• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 21
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 55
  • 25
  • 17
  • 15
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Ghosts and machines : regularized variational methods for interactive simulations of multibodies with dry frictional contacts

Lacoursière, Claude January 2007 (has links)
<p>A time-discrete formulation of the variational principle of mechanics is used to provide a consistent theoretical framework for the construction and analysis of low order integration methods. These are applied to mechanical systems subject to mixed constraints and dry frictional contacts and impacts---machines. The framework includes physics motivated constraint regularization and stabilization schemes. This is done by adding potential energy and Rayleigh dissipation terms in the Lagrangian formulation used throughout. These terms explicitly depend on the value of the Lagrange multipliers enforcing constraints. Having finite energy, the multipliers are thus massless ghost particles. The main numerical stepping method produced with the framework is called SPOOK.</p><p>Variational integrators preserve physical invariants globally, exactly in some cases, approximately but within fixed global bounds for others. This allows to product realistic physical trajectories even with the low order methods. These are needed in the solution of nonsmooth problems such as dry frictional contacts and in addition, they are computationally inexpensive. The combination of strong stability, low order, and the global preservation of invariants allows for large integration time steps, but without loosing accuracy on the important and visible physical quantities. SPOOK is thus well-suited for interactive simulations, such as those commonly used in virtual environment applications, because it is fast, stable, and faithful to the physics.</p><p>New results include a stable discretization of highly oscillatory terms of constraint regularization; a linearly stable constraint stabilization scheme based on ghost potential and Rayleigh dissipation terms; a single-step, strictly dissipative, approximate impact model; a quasi-linear complementarity formulation of dry friction that is isotropic and solvable for any nonnegative value of friction coefficients; an analysis of a splitting scheme to solve frictional contact complementarity problems; a stable, quaternion-based rigid body stepping scheme and a stable linear approximation thereof. SPOOK includes all these elements. It is linearly implicit and linearly stable, it requires the solution of either one linear system of equations of one mixed linear complementarity problem per regular time step, and two of the same when an impact condition is detected. The changes in energy caused by constraints, impacts, and dry friction, are all shown to be strictly dissipative in comparison with the free system. Since all regularization and stabilization parameters are introduced in the physics, they map directly onto physical properties and thus allow modeling of a variety of phenomena, such as constraint compliance, for instance.</p><p>Tutorial material is included for continuous and discrete-time analytic mechanics, quaternion algebra, complementarity problems, rigid body dynamics, constraint kinematics, and special topics in numerical linear algebra needed in the solution of the stepping equations of SPOOK.</p><p>The qualitative and quantitative aspects of SPOOK are demonstrated by comparison with a variety of standard techniques on well known test cases which are analyzed in details. SPOOK compares favorably for all these examples. In particular, it handles ill-posed and degenerate problems seamlessly and systematically. An implementation suitable for large scale performance and accuracy testing is left for future work.</p>
82

Ghosts and machines : regularized variational methods for interactive simulations of multibodies with dry frictional contacts

Lacoursière, Claude January 2007 (has links)
A time-discrete formulation of the variational principle of mechanics is used to provide a consistent theoretical framework for the construction and analysis of low order integration methods. These are applied to mechanical systems subject to mixed constraints and dry frictional contacts and impacts---machines. The framework includes physics motivated constraint regularization and stabilization schemes. This is done by adding potential energy and Rayleigh dissipation terms in the Lagrangian formulation used throughout. These terms explicitly depend on the value of the Lagrange multipliers enforcing constraints. Having finite energy, the multipliers are thus massless ghost particles. The main numerical stepping method produced with the framework is called SPOOK. Variational integrators preserve physical invariants globally, exactly in some cases, approximately but within fixed global bounds for others. This allows to product realistic physical trajectories even with the low order methods. These are needed in the solution of nonsmooth problems such as dry frictional contacts and in addition, they are computationally inexpensive. The combination of strong stability, low order, and the global preservation of invariants allows for large integration time steps, but without loosing accuracy on the important and visible physical quantities. SPOOK is thus well-suited for interactive simulations, such as those commonly used in virtual environment applications, because it is fast, stable, and faithful to the physics. New results include a stable discretization of highly oscillatory terms of constraint regularization; a linearly stable constraint stabilization scheme based on ghost potential and Rayleigh dissipation terms; a single-step, strictly dissipative, approximate impact model; a quasi-linear complementarity formulation of dry friction that is isotropic and solvable for any nonnegative value of friction coefficients; an analysis of a splitting scheme to solve frictional contact complementarity problems; a stable, quaternion-based rigid body stepping scheme and a stable linear approximation thereof. SPOOK includes all these elements. It is linearly implicit and linearly stable, it requires the solution of either one linear system of equations of one mixed linear complementarity problem per regular time step, and two of the same when an impact condition is detected. The changes in energy caused by constraints, impacts, and dry friction, are all shown to be strictly dissipative in comparison with the free system. Since all regularization and stabilization parameters are introduced in the physics, they map directly onto physical properties and thus allow modeling of a variety of phenomena, such as constraint compliance, for instance. Tutorial material is included for continuous and discrete-time analytic mechanics, quaternion algebra, complementarity problems, rigid body dynamics, constraint kinematics, and special topics in numerical linear algebra needed in the solution of the stepping equations of SPOOK. The qualitative and quantitative aspects of SPOOK are demonstrated by comparison with a variety of standard techniques on well known test cases which are analyzed in details. SPOOK compares favorably for all these examples. In particular, it handles ill-posed and degenerate problems seamlessly and systematically. An implementation suitable for large scale performance and accuracy testing is left for future work.
83

Interopérabilité de modèles dans le cycle de conception des systèmes électromagnétiques via des supports complémentaires : VHDL-AMS et composants logiciels ICAr / Interoperability of models in the design cycle of electromagnetic systems through complementary supports : VHDL-AMS language and ICAr software components

Rezgui, Abir 25 October 2012 (has links)
Cette thèse aborde les formalismes pour la modélisation multi-physique en support au cycle en V deconception. Ce travail a été réalisé dans le cadre du projet ANR–MoCoSyMec, selon la méthodologie duprototypage virtuel fonctionnel (PVF) et illustré sur des systèmes électromagnétiques.Nous nous sommes principalement intéressés au langage VHDL-AMS, en tant que support aux différentsniveaux de modélisation apparaissant dans le cycle en V de conception. Cela nous a conduits à traiter laportabilité et l’interopérabilité en VHDL-AMS de diverses méthodes et outils de modélisation. Nous avonsproposé et validé, via le formalisme des composants logiciels ICAr, des solutions aux limites de l’utilisation deVHDL-AMS pour modéliser certains phénomènes physiques reposants sur des calculs numériques.Nous avons étendu la norme ICAr pour supporter des modèles dynamiques décrits par des équationsdifférentielles algébriques (DAE) ; et pour des besoins de co-simulation, nous pouvons également y associer unsolveur. Ces développements sont désormais capitalisés dans le framework CADES.Enfin, nous avons proposé une architecture pour le portage de modèles d’un formalisme à un autre. Elle a étédéfinie et mise en oeuvre plus particulièrement pour des modèles magnétiques réluctants (Reluctool) et desMEMS magnétiques (MacMMems) vers le VHDL-AMS.Ces formalismes et méthodologies sont mis en oeuvre autour du PVF d’un contacteur électromagnétique. / This PhD report deals with modeling formalisms for multi-physical systems in the design V- cycle. Thiswork was carried out within the French ANR-MoCoSyMec project, according to the methodology of functionalvirtual prototyping (PVF) and illustrated with electromagnetical systems.The work focuses on the VHDL-AMS modeling language, as a support for several modeling levels appearingin the design V-cycle. In this work, the portability and interoperability problems have been studied, usingVHDL-AMS, for various modeling methods and tools. Solutions have been proposed and validated for use limitsof VHDL-AMS language, specifically for the modeling of some physical phenomena using numericalcomputations, through the software component formalism called ICAr.The ICAr software component standard has been extended to support dynamic models described throughdifferential algebraic equations (DAE). It has also been extended for co-simulation purposes in which a solver isassociated to the dynamic model inside the ICAr component. These developed solutions are now available in theframework CADES.Finally, architecture has been proposed for the transforming of models from a professional formalism intoanother, specifically into VHDL-AMS. It has been designed and implemented for reluctant magnetic models(RelucTool) and magnetic MEMS (MacMMems).These formalisms and methodologies are implemented around the functional virtual prototyping (PVF) of anelectromagnetic contactor.
84

Modelování elektrických obvodů s využitím diferenciálního počtu / Taylor Series Numerical Integration for Electronic Circuits Simulation

Minárik, Michal January 2010 (has links)
This master's thesis deals with modeling of linear electrical circuits through the differential algebraical equation systems. It describes methods of numerical solving, discusses the need of algebraical conversions and possibility of minimalization through the use of parasitic components. In addition, it involves the design and implementation of extension of available simulation tool.
85

Modélisation et commande des robots : nouvelles approches basées sur les modèles Takagi-Sugeno / Modeling and control of robots : new approaches based on the Takagi-Sugeno models

Allouche, Benyamine 15 September 2016 (has links)
Chaque année, plus de 5 millions de personne à travers le monde deviennent hémiplégiques suite à un accident vasculaire cérébral. Ce soudain déficit neurologique conduit bien souvent à une perte partielle ou totale de la station debout et/ou à la perte de la capacité de déambulation. Dans l’optique de proposer de nouvelles solutions d’assistance situées entre le fauteuil roulant et le déambulateur, cette thèse s’inscrit dans le cadre du projet ANR TECSAN VHIPOD « véhicule individuel de transport en station debout auto-équilibrée pour personnes handicapées avec aide à la verticalisation ». Dans ce contexte, ces travaux de recherche apportent des éléments de réponse à deux problématiques fondamentales du projet : l’assistance au passage assis-debout (PAD) des personnes hémiplégiques et le déplacement à l’aide d’un véhicule auto-équilibré à deux roues. Ces problématiques sont abordées du point de vue de la robotique avec comme question centrale : peut-on utiliser l’approche Takagi-Sugeno (TS) pour la synthèse d’une commande ? Dans un premier temps, la problématique de mobilité des personnes handicapées a été traitée sur la base d’une solution de type gyropode. Des lois de commande basées sur les approches TS standard et descripteur ont été proposées afin d’étudier la stabilisation des gyropodes dans des situations particulières telles que le déplacement sur un terrain en pente ou le franchissement de petites marches. Les résultats obtenus ont non seulement permis d’aboutir à un concept potentiellement capable de franchir des obstacles, mais ils ont également permis de souligner la principale difficulté liée à l’applicabilité de l’approche TS en raison du conservatisme des conditions LMIs (inégalités matricielles linéaires). Dans un second temps, un banc d’assistance au PAD à architecture parallèle a été conçu. Ce type de manipulateur constitué de multiples boucles cinématiques présente un modèle dynamique très complexe (habituellement donné sous forme d’équations différentielles ordinaires). L’application de lois de commande basées sur l’approche TS est souvent vouée à l’échec compte tenu du grand nombre de non-linéarités dans le modèle. Afin de remédier à ce problème, une nouvelle approche de modélisation a été proposée. À partir d’un jeu de coordonnées bien particulier, le principe des puissances virtuelles est utilisé pour générer un modèle dynamique sous forme d’équations algébro-différentielles (DAEs). Cette approche permet d’aboutir à un modèle quasi-LPV où les seuls paramètres variants représentent les multiplicateurs de Lagrange issus de la modélisation DAE. Les résultats obtenus ont été validés en simulation sur un robot parallèle à 2 degrés de liberté (ddl) puis sur un robot parallèle à 3 ddl développé pour l’assistance au PAD. / Every year more than 5 million people worldwide become hemiplegic as a direct consequence of stroke. This neurological deficiency, often leads to a partial or a total loss of standing up abilities and /or ambulation skills. In order to propose new supporting solutions lying between the wheelchair and the walker, this thesis comes within the ANR TECSAN project named VHIPOD “self-balanced transporter for disabled persons with sit-to-stand function”. In this context, this research provides some answers for two key issues of the project : the sit-to-stand assistance (STS) of hemiplegic people and their mobility through a two wheeled self-balanced solution. These issues are addressed from a robotic point of view while focusing on a key question : are we able to extend the use of Takagi-Sugeno approach (TS) to the control of complex systems ? Firstly, the issue of mobility of disabled persons was treated on the basis of a self-balanced solution. Control laws based on the standard and descriptor TS approaches have been proposed for the stabilization of gyropod in particular situations such as moving along a slope or crossing small steps. The results have led to the design a two-wheeled transporter which is potentially able to deal with the steps. On the other hand, these results have also highlighted the main challenge related to the use of TS approach such as the conservatisms of the LMIs constraints (Linear Matrix Inequalities). In a second time, a test bench for the STS assistance based on parallel kinematic manipulator (PKM) was designed. This kind of manipulator characterized by several closed kinematic chains often presents a complex dynamical model (given as a set of ordinary differential equations, ODEs). The application of control laws based on the TS approach is often doomed to failure given the large number of non-linear terms in the model. To overcome this problem, a new modeling approach was proposed. From a particular set of coordinates, the principle of virtual power was used to generate a dynamical model based on the differential algebraic equations (DAEs). This approach leads to a quasi-LPV model where the only varying parameters are the Lagrange multipliers derived from the constraint equations of the DAE model. The results were validated on simulation through a 2-DOF (degrees of freedom) parallel robot (Biglide) and a 3-DOF manipulator (Triglide) designed for the STS assistance.
86

Splitting Methods for Partial Differential-Algebraic Systems with Application on Coupled Field-Circuit DAEs

Diab, Malak 28 February 2023 (has links)
Die Anwenung von Operator-Splitting-Methoden auf gewöhnliche Differentialgleichungen ist gut etabliert. Für Differential-algebraische Gleichungen und partielle Differential-algebraische Gleichungen unterliegt sie jedoch vielen Einschränkungen aufgrund des Vorhandenseins von Nebenbedingungen. Die räumliche Diskretisierung reduziert PDAEs und lenkt unseren Fokus auf das Konzept der DAEs. Um eine reibungslose Übertragung des Operator-Splittings von ODEs auf DAEs durchzuführen, ist es wichtig, eine geeignete entkoppelte Struktur für das gewünschte Differential-algebraische System zu haben. In dieser Arbeit betrachten wir ein Modell, das partielle Differentialgleichungen für elektromagnetische Bauelemente - modelliert durch die Maxwell-Gleichungen - mit Differential-algebraischen Gleichungen koppelt, die die elementaren Schaltungselemente beschreiben. Nach der räumlichen Diskretisierung der klassischen Formulierung der Maxwell-Gleichungen mit Hilfe der finiten Integrationstechnik formulieren wir das resultierende gekoppelte System als Differential-algebraische Gleichung. Um eine geeignete Entkopplung zu bekommen, verwenden wir den zweigorientierten Loop-Cutset-Ansatz für die Schaltungsmodellierung. Daraus folgt, dass wir in der Lage sind, eine geeignete Operatorzerlegung so zu konstruieren, dass wir eine natürliche topologisch entkoppelte Port-Hamiltonsche DAE-Struktur erhalten. Wir schlagen einen Operator-Splitting-Ansatz für die Schaltungs-DAEs und gekoppelten Feld-Schaltungs-DAEs in entkoppelter Form vor und analysieren seine numerischen Eigenschaften. Darüber hinaus nutzen wir das Hamiltonsche Verhalten der inhärenten gewöhnlichen Differentialgleichung durch die Verwendung expliziter und energieerhaltender Zeitintegrations-methoden. Schließlich führen wir numerische Tests, um das mathematische Modell zu illustrieren und die Konvergenzergebnisse für das vorgeschlagene DAE-Operator-Splitting zu demonstrieren. / Le equazioni algebriche differenziali e algebriche alle derivate parziali hanno avuto un enorme successo come modelli di sistemi dinamici vincolati. Nella modellazione matem- atica, spesso si desidera catturare diversi aspetti di una situazione come le leggi di conservazione della fisica, il trasporto convettivo o la diffusione. Queste aspetti si riflettono nel sistema di equazioni del modello come operatori diversi. La tecnica dell’Operator Splitting si è rivelata una strategia di successo per affrontare problemi così complicati. L’applicazione dei metodi di Operator Splitting alle equazioni differenziali ordinarie (ODE) è ormai una tecnologia ben consolidata. Tuttavia, per equazioni algebriche differenziali (DAE) e algebriche differenziali parziali (PDAE), l’approccio è soggetto a molte restrizioni dovute alla presenza di vincoli e alla proprietà di indice. La discretizzazione spaziale riduce le PDAE e indirizza la nostra attenzione al concetto di DAE. Le DAE emergono in problemi dinamici vincolati come circuiti elettrici o reti di trasporto di energia. Al fine di generalizzare agevolmente la tecnica dell’Operator Splitting dalle ODE alle DAE, è importante avere una struttura disaccoppiata adeguata per il sistema algebrico differenziale desiderato. In questa tesi, consideriamo un modello che accoppia equazioni differenziali alle derivate parziali per dispositivi elettromagnetici -modellati dalle equazioni di Maxwell- con equazioni algebriche differenziali che descrivono gli elementi base del circuito. Dopo aver discretizzato spazialmente la formulazione classica delle equazioni di Maxwell usando la tecnica di integrazione finita, formuliamo il sistema accoppiato risultante come una equazione algebrica differenziale. Interpretando il dispositivo elettromagnetico come un elemento capacitivo, l’indice dell’intero sistema di circuito e campo accoppiato può essere specificato utilizzando le proprietà topologiche del circuito e non supera il valore di due. Per eseguire un disaccoppiamento appropriato, utilizziamo l’approccio loop-cutset per la modellazione dei circuiti. In tal modo siamo in grado di costruire una opportuna decomposizione dell’operatore tale da ottenere una naturale struttura disaccoppiata port-Hamiltonian DAE. Proponiamo un approccio di suddivisione dell’operatore per i DAE a circuito disaccoppiato e a circuito di campo accoppiato utilizzando gli algoritmi di divisione Lie-Trotter e Strang e per analizzare le proprietà numeriche di questi sistemi. Inoltre, sfruttiamo il comportamento hamiltoniano del sistema di equazioni differenziali ordinarie mediante l’utilizzo di metodi di integrazione temporale con esatta conservazione dell’energia. Poggiando sull’analisi di convergenza del metodo di suddivisione dell’operatore ODE, deriviamo i risultati di convergenza per l’approccio proposto che dipendono dall’indice delsistema e quindi dalla sua struttura topologica. Infine, eseguiamo prove numeriche di sistemi circuitali, nonchè sistemi accoppiati a circuito di campo, per testare il modello matematico e dimostrare i risultati di convergenza per la proposta Operator Splitting DAE. / The application of operator splitting methods to ordinary differential equations (ODEs) is well established. However, for differential-algebraic equations (DAEs) and partial differential-algebraic equations (PDAEs), it is subjected to many restrictions due to the presence of constraints. In constrained dynamical problems as electrical circuits or energy transport networks, DAEs arise. In order to perform a smooth transfer of the operator splitting from ODEs to DAEs, it is important to have a suitable decoupled structure for the desired differential-algebraic system. In this thesis, we consider a model which couples partial differential equations for electro- magnetic devices -modeled by Maxwell’s equations- with differential-algebraic equations describing the basic circuit elements. After spatially discretizing the classical formulation of Maxwell’s equations using the finite integration technique, we formulate the resulting coupled system as a differential-algebraic equation. To perform an appropriate decoupling, we use the branch oriented loop-cutset approach for circuit modeling. It follows that we are able to construct a suitable operator decomposition such that we obtain a natural topologically decoupled port-Hamiltonian DAE structure. We propose an operator splitting approach for the decoupled circuit and coupled field- circuit DAEs using the Lie-Trotter and Strang splitting algorithms and analyze its numerical properties. Furthermore, we exploit the Hamiltonian behavior of the system’s inherent ordinary differential equation by the utilization of explicit and energy-preserving time integration methods. Based on the convergence analysis of the ODE operator splitting method, we derive convergence results for the proposed approach that depends on the index of the system and thus on its topological structure. Finally, we perform numerical tests, to underline the mathematical model and to demonstrate the convergence results for the proposed DAE operator splitting.
87

Circuit Simulation Including Full-Wave Maxwell's Equations / Modeling Aspects and Numerical Analysis

Strohm, Christian 15 March 2021 (has links)
Diese Arbeit widmet sich der Simulation von elektrischen/elektronischen Schaltungen welche um elektromagnetische Bauelemente erweitert werden. Im Fokus stehen unterschiedliche Kopplungen der Schaltungsgleichungen, modelliert mit der modifizierten Knotenanalyse, und den elektromagnetischen Bauelementen mit deren verfeinerten Modell basierend auf den vollen Maxwell-Gleichungen in der Lorenz-geeichten A-V Formulierung welche durch Finite-Integrations-Technik räumlich diskretisiert werden. Eine numerische Analyse erweitert die topologischen Kriterien für den Index der resultierenden differential-algebraischen Gleichungen, wie sie bereits in anderen Arbeiten mit ähnlichen Feld/Schaltkreis-Kopplungen hergeleitet wurden. Für die Simulation werden sowohl ein monolithischer Ansatz als auch Waveform-Relaxationsmethoden untersucht. Im Mittelpunkt stehen dabei Zeitintegration, Skalierungsmethoden, strukturelle Eigenschaften und ein hybride Ansatz zur Lösung der zugrundeliegenden linearen Gleichungssysteme welcher den Einsatz spezialisierter Löser für die jeweiligen Teilsysteme erlaubt. Da die vollen Maxwell-Gleichungen zusätzliche Ableitungen in der Kopplungsstruktur verursachen, sind bisher existierende Konvergenzaussagen für die Waveform-Relaxation von gekoppelten differential-algebraischen Gleichungen nicht anwendbar und motivieren eine neue Konvergenzanalyse. Auf dieser Analyse aufbauend werden hinreichende topologische Kriterien entwickelt, welche eine Konvergenz von Gauß-Seidel- und Jacobi-artigen Waveform-Relaxationen für die gekoppelten Systeme garantieren. Schließlich werden numerische Benchmarks zur Verfügung gestellt, um die eingeführten Methoden und Theoreme dieser Abhandlung zu unterstützen. / This work is devoted to the simulation of electrical/electronic circuits incorporating electromagnetic devices. The focus is on different couplings of the circuit equations, modeled with the modified nodal analysis, and the electromagnetic devices with their refined model based on full-wave Maxwell's equations in Lorenz gauged A-V formulation which are spatially discretized by the finite integration technique. A numerical analysis extends the topological criteria for the index of the resulting differential-algebraic equations, as already derived in other works with similar field/circuit couplings. For the simulation, both a monolithic approach and waveform relaxation methods are investigated. The focus is on time integration, scaling methods, structural properties and a hybrid approach to solve the underlying linear systems of equations with the use of specialized solvers for the respective subsystems. Since the full-Maxwell approach causes additional derivatives in the coupling structure, previously existing convergence statements for the waveform relaxation of coupled differential-algebraic equations are not applicable and motivate a new convergence analysis. Based on this analysis, sufficient topological criteria are developed which guarantee convergence of Gauss-Seidel and Jacobi type waveform relaxation schemes for introduced coupled systems. Finally, numerical benchmarks are provided to support the introduced methods and theorems of this treatise.

Page generated in 0.0181 seconds