseuille flow are transformed to a state space representation by using the spectral method. The streamwise and spanwise directions are discretized based on the Fourier series while the wall-normal direction is discretized based on the Chebyshev polynomials. The state vector involves the wall-normal velocity and vorticity. The control signals depend on the inhomogeneous Dirichlet boundary conditions which correspond to blowing/suction boundary control. The number of independent control signals is called the number of the degree of freedom. Moreover, the skin-friction drag and the kinetic energy density are modeled as a function of the state vector. The goal is to minimize both the skin-friction drag and the kinetic energy density by appropriate methods. The partitioned visual servoing control is used to minimize, simultaneously, the skin-friction drag and the kinetic energy density with two degrees of freedom. As a result, the behavior of the skin-friction drag monotonically decreases in time. However, the behavior of the kinetic energy density does not monotonically decrease in time, the similar results from the other methods such as: PID and LQR controls. Therefore, the number of the degree of freedom increases, which leads to the improvement of the kinetic energy density. In addition, when the number of the degree of freedom equals the number of state vector, the kinetic energy density monotonically decreases in time by using the visual servoing control. The dimension of linearized plane Poiseuille flow is large, therefore, we need to reduce the order of controller. We demonstrate that the control law based on a mode reduction can be applied for the full system. Moreover, the kinetic energy density almost will monotonically decreases in time even using two degrees of freedom when the visual servoing control is designed based on the model order reduction.
59

Solving incompressible Navier-Stokes equations on heterogeneous parallel architectures / Résolution des équations de Navier-Stokes incompressibles sur architectures parallèles hétérogènes

Wang, Yushan 09 April 2015 (has links)
Dans cette thèse, nous présentons notre travail de recherche dans le domaine du calcul haute performance en mécanique des fluides. Avec la demande croissante de simulations à haute résolution, il est devenu important de développer des solveurs numériques pouvant tirer parti des architectures récentes comprenant des processeurs multi-cœurs et des accélérateurs. Nous nous proposons dans cette thèse de développer un solveur efficace pour la résolution sur architectures hétérogènes CPU/GPU des équations de Navier-Stokes (NS) relatives aux écoulements 3D de fluides incompressibles.Tout d'abord nous présentons un aperçu de la mécanique des fluides avec les équations de NS pour fluides incompressibles et nous présentons les méthodes numériques existantes. Nous décrivons ensuite le modèle mathématique, et la méthode numérique choisie qui repose sur une technique de prédiction-projection incrémentale.Nous obtenons une distribution équilibrée de la charge de calcul en utilisant une méthode de décomposition de domaines. Une parallélisation à deux niveaux combinée avec de la vectorisation SIMD est utilisée dans notre implémentation pour exploiter au mieux les capacités des machines multi-cœurs. Des expérimentations numériques sur différentes architectures parallèles montrent que notre solveur NS obtient des performances satisfaisantes et un bon passage à l'échelle.Pour améliorer encore la performance de notre solveur NS, nous intégrons le calcul sur GPU pour accélérer les tâches les plus coûteuses en temps de calcul. Le solveur qui en résulte peut être configuré et exécuté sur diverses architectures hétérogènes en spécifiant le nombre de processus MPI, de threads, et de GPUs.Nous incluons également dans ce manuscrit des résultats de simulations numériques pour des benchmarks conçus à partir de cas tests physiques réels. Les résultats obtenus par notre solveur sont comparés avec des résultats de référence. Notre solveur a vocation à être intégré dans une future bibliothèque de mécanique des fluides pour le calcul sur architectures parallèles CPU/GPU. / In this PhD thesis, we present our research in the domain of high performance software for computational fluid dynamics (CFD). With the increasing demand of high-resolution simulations, there is a need of numerical solvers that can fully take advantage of current manycore accelerated parallel architectures. In this thesis we focus more specifically on developing an efficient parallel solver for 3D incompressible Navier-Stokes (NS) equations on heterogeneous CPU/GPU architectures. We first present an overview of the CFD domain along with the NS equations for incompressible fluid flows and existing numerical methods. We describe the mathematical model and the numerical method that we chose, based on an incremental prediction-projection method.A balanced distribution of the computational workload is obtained by using a domain decomposition method. A two-level parallelization combined with SIMD vectorization is used in our implementation to take advantage of the current distributed multicore machines. Numerical experiments on various parallel architectures show that this solver provides satisfying performance and good scalability.In order to further improve the performance of the NS solver, we integrate GPU computing to accelerate the most time-consuming tasks. The resulting solver can be configured for running on various heterogeneous architectures by specifying explicitly the numbers of MPI processes, threads and GPUs. This thesis manuscript also includes simulation results for two benchmarks designed from real physical cases. The computed solutions are compared with existing reference results. The code developed in this work will be the base for a future CFD library for parallel CPU/GPU computations.
60

Comportement d’un fluide autour d’un petit obstacle, problèmes de convections et dynamique chaotique des films liquides / Motion of a small rigid body in an incompressible viscous fluid, convection problems and dynamics of falling films

He, Jiao 20 September 2019 (has links)
Cette thèse est consacrée à trois différentes équations d’évolution non-linéaires dans le cadre de mécanique des fluides : le système fluide-solide, le système de Boussinesq et un modèle de films liquides. Pour le système fluide-solide, nous étudions l’évolution d’un petit solide en mouvement dans un fluide newtonien incompressible dans le cas où l’obstacle se contracte vers un point. En supposant que la densité du solide tend vers l’infini, nous montrons la convergence des solutions du système fluide-solide vers une solution des équations de Navier-Stokes dans $\mathbb{R}^d$ , avec $d^2$ et 3. Pour le problème de convection, nous travaillons sur l’unicité des solutions ‘mild’ du système de Boussinesq et généralise de plusieurs manières différentes des résultats classiques d’unicité pour les équations de Navier-Stokes. Dans la dernière partie, nous exposons nos contributions à l’étude des interface 2D de films liquides en dimension trois. Nous montrons qu’une variante 2D, non-local, de l’équation de Kuramoto-Sivashinsky admet un attracteur globale compact et obtenons enfin une majoration du nombre d’oscillations spatiales des solutions / This thesis is devoted to three different non-linear evolution equations in fluid mechanics : the fluid-solid system, the Boussinesq system and a falling films model. For the fluid-solid system, we study the evolution of a small moving solid in incompressible viscous fluid in the case the obstacle converges to a point. Assuming that the density of the solid tends to infinity, we prove that the rigid body has no influence on the limit equation by showing the convergence of solutions of the fluid-solid system towards to a solution of the Navier-Stokes equations in the full $\mathbb{R}^d$ , avec $d^2$ et 3. For the convection problem, we provide several uniqueness classes on the velocity and the temperature and generalize some classical uniqueness result for ‘mild’ solutions of the Navier-Stokes equations. We then work on a falling films model in three dimensions (2D interface). We show that a non-local variant of the Kuramoto-Sivashinsky equation admits a compact global attractor and we study the number of spatial oscillations of the solutions

Page generated in 0.0908 seconds