• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 12
  • 8
  • 3
  • 2
  • Tagged with
  • 70
  • 70
  • 33
  • 30
  • 24
  • 19
  • 19
  • 19
  • 18
  • 18
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Stratégie de raffinement automatique de maillage et méthodes multi-grilles locales pour le contact : application à l'interaction mécanique pastille-gaine / Automatic mesh refinement and local multigrid methods for contact problems : application to the pellet-cladding mechanical interaction

Liu, Hao 28 September 2016 (has links)
Ce travail de thèse s’inscrit dans le cadre de l’étude de l’Interaction mécanique Pastille-Gaine (IPG) se produisant dans les crayons combustibles des réacteurs à eau pressurisée. Ce mémoire porte sur le développement de méthodes de raffinement de maillage permettant de simuler plus précisément le phénomène d’IPG tout en conservant des temps de calcul et un espace mémoire acceptables pour des études industrielles. Une stratégie de raffinement automatique basée sur la combinaison de la méthode multi-grilles Local Defect Correction (LDC) et l’estimateur d’erreur a posteriori de type Zienkiewicz et Zhu est proposée. Cette stratégie s’appuie sur l’erreur fournie par l’estimateur pour détecter les zones à raffiner constituant alors les sous-grilles locales de la méthode LDC. Plusieurs critères d’arrêt sont étudiés afin de permettre de stopper le raffinement quand la solution est suffisamment précise ou lorsque le raffinement n’apporte plus d’amélioration à la solution globale.Les résultats numériques obtenus sur des cas tests 2D élastiques avec discontinuité de chargement permettent d’apprécier l’efficacité de la stratégie proposée.Le raffinement automatique de maillage dans le cas de problèmes de contact unilatéral est ensuite abordé. La stratégie proposée dans ce travail s’étend aisément au raffinement multi-corps à condition d’appliquer l’estimateur d’erreur sur chacun des corps séparément. Un post-traitement est cependant souvent nécessaire pour garantir la conformité des zones de raffinement vis-à-vis des frontières de contact. Une variété de tests numériques de contact entre solides élastiques confirme l’efficacité et la généricité de la stratégie proposée. / This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local subgrids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore.Numerical results for elastic 2D test cases with pressure discontinuity shows the efficiency of the proposed strategy.The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multibody refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy.
52

Méthode des éléments finis augmentés pour la rupture quasi-fragile : application aux composites tissés à matrice céramique / Augmented finite element method for quasi-brittle fracture : application to woven ceramic matrix composites

Essongue-Boussougou, Simon 08 March 2017 (has links)
Le calcul de la durée de vie des Composites tissés à Matrice Céramique (CMC) nécessite de déterminer l’évolution de la densité de fissures dans le matériau(pouvant atteindre 10 mm-1). Afin de les représenter finement on se propose de travailler à l’échelle mésoscopique. Les méthodes de type Embedded Finite Element (EFEM) nous ont paru être les plus adaptées au problème. Elles permettent une représentation discrète des fissures sans introduire de degrés de liberté additionnels.Notre choix s’est porté sur une EFEM s’affranchissant d’itérations élémentaires et appelée Augmented Finite Element Method (AFEM). Une variante d’AFEM, palliant des lacunes de la méthode originale, a été développée. Nous avons démontré que,sous certaines conditions, AFEM et la méthode des éléments finis classique (FEM) étaient équivalentes. Nous avons ensuite comparé la précision d’AFEM et de FEM pour représenter des discontinuités fortes et faibles. Les travaux de thèse se concluent par des exemples d’application de la méthode aux CMC. / Computing the lifetime of woven Ceramic Matrix Composites (CMC) requires evaluating the crack density in the material (which can reach 10 mm-1). Numerical simulations at the mesoscopic scale are needed to precisely estimate it. Embedded Finite Element Methods (EFEM) seem to be the most appropriate to do so. They allow for a discrete representation of cracks with no additional degrees of freedom.We chose to work with an EFEM free from local iterations named the Augmented Finite Element Method (AFEM). Improvements over the original AFEM have been proposed. We also demonstrated that, under one hypothesis, the AFEM and the classical Finite Element Method (FEM) are fully equivalent. We then compare the accuracy of the AFEM and the classical FEM to represent weak and strong discontinuities. Finally, some examples of application of AFEM to CMC are given.
53

Estimation d'erreur de discrétisation dans les calculs par décomposition de domaine / Estimation of discretization error in domain decomposition computations

Parret-Fréaud, Augustin 28 June 2011 (has links)
Le contrôle de la qualité des calculs de structure suscite un intérêt croissant dans les processus de conception et de certification. Il repose sur l'utilisation d'estimateurs d'erreur, dont la mise en pratique entraîne un sur-coût numérique souvent prohibitif sur des calculs de grande taille. Le présent travail propose une nouvelle procédure permettant l'obtention d'une estimation garantie de l'erreur de discrétisation dans le cadre de problèmes linéaires élastiques résolus au moyen d'approches par décomposition de domaine. La méthode repose sur l'extension du concept d'erreur en relation de comportement au cadre des décompositions de domaine sans recouvrement, en s'appuyant sur la construction de champs admissibles aux interfaces. Son développement dans le cadre des approches FETI et BDD permet d'accéder à une mesure pertinente de l'erreur de discrétisation bien avant convergence du solveur lié à la décomposition de domaine. Une extension de la procédure d'estimation aux problèmes hétérogènes est également proposée. Le comportement de la méthode est illustré et discuté sur plusieurs exemples numériques en dimension 2. / The control of the quality of mechanical computations arouses a growing interest in both design and certification processes. It relies on error estimators the use of which leads to often prohibitive additional numerical costs on large computations. The present work puts forward a new procedure enabling to obtain a guaranteed estimation of discretization error in the setting of linear elastic problems solved by domain decomposition approaches. The method relies on the extension of the constitutive relation error concept to the framework of non-overlapping domain decomposition through the recovery of admissible interface fields. Its development within the framework of the FETI and BDD approaches allows to obtain a relevant estimation of discretization error well before the convergence of the solver linked to the domain decomposition. An extension of the estimation procedure to heterogeneous problems is also proposed. The behaviour of the method is illustrated and assessed on several numerical examples in 2 dimension.
54

Řešení parciálních diferenciálních rovnic s využitím aposteriorního odhadu chyby / A posteriori error estimation method for partial differential equations solution

Valenta, Václav Unknown Date (has links)
This thesis deals with gradient calculation in triangulation nodes using weighted average of gradients of neighboring elements. This gradient is then used for a posteriori error estimation which produce better solution of partial differential equations. This work presents two common methods - Finite elements method and Finite difference method.
55

Modèles de flammelette en combustion turbulente avec extinction et réallumage : étude asymptotique et numérique, estimation d’erreur a posteriori et modélisation adaptative

Turbis, Pascal 01 1900 (has links)
No description available.
56

A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes

Kunert, Gerd 08 January 1999 (has links)
Many physical problems lead to boundary value problems for partial differential equations, which can be solved with the finite element method. In order to construct adaptive solution algorithms or to measure the error one aims at reliable a posteriori error estimators. Many such estimators are known, as well as their theoretical foundation. Some boundary value problems yield so-called anisotropic solutions (e.g. with boundary layers). Then anisotropic finite element meshes can be advantageous. However, the common error estimators for isotropic meshes fail when applied to anisotropic meshes, or they were not investigated yet. For rectangular or cuboidal anisotropic meshes a modified error estimator had already been derived. In this paper error estimators for anisotropic tetrahedral or triangular meshes are considered. Such meshes offer a greater geometrical flexibility. For the Poisson equation we introduce a residual error estimator, an estimator based on a local problem, several Zienkiewicz-Zhu estimators, and an L_2 error estimator, respectively. A corresponding mathematical theory is given.For a singularly perturbed reaction-diffusion equation a residual error estimator is derived as well. The numerical examples demonstrate that reliable and efficient error estimation is possible on anisotropic meshes. The analysis basically relies on two important tools, namely anisotropic interpolation error estimates and the so-called bubble functions. Moreover, the correspondence of an anisotropic mesh with an anisotropic solution plays a vital role. AMS(MOS): 65N30, 65N15, 35B25
57

A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities

Pester, Cornelia 21 April 2006 (has links)
This thesis is concerned with the finite element analysis and the a posteriori error estimation for eigenvalue problems for general operator pencils on two-dimensional manifolds. A specific application of the presented theory is the computation of corner singularities. Engineers use the knowledge of the so-called singularity exponents to predict the onset and the propagation of cracks. All results of this thesis are explained for two model problems, the Laplace and the linear elasticity problem, and verified by numerous numerical results.
58

Adaptivity in anisotropic finite element calculations

Grosman, Sergey 21 April 2006 (has links)
When the finite element method is used to solve boundary value problems, the corresponding finite element mesh is appropriate if it is reflects the behavior of the true solution. A posteriori error estimators are suited to construct adequate meshes. They are useful to measure the quality of an approximate solution and to design adaptive solution algorithms. Singularly perturbed problems yield in general solutions with anisotropic features, e.g. strong boundary or interior layers. For such problems it is useful to use anisotropic meshes in order to reach maximal order of convergence. Moreover, the quality of the numerical solution rests on the robustness of the a posteriori error estimation with respect to both the anisotropy of the mesh and the perturbation parameters. There exist different possibilities to measure the a posteriori error in the energy norm for the singularly perturbed reaction-diffusion equation. One of them is the equilibrated residual method which is known to be robust as long as one solves auxiliary local Neumann problems exactly on each element. We provide a basis for an approximate solution of the aforementioned auxiliary problem and show that this approximation does not affect the quality of the error estimation. Another approach that we develope for the a posteriori error estimation is the hierarchical error estimator. The robustness proof for this estimator involves some stages including the strengthened Cauchy-Schwarz inequality and the error reduction property for the chosen space enrichment. In the rest of the work we deal with adaptive algorithms. We provide an overview of the existing methods for the isotropic meshes and then generalize the ideas for the anisotropic case. For the resulting algorithm the error reduction estimates are proven for the Poisson equation and for the singularly perturbed reaction-difussion equation. The convergence for the Poisson equation is also shown. Numerical experiments for the equilibrated residual method, for the hierarchical error estimator and for the adaptive algorithm confirm the theory. The adaptive algorithm shows its potential by creating the anisotropic mesh for the problem with the boundary layer starting with a very coarse isotropic mesh.
59

Algebraická chyba v maticových výpočtech v kontextu numerického řešení parciálních diferenciálních rovnic / Algebraic Error in Matrix Computations in the Context of Numerical Solution of Partial Differential Equations

Papež, Jan January 2017 (has links)
Title: Algebraic Error in Matrix Computations in the Context of Numerical Solution of Partial Differential Equations Author: Jan Papež Department: Department of Numerical Mathematics Supervisor: prof. Ing. Zdeněk Strakoš, DrSc., Department of Numerical Mathe- matics Abstract: Solution of algebraic problems is an inseparable and usually the most time-consuming part of numerical solution of PDEs. Algebraic computations are, in general, not exact, and in many cases it is even principally desirable not to perform them to a high accuracy. This has consequences that have to be taken into account in numerical analysis. This thesis investigates in this line some closely related issues. It focuses, in particular, on spatial distribution of the errors of different origin across the solution domain, backward error interpretation of the algebraic error in the context of function approximations, incorporation of algebraic errors to a posteriori error analysis, influence of algebraic errors to adaptivity, and construction of stopping criteria for (preconditioned) iterative algebraic solvers. Progress in these issues requires, in our opinion, understanding the interconnections between the phases of the overall solution process, such as discretization and algebraic computations. Keywords: Numerical solution of partial...
60

K efektivním numerickým výpočtům proudění nenewtonských tekutin / Towards efficient numerical computation of flows of non-Newtonian fluids

Blechta, Jan January 2019 (has links)
In the first part of this thesis we are concerned with the constitutive the- ory for incompressible fluids characterized by a continuous monotone rela- tion between the velocity gradient and the Cauchy stress. We, in particular, investigate a class of activated fluids that behave as the Euler fluid prior activation, and as the Navier-Stokes or power-law fluid once the activation takes place. We develop a large-data existence analysis for both steady and unsteady three-dimensional flows of such fluids subject either to the no-slip boundary condition or to a range of slip-type boundary conditions, including free-slip, Navier's slip, and stick-slip. In the second part we show that the W−1,q norm is localizable provided that the functional in question vanishes on locally supported functions which constitute a partition of unity. This represents a key tool for establishing local a posteriori efficiency for partial differential equations in divergence form with residuals in W−1,q . In the third part we provide a novel analysis for the pressure convection- diffusion (PCD) preconditioner. We first develop a theory for the precon- ditioner considered as an operator in infinite-dimensional spaces. We then provide a methodology for constructing discrete PCD operators for a broad class of pressure discretizations. The...

Page generated in 0.0948 seconds