• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 12
  • 8
  • 3
  • 2
  • Tagged with
  • 70
  • 70
  • 33
  • 30
  • 24
  • 19
  • 19
  • 19
  • 18
  • 18
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Estimador de erro a posteriori baseado em recuperação do gradiente para o método dos elementos finitos generalizados / A posteriori error estimator based on gradient recovery for the generalized finite element method

Rafael Marques Lins 11 May 2011 (has links)
O trabalho aborda a questão das estimativas a posteriori dos erros de discretização e particularmente a recuperação dos gradientes de soluções numéricas obtidas com o método dos elementos finitos (MEF) e com o método dos elementos finitos generalizados (MEFG). Inicialmente, apresenta-se, em relação ao MEF, um resumido estado da arte e conceitos fundamentais sobre este tema. Em seguida, descrevem-se os estimadores propostos para o MEF denominados Estimador Z e \"Superconvergent Patch Recovery\" (SPR). No âmbito do MEF propõe-se de modo original a incorporação do \"Singular Value Decomposition\" (SVD) ao SPR aqui mencionada como SPR Modificado. Já no contexto do MEFG, apresenta-se um novo estimador do erro intitulado EPMEFG, estendendo-se para aquele método as idéias do SPR Modificado. No EPMEFG, a função polinomial local que permite recuperar os valores nodais dos gradientes da solução tem por suporte nuvens (conjunto de elementos finitos que dividem um nó comum) e resulta da aplicação de um critério de aproximação por mínimos quadrados em relação aos pontos de superconvergência. O número destes pontos é definido a partir de uma análise em cada elemento que compõe a nuvem, considerando-se o grau da aproximação local do campo de deslocamentos enriquecidos. Exemplos numéricos elaborados com elementos lineares triangulares e quadrilaterais são resolvidos com o Estimador Z, o SPR Modificado e o EPMEFG para avaliar a eficiência de cada estimador. Essa avaliação é realizada mediante o cálculo dos índices de efetividade. / The paper addresses the issue of a posteriori estimates of discretization errors and particularly the recovery of gradients of numerical solutions obtained with the finite element method (FEM) and the generalized finite element method (GFEM). Initially, it is presented, for the MEF, a brief state of the art and fundamental concepts about this topic. Next, it is described the proposed estimators for the FEM called Z-Estimator and Superconvergent Patch Recovery (SPR). It is proposed, originally, in the ambit of the FEM, the incorporation of the \"Singular Value Decomposition (SVD) to SPR mentioned here as Modified SPR. On the other hand, in the context of GFEM, it is presented a new error estimator entitled EPMEFG in order to expand the ideas of Modified SPR to that method. In EPMEFG, the local polynomial function that allows to recover the nodal values of the gradients of the solution has for support clouds (set of finite elements that share a common node) and results from the applying of a criterion of least squares approximation in relation to the superconvergent points. The number of these points is defined from an analysis of each cloud\'s element, considering the degree of local approximation of the displacement field enriched. Numerical examples elaborated with linear triangular and quadrilateral elements are solved with the Z-Estimator, the Modified SPR and the EPMEFG to evaluate the efficiency of each estimator. This evaluation is done calculating the effectivity indexes.
32

Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes

Grosman, Serguei 05 April 2006 (has links)
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. An estimator that has shown to be one of the most reliable for reaction-diffusion problem is the <i>equilibrated residual method</i> and its modification done by Ainsworth and Babuška for singularly perturbed problem. However, even the modified method is not robust in the case of anisotropic meshes. The present work modifies the equilibrated residual method for anisotropic meshes. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. A numerical example confirms the theory.
33

Analysis of the quasicontinuum method and its application

Wang, Hao January 2013 (has links)
The present thesis is on the error estimates of different energy based quasicontinuum (QC) methods, which are a class of computational methods for the coupling of atomistic and continuum models for micro- or nano-scale materials. The thesis consists of two parts. The first part considers the a priori error estimates of three energy based QC methods. The second part deals with the a posteriori error estimates of a specific energy based QC method which was recently developed. In the first part, we develop a unified framework for the a priori error estimates and present a new and simpler proof based on negative-norm estimates, which essentially extends previous results. In the second part, we establish the a posteriori error estimates for the newly developed energy based QC method for an energy norm and for the total energy. The analysis is based on a posteriori residual and stability estimates. Adaptive mesh refinement algorithms based on these error estimators are formulated. In both parts, numerical experiments are presented to illustrate the results of our analysis and indicate the optimal convergence rates. The thesis is accompanied by a thorough introduction to the development of the QC methods and its numerical analysis, as well as an outlook of the future work in the conclusion.
34

Automatic validation and optimisation of biological models

Cooper, Jonathan Paul January 2009 (has links)
Simulating the human heart is a challenging problem, with simulations being very time consuming, to the extent that some can take days to compute even on high performance computing resources. There is considerable interest in computational optimisation techniques, with a view to making whole-heart simulations tractable. Reliability of heart model simulations is also of great concern, particularly considering clinical applications. Simulation software should be easily testable and maintainable, which is often not the case with extensively hand-optimised software. It is thus crucial to automate and verify any optimisations. CellML is an XML language designed for describing biological cell models from a mathematical modeller’s perspective, and is being developed at the University of Auckland. It gives us an abstract format for such models, and from a computer science perspective looks like a domain specific programming language. We are investigating the gains available from exploiting this viewpoint. We describe various static checks for CellML models, notably checking the dimensional consistency of mathematics, and investigate the possibilities of provably correct optimisations. In particular, we demonstrate that partial evaluation is a promising technique for this purpose, and that it combines well with a lookup table technique, commonly used in cardiac modelling, which we have automated. We have developed a formal operational semantics for CellML, which enables us to mathematically prove the partial evaluation of CellML correct, in that optimisation of models will not change the results of simulations. The use of lookup tables involves an approximation, thus introduces some error; we have analysed this using a posteriori techniques and shown how it may be managed. While the techniques could be applied more widely to biological models in general, this work focuses on cardiac models as an application area. We present experimental results demonstrating the effectiveness of our optimisations on a representative sample of cardiac cell models, in a variety of settings.
35

Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis / A posteriori error estimates for the time-dependent convection-diffusion-reaction equation and application to the finite volume methods

Chalhoub, Nancy 17 December 2012 (has links)
On considère l'équation de convection--diffusion--réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions $Hdiv$-conformes du flux diffusif et du flux convectif, et d'une reconstruction $H^1_0(Omega)$-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues / We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori error estimates for the discretization of this equation by the cell-centered finite volume scheme in space and a backward Euler scheme in time. The estimates are established in the energy norm and they bound the error between the exact solution and a locally post processed approximate solution, based on $Hdiv$-conforming diffusive and convective flux reconstructions, as well as an $H^1_0(Omega)$-conforming potential reconstruction. We propose an adaptive algorithm which ensures the control of the total error with respect to a user-defined relative precision by refining the meshes adaptively while equilibrating the time and space contributions to the error. We also present numerical experiments. Finally, we derive another a posteriori error estimate in the energy norm augmented by a dual norm of the time derivative and the skew symmetric part of the differential operator. The new estimate is robust in convective-dominated regimes and local-in-time and global-in-space lower bounds are also derived
36

A posteriorní odhady chyby nespojité Galerkinovy metody pro eliptické a parabolické úlohy / A posteriori error estimates of discontinuous Galerkin method for elliptic and parabolic methods

Grubhofferová, Pavla January 2013 (has links)
The presented work deals with the discontinuous Galerkin method with the anisotropic mesh adaptation for stationary convection-diffusion problems. Basic definitions are included in an introduction where we also present the used method. The following parts describe various methods for evaluating a Riemann metric, which is necessary for anisotropic mesh adaptation. The most important part of work follows - numerical experiments carried out with ADGFEM and ANGENER software packages. In these experiments, we compare different approaches for the definition of Riemann metrics and compare their efficiency. The main output of this thesis are subroutines for evaluation of the Riemann metric including its source code.
37

ROBUST AND EXPLICIT A POSTERIORI ERROR ESTIMATION TECHNIQUES IN ADAPTIVE FINITE ELEMENT METHOD

Difeng Cai (5929550) 13 August 2019 (has links)
The thesis presents a comprehensive study of a posteriori error estimation in the adaptive solution to some classical elliptic partial differential equations. Several new error estimators are proposed for diffusion problems with discontinuous coefficients and for convection-reaction-diffusion problems with dominated convection/reaction. The robustness of the new estimators is justified theoretically. Extensive numerical results demonstrate the robustness of the new estimators for challenging problems and indicate that, compared to the well-known residual-type estimators, the new estimators are much more accurate.
38

A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes

Kunert, Gerd 30 March 1999 (has links) (PDF)
Many physical problems lead to boundary value problems for partial differential equations, which can be solved with the finite element method. In order to construct adaptive solution algorithms or to measure the error one aims at reliable a posteriori error estimators. Many such estimators are known, as well as their theoretical foundation. Some boundary value problems yield so-called anisotropic solutions (e.g. with boundary layers). Then anisotropic finite element meshes can be advantageous. However, the common error estimators for isotropic meshes fail when applied to anisotropic meshes, or they were not investigated yet. For rectangular or cuboidal anisotropic meshes a modified error estimator had already been derived. In this paper error estimators for anisotropic tetrahedral or triangular meshes are considered. Such meshes offer a greater geometrical flexibility. For the Poisson equation we introduce a residual error estimator, an estimator based on a local problem, several Zienkiewicz-Zhu estimators, and an L_2 error estimator, respectively. A corresponding mathematical theory is given.For a singularly perturbed reaction-diffusion equation a residual error estimator is derived as well. The numerical examples demonstrate that reliable and efficient error estimation is possible on anisotropic meshes. The analysis basically relies on two important tools, namely anisotropic interpolation error estimates and the so-called bubble functions. Moreover, the correspondence of an anisotropic mesh with an anisotropic solution plays a vital role. AMS(MOS): 65N30, 65N15, 35B25
39

A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities

Pester, Cornelia 07 May 2006 (has links) (PDF)
This thesis is concerned with the finite element analysis and the a posteriori error estimation for eigenvalue problems for general operator pencils on two-dimensional manifolds. A specific application of the presented theory is the computation of corner singularities. Engineers use the knowledge of the so-called singularity exponents to predict the onset and the propagation of cracks. All results of this thesis are explained for two model problems, the Laplace and the linear elasticity problem, and verified by numerous numerical results.
40

Une nouvelle formulation Galerkin discontinue pour équations de Maxwell en temps, a priori et a posteriori erreur estimation. / A new Galerkin Discontinuous Formulation for time dependent Maxwell's Equations, a priori and a posteriori Error estimate.

Riaz, Azba 04 April 2016 (has links)
Dans la première partie de cette thèse, nous avons considéré les équations de Maxwell en temps et construit une formulation discontinue de Galerkin (DG). On a montré que cette formulation est bien posée et ensuite on a établi des estimateurs a priori pour cette formulation. On a obtenu des résultats numériques pour valider les estimateurs a priori obtenus théoriquement. Dans la deuxième partie de cette thèse, des estimateurs d'erreur a posteriori de cette formulation sont établis, pour le cas semi-discret et pour le système complètement discrétisé. Dans la troisième partie de cette thèse, on considére les équations de Maxwell en régime harmonique. On a développé une formulation discontinue de Galerkin mixte. On a établi des estimations d'erreur a posteriori pour cette formulation. / In the first part of this thesis, we have considered the time-dependent Maxwell's equations in second-order form and constructed discontinuous Galerkin (DG) formulation. We have established a priori error estimates for this formulation and carried out the numerical analysis to confirm our theoretical results. In the second part of this thesis, we have established a posteriori error estimates of this formulation for both semi discrete and fully discrete case. In the third part of the thesis we have considered the time-harmonic Maxwell's equations and we have developed mixed discontinuous Galerkin formulation. We showed the well posedness of this formulation and have established a posteriori error estimates.

Page generated in 0.0814 seconds