• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 46
  • 35
  • 20
  • 10
  • 9
  • 7
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 417
  • 417
  • 86
  • 50
  • 47
  • 40
  • 37
  • 35
  • 30
  • 29
  • 27
  • 26
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Effects of ionospheric conductance in high-latitude phenomena

Benkevitch, Leonid V 09 February 2006 (has links)
In this thesis, the relationship between several high-latitude phenomena and the ionospheric conductance in both hemispheres is studied theoretically and experimentally. </p>Theoretically, the high-latitude electrodynamics is studied by considering currents in the magnetosphere-ionosphere system resulting from the ionospheric sheet current redistribution between the conjugate ionospheres. It is shown that strong flow between the conjugate ionospheres, the interhemispheric currents (IHC), can be set up if the conductance distribution is asymmetric in the conjugate ionospheric regions. Such conditions are typical for solstices owing to the differences in the solar illumination. Analytical and numerical modeling shows that IHCs can appear in the regions of strong conductance gradient, more specifically around the solar terminator line, and that the intensity of the IHCs can be comparable to the intensity of the well known Region 1/Region 2 currents. The effect of IHC excitation on observable magnetic perturbations on the ground is investigated. It is shown that in the vicinity of the solar terminator line, the pattern of magnetic perturbation can be such that an apparent equivalent current vortex can be detected. In addition, strong conductance gradients are shown to affect significantly the quality of the ionospheric plasma flow estimates from the ground-based magnetometer data. </p>Experimentally, the effect of the nightside ionospheric conductance on occurrence of substorms, global storm sudden commencement and radar auroras is investigated. To characterize substorm occurrence, new parameters, the derivatives of the classical AE and AO indices, are introduced. It is shown that the seasonal and diurnal variations of these parameters are controlled by the total nightside ionospheric conductance in the conjugate regions. The substorm onsets preferentially occur at low levels of the total conductance, which is consistent with the idea of the substorm triggering through the magnetosphere-ionosphere feedback instability. It is hypothesized that the total conductance affects the global storm onsets as well. To check this idea, the 33-year sudden storm commencement (SSC) data are considered. The semiannual, annual, semidiurnal, and diurnal variations in the SSC occurrence rate are found to be significant and these components exhibit a strong relationship with the total conductance of the high-latitude ionospheres. Finally, the SuperDARN midnight echo occurrence is shown to correlate, for some radars, with the total conductance minima and presumably with electric field maxima, which is consistent with general expectation that the F-region irregularities occur preferentially during times of enhanced electric fields. The gradients of the high-latitude conductance can also lead to significant errors in the plasma convection estimates from the ground-based magnetometers, and to investigate this effect a statistical assessment of the difference between the true plasma convection (SuperDARN) and the magnetometer-inferred equivalent convection direction is performed. The largest differences are found for the transition region between the dark and sunlit ionospheres and in the midnight sector where strong conductance gradients are expected due to particle precipitation. Consideration of regular conductance gradients due to solar illumination improves the agreement between the radar and magnetometer data. Finally, an attempt is made to demonstrate the effects of conductance upon the properties of traveling convection vortices (TCVs). Joint SuperDARN and magnetometer data reveal that there is resemblance between the magnetometer and radar inferred TCV images on a scale of thousands of kilometers. However, on a smaller scale of hundreds of kilometers, significant differences are observed.
292

3-d Finite Element Analysis Of Semi-rigid Steel Connections

Uslu, Cafer Harun 01 July 2009 (has links) (PDF)
Two types of connection are generally considered in the design of steel structures in practice. These are classified as completely rigid (moment) and simple (shear) connections. In theory, completely rigid connections can not undergo rotation and simple connections can not transfer moment. However, in reality rigid connections have a relative flexibility which makes them to rotate and simple connections have some reserve capacity to transfer moments. In many modern design specifications, this fact is realized and another type which is called partially restrained or semi-rigid connection is introduced. These types of connections have got the transfer of some beam moment to column together with shear. However, there is a lack of information on the amount of moment transferred and rotation of connection during the action of the moment transfer. The only way to quantify the moment and rotation of the partially restrained connections is to draw momentrotation curves. Nevertheless, drawing such curves requires great amount of expenses for experiments. Taking these into account, the use of finite elements with the help of increased computational power is one way to obtain moment-rotation curves of connections. Available test results guides the finite element analysis for justifications. So these analyses can be further implemented into design functions. This thesis is intended to conduct 3-D non-linear finite element analyses to compliment with tests results for different types of semi-rigid connections with angles and compare them with mathematical models developed by different researchers.
293

Sequential Growth Factor Delivery From Polymeric Scaffolds For Bone Tissue Engineering

Yilgor, Pinar 01 September 2009 (has links) (PDF)
Tissue engineering is a promising alternative strategy to produce artificial bone substitutes / however, the control of the cell organization and cell behavior to create fully functional 3-D constructs has not yet been achieved. To overcome these, activities have been concentrated on the development of multi-functional tissue engineering scaffolds capable of delivering the required bioactive agents to initiate and control cellular activities. The aim of this study was to prepare tissue engineered constructs composed of polymeric scaffolds seeded with mesenchymal stem cells (MSCs) carrying a nanoparticulate growth factor delivery system that would sequentially deliver the growth factors in order to mimic the natural bone healing process. To achieve this, BMP-2 and BMP-7, the osteogenic growth factors, were encapsulated in different polymeric nanocapsules (poly(lactic acid-co-glycolic acid) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)) with different properties (degradation rates, crystallinity) and, therefore, different release rates to achieve the early release of BMP-2 followed by the release of BMP-7, as it is in nature. Initially, these nanoparticulate delivery systems were characterized and then the effect of single, simultaneous and sequential delivery of BMP-2 and BMP-7 from these delivery systems was studied in vitro using rat bone marrow MSCs. The effect of using these two growth factors in a sequential manner by mimicking their natural bioavailability timing was shown with maximized osteogenic activity results. BMP-2 loaded PLGA nanocapsules were subcutaneously implanted into Wistar rats and according to initial results, their biocompatibility as well as the positive effect of BMP-2 release on the formation of osteoclast-like cells was shown. To complete the construction of the bioactive scaffold, this nanoparticulate sequential delivery system was incorporated into two different types of polymeric systems / natural (chitosan) and synthetic (poly(&amp / #949 / -caprolactone) (PCL)). 3-D fibrous scaffolds were produced using these materials by wet spinning and 3-D plotting. Incorporation of nanocapsules into 3-D chitosan scaffolds was studied by two different methods: incorporation within and onto chitosan fibers. Incorporation into 3-D PCL scaffolds was achieved by coating the nanocapsules onto the fibers of the scaffolds in an alginate layer. With both scaffold systems, incorporation of nanocapsule populations capable of delivering BMP-2 and BMP-7 in single, simultaneous and sequential fashion was achieved. As with free nanocapsules, the positive effect of sequential delivery on the osteogenic differentiation of MSCs was shown with both scaffold systems, creating multi-functional scaffolds capable of inducing bone healing.
294

Optimization of 3-d neural culture and extracellular electrophysiology for studying injury-induced morphological and functional changes

Vernekar, Varadraj Nagesh 06 April 2010 (has links)
This work characterized an in vitro 3-D neural co-culture model electrophysiologically via multi electrode arrays (MEAs), and morphologically via immunocytochemistry. Since MEA surface insulation SU-8 2000 can be used in neural micro- and multi- electrode arrays, this investigation first developed techniques to make SU-8 2000 cytocompatible. The in vitro 3-D neural co-culture model was then used to study viability and electrophysiological responses to physical injury as well as drugs known to affect network signaling. 1) SU-8 2000 cytotoxicity to neuronal cultures was linked to both poor adhesive properties and toxic components, such as solvents and photo acid generator elements. Surface treatments of oxygen plasma or parylene coating following optimal combinations of heat and isopropanol sonication showed improvement in SU-8 2000 cytocompatibility. 2) The 3-D neural networks within the 3-D co-cultures maintained considerable process outgrowth and complex 3-D structure. The cultures were viable up to three weeks in vitro with functional synaptic connections and spontaneous electrophysiological activity that was responsive to chemical modulation. This electrophysiological activity was modulated by synaptic inhibition. 3) Injury experiments demonstrated that both shear and compression loading significantly increased acute membrane permeability of cells in a strain rate dependent manner. Cell death correlated with higher membrane permeability, and shear resulted in more death than compression in these 3-D cultures. While techniques were developed for making a major micro-fabrication material cytocompatible, engineering the 3-D neural co-culture resulted in a more physiologically-representative neural tissue platform, allowing an increased understanding of structure-function relationships. Overall, this research established and characterized a neural culture system for the mechanistic study of cell growth, cell-cell and cell-matrix interactions, as well as the responses to chemical or mechanical perturbations. This is the first investigation of the network-level electrophysiological activity of 3-D dissociated cultures. This system can be used to model various pathological states in vitro, testing various reparative drugs; cell-, and tissue-engineering based strategies; as well as for pre-animal and pre-clinical testing of neural implants.
295

Scalable video communications: bitstream extraction algorithms for streaming, conferencing and 3DTV

Palaniappan, Ramanathan 19 August 2011 (has links)
This research investigates scalable video communications and its applications to video streaming, conferencing and 3DTV. Scalable video coding (SVC) is a layer-based encoding scheme that provides spatial, temporal and quality scalability. Heterogeneity of the Internet and clients' operating environment necessitate the adaptation of media content to ensure a satisfactory multimedia experience. SVC's layer structure allows the extraction of partial bitstreams at reduced spatial, quality and temporal resolutions that adjust the media bitrate at a fine granularity to changes in network state. The main focus of this research work is in developing such extraction algorithms in the context of SVC. Based on a combination of metadata computations and prediction mechanisms, these algorithms evaluate the quality contribution of each layer in the SVC bitstream and make extraction decisions that are aimed at maximizing video quality while operating within the available bandwidth resources. These techniques are applied in two-way interaction and one-way streaming of 2D and 3D content. Depending on the delay tolerance of these applications, rate-distortion optimized extraction algorithms are proposed. For conferencing applications, the extraction decisions are made over single frames and frame pairs due to tight end-to-end delay constraints. The proposed extraction algorithms for 3D content streaming maximize the overall perceived 3D quality based on human stereoscopic perception. When compared to current extraction methods, the new algorithms offer better video quality at a given bitrate while performing lesser number of metadata computations in the post-encoding phase. The solutions proposed for each application achieve the recurring goal of maintaining the best possible level of end-user quality of multimedia experience in spite of network impairments.
296

Depth-based 3D videos: quality measurement and synthesized view enhancement

Solh, Mashhour M. 13 December 2011 (has links)
Three dimensional television (3DTV) is believed to be the future of television broadcasting that will replace current 2D HDTV technology. In the future, 3DTV will bring a more life-like and visually immersive home entertainment experience, in which users will have the freedom to navigate through the scene to choose a different viewpoint. A desired view can be synthesized at the receiver side using depth image-based rendering (DIBR). While this approach has many advantages, one of the key challenges in DIBR is generating high quality synthesized views. This work presents novel methods to measure and enhance the quality of 3D videos generated through DIBR. For quality measurements we describe a novel method to characterize and measure distortions by multiple cameras used to capture stereoscopic images. In addition, we present an objective quality measure for DIBR-based 3D videos by evaluating the elements of visual discomfort in stereoscopic 3D videos. We also introduce a new concept called the ideal depth estimate, and define the tools to estimate that depth. Full-reference and no-reference profiles for calculating the proposed measures are also presented. Moreover, we introduce two innovative approaches to improve the quality of the synthesized views generated by DIBR. The first approach is based on hierarchical blending of the background and foreground information around the disocclusion areas which produces a natural looking, synthesized view with seamless hole-filling. This approach yields virtual images that are free of any geometric distortions, unlike other algorithms that preprocess the depth map. In contrast to the other hole-filling approaches, our approach is not sensitive to depth maps with high percentage of bad pixels from stereo matching. The second approach further enhances the results through a depth-adaptive preprocessing of the colored images. Finally, we propose an enhancement over depth estimation algorithm using the depth monocular cues from luminance and chrominance. The estimated depth will be evaluated using our quality measure, and the hole-filling algorithm will be used to generate synthesized views. This application will demonstrate how our quality measures and enhancement algorithms could help in the development of high quality stereoscopic depth-based synthesized videos.
297

Novel methods for 3-D semi-automatic mapping of fracture geometry at exposed rock faces

Feng, Quanhong January 2001 (has links)
<p>To analyse the influence of fractures on hydraulic andmechanical behaviour of fractured rock masses, it is essentialto characterise fracture geometry at exposed rock faces. Thisthesis describes three semi-automatic methods for measuring andquantifying geometrical parameters of fractures, and aims tooffer a novel approach to the traditional mapping methods.</p><p>Three techniques, i.e. geodetic total station, close-rangephotogrammetry and 3-D laser scanner, are used in this studyfor measurement of fracture geometry. The advantages of thesetechniques compared with the traditional method are: i)fracture geometry is quantified semi-automatically in threedimensions; ii) fracture measurements are obtained withoutphysically touching the rock face; iii) the accuracy offracture measurements is improved comparing with thetraditional method; iv) both quantitative and spatial analysisof fracture geometry is possible; v) it offers a way todigitally record the rock surface in three dimensions and invisual format as a database for other applications.</p><p>The common approach for fracture mapping by using the noveltechniques comprises three main steps: i) capturing 3-Dco-ordinates of target points; ii) quantifying geometricalparameters of fractures from the recorded co-ordinates; iii)documenting the results of fracture mapping. The details ofcapturing 3-D co-ordinates of target points are introduced. Anew algorithm is developed for computing orientation offracture planes. A multiple approach for documenting thefracture mapping results is presented. Application of thesetechniques for measuring and quantifying the geometricalparameters of fractures, such as orientation, trace length andsurface roughness, are demonstrated.</p><p>The presented methods can greatly improve the quality offracture measurements and avoid the drawbacks inherent intraditional methods. However, it can not replace the humancapacity to filter out and interpret the large amount ofgeometrical information displayed on the rock faces. Themethods may offer an assistance to engineers or geologists inobtaining as much information as possible about the geometryand orientation of rock fractures for rock engineeringapplications.</p><p><b>Keywords:</b>3-D laser scanner, close-range photogrammetry,engineering geology, fracture geometry, fracture mapping, rockengineering, rock faces, rock mechanics, three-dimension, totalstation.</p>
298

Sur le développement de certaines méthodes analytiques spectrales pour la diffraction par des objets génériques comportant des singularités de géométrie et/ou de matériaux en 2D et 3D

Bernard, J.M.L. 26 January 2007 (has links) (PDF)
De nombreux ouvrages d'électromagnétisme ou d'acoustique classent les méthodes de résolution des problèmes de diffraction suivant le qualificatif d'analytique ou de numérique. Les premières donnent des formes explicites exactes ou asymptotiques des champs tandis que les secondes aboutissent à des expressions implicites en champ que l'on résout numériquement. Cette présentation se rapporte à certaines de nos publications relatives à la première catégorie. On y présente les solutions originales, exactes ou asymptotiques, de problèmes de diffraction d'une onde par des corps élémentaires comportant une ou plusieurs discontinuités de géométrie et/ou de matériau en 2D et 3D, en régime stationnaire ou instationnaire. Plusieurs de ces problèmes ainsi traités deviennent de nouveaux cas canoniques. On notera que les problèmes étudiés ne sont pas solubles par les méthodes classiques de séparation des variables.<br />Indiquons par ailleurs qu'étant donné la complexité des problèmes posés, nous avons proscrit les arguments heuristiques qui limitent trop souvent le domaine de validité de nombreuses méthodes analytiques.
299

DART : MODÈLE 3D MULTISPECTRAL ET INVERSION <br />D'IMAGES OPTIQUE DE SATELLITE<br />- APPLICATION AUX COUVERTS FORESTIERS -

Martin, Emmanuel 25 July 2006 (has links) (PDF)
En télédétection optique, les modèles de transfert radiatif (T-R) ont pour but de simuler la mesure radiométrique des capteurs spatiaux qui observent le système "Terre - Atmosphère". La modélisation des mesures de couverts végétaux est en général limitée au niveau de la représentation du paysage et du T-R associé. Cette thèse a permis de transformer le modèle 3-D de T-R DART (brevet : PCT/FR 02/01181) en un modèle multispectral simulant les images de télédétection optique (thermique inclus) de tout paysage urbain et naturel, avec relief et atmosphère, pour tout capteur spatial/aéroporté. Ce nouveau modèle a été validé par comparaison avec d'autres modèles (expérience RAMI-3, Centre Commun de Recherche, Italie) et avec des mesures in situ et aéroportées (République Tchèque). In fine, une méthode d'inversion a été développée. Elle a permis d'utiliser DART pour évaluer l'impact de la modélisation sur l'extraction du LAI d'une forêt de conifères avec des images hyperspectrales THR.
300

Traitement cortical de l'espace visuel tridimentionnel dans l'aire visuelle primaire du singe vigile

Durand, Jean-Baptiste 15 January 2004 (has links) (PDF)
Dans la représentation centrale du champ visuel, la disparité rétinienne horizontale est impliquée directement dans la perception stéréoscopique. Son implication en vision périphérique est moins évidente tout comme celui de la disparité verticale dont le rôle fonctionnel reste controversé.<br />Par des enregistrements extra-cellulaires réalisés chez le singe vigile, nous montrons que la disparité horizontale est codée de façon préférentielle dans la représentation fovéale du champ visuel du cortex visuel primaire (aire V1). En périphérie, les interactions fortes entre disparités horizontales et verticales et leur lien étroit avec la sélectivité à l'orientation (en accord avec le modèle d'énergie binoculaire) suggèrent leur implication dans la construction du percept stéréoscopique dans les zones excentrées du champ visuel. De plus les modulations de l'activité visuelle des neurones par la direction du regard que nous observons dans l'aire V1 également, nous permettent de conclure que le cortex visuel primaire participe aux mécanismes neuronaux de reconstruction de l'espace tridimensionnel.

Page generated in 0.0312 seconds