• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 21
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 55
  • 25
  • 17
  • 15
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

General linear methods for integrated circuit design

Voigtmann, Steffen 01 September 2006 (has links)
Bei der Modellierung elektrischer Schaltungen ergeben sich Algebro-Differentialgleichungen (DAEs) mit proper formuliertem Hauptterm. Diese Gleichungen müssen z.B. bei der transienten Schaltungssimulation numerisch gelöst werden. Bei den klassischen Ansätzen der Linearen Mehrschrittverfahren oder der Runge-Kutta Verfahren ergeben sich Nachteile, die durch Verwendung von Allgemeinen Linearen Verfahren vermieden werden können. Sowohl Lineare Mehrschrittverfahren als auch Runge-Kutta Verfahren sind als Spezialfälle in dieser allgemeineren Klasse enthalten. Darüberhinaus sind aber neue Verfahren mit verbesserten Eigenschaften möglich. In dieser Arbeit werden DAEs der Schaltungssimulation eingehend studiert und Allgemeine Lineare Verfahren für solche Gleichungen untersucht. Die Verfahrenskonstruktion und Implementierungsfragen werden ausführlich diskutiert. Diese Arbeit erscheint im Logos Verlag Berlin (www.logos-verlag.de, ISBN 3-8325-1353-1). / Modelling electrical circuits leads to differential algebraic equations (DAEs) having a properly stated leading term. These equations need to be solved numerically, e.g. in case of a transient analysis of the given circuit. Classical methods such as linear multistep methods or Runge-Kutta schemes suffer from disadvantages that can be overcome by studying general linear schemes. Both Runge-Kutta methods and linear multistep schemes belong to this class as special cases, but there is plenty of room for new methods with improved properties. This work presents both a detailed study of DAEs in the framework of integrated circuit design and a thorough analysis of general linear methods for these kind of equations. The construction and implementation of general linear methods for DAEs is discussed in detail. This work is published by Logos Verlag Berlin (www.logos-verlag.de, ISBN 3-8325-1353-1).
72

Asymptotische Stabilität von Index-2-Algebro-Differentialgleichungen und ihren Diskretisierungen

Santiesteban, Antonio Ramon Rodriguez 02 February 2001 (has links)
Ziel dieser Dissertation ist die Untersuchung der asymptotischen Stabilität numerischer Verfahren für Index-2-Algebro-Differentialgleichungen. Es werden Anfangswertaufgaben für quasilineare Algebro-Differentialgleichungen (ADGln). Die meisten anwendungsrelevanten Aufgaben können damit behandelt werden. Zuerst werden einige Stabilitätsbegrife und Aussagen vorgestellt, die das Fundament für den Rest der Arbeit darstellen. Dies erstreckt sich sowohl auf den kontinuierlichen als auch auf den diskreten Fall. Insbesondere werden Kontraktivitätskonzepte eingeführt und Beziehungen zwischen der Kontraktivität der ADGl und derer der Anwendung eines numerischen Verfahrens. Die eingeführte Kontraktivitätsbegriffe erweitern oder verallgemeinern die bereits bekannten Konzepte. Als wichtigste Aussage in dem Kontraktivitätskontext geht ein Theorem hervor, das allgemeine Bedingungen aufstellt, damit die Anwendung eines IRK(DAE)-Verfahrens auf eine ADGl stabil ist. Bekannte Aussagen für gewöhnliche und Algebro-Differntialgleichungen können als Sonderfälle dieses Ergebnisses gesehen werden. Im weiteren Verlauf der Arbeit wird anhand von neuartigen Index-2-Entkopplungs- und Indexreduktionstechniken die Stabilität von Diskretisierungsverfahren untersucht. Die durchgeführte Analyse erbringt neue Ergebnisse, die eine Verbesserung des Kenntnissstandes in diesem Gebiet darstellen. Die erzielte Aussagen stellen hinreichende Bedingungen, damit ein BDF- oder IRK-Verfahren für eine ADGl das gleiche Stabilitätsverhalten wie für eine gewöhnliche Differentialgleichung besitzt. Diese Ergebnisse werden durch numerishce Beispiele veranschaulicht. Weiterhin stellt man fest, dass eine der gefundenen Voraussetzungen für die Kontraktivität der Anwendung eines algebraisch stabilen IRK(DAE)-Verfahrens, auf eine ebenfalls kontraktive ADGl, genügt. Dieses Ergebnis wurde durch die Anwendung der im ersten Teil dieser Arbeit erzielten Kontraktivitätsaussagen ermöglicht. Die Konsequenzen der soeben genannten Aussage für bestimmte Modelle der Schaltkreissimulation werden ebenfalls erläutert. Aus der oben genannten Analyse, ebenso wie aus der Fachliteratur, geht hervor, dass bei manchen ADGl-Aufgaben die Diskretisierungsverfahren Stabilitätsprobleme aufweisen. Um solche Probleme zu behandeln sind bereits einige Ansätze bekannt. Im letzten Teil der Arbeit werden zwei repräsentativen Ansätze betrachtet und ihre Aussichtschancen für Index-2-Aufgaben anhand eines kritischen Beispieles evaluiert. Des Weiteren wird eine Verallgemeinerung für vollimplizite lineare ADGln des Gear-Gupta-Leimkuhler-Ansatzes (GGL) vorgeschlagen. Der Rest der Arbeit beschäftigt sich mit der Stabilitätsuntersuchung der GGL-Formulierung und der auf sie angewandten numerischen Verfahren. Dafür werden Aussagen dieser Arbeit eingesetzt und man kommt zu der Schlussfolgerung, dass sowohl für die IRK(DAE)- als auch für die BDF-Verfahren die Integration der GGL-Formulierung, natürlich unter bestimmten Voraussetzungen, stabil ist. Dieses Ergebniss wird durch ein numerisches Beispiel belegt. Dabei handelt es um eine Gleichung, die mit einer direkten Anwendung eines Verfahrens Instabilitäten aufweist. Jedoch ist die Integration der entsprechenden GGL stabil. / The purpose of the present PhD work is the asymptotic stability investigation of numerical methods for index 2 differential algebraic equations. Initial value problems are considered for quasi linear differential algebraic equations (DAEs) that cover the most important applications. First some stability concepts and related results are presented, which represent the basis for further investigations. This background concerns both, the continuous and the discreet case. Especially contractivity concepts are introduced and the relationship between the asymptotic stability of the DAE and the numerical method applied to it is established. The new contractivity concepts extend or generalize the already known concepts. The most important result in this context is a theorem that establishes general conditions under which the application of an algebraic stable IRK(DAE) method to a DAE is contractive. Well-known assertions for ordinary and differential algebraic equations can be considered as special cases of this general result. Later on the stability of numerical discretizations applied to index-2 DAEs is investigated. This is made possible by the introduction of new decopling and index reduction techniques. The analysis makes new insights in the asymptotic of numerical methods for DAEs possible. The obtained results state sufficient conditions in order that a BDF or an IRK(DAE) method applying to DAEs shows the same asymptotic stability properties as for ODEs. These results are illustrated by some numerical examples. Moreover, it can be realized that one of the found conditions is sufficient in order to show contractivity of the application of an algebraic stable IRK(DAE) method, supposed the DAE is contractive. This assertion is possible based on the general theorem mentioned in the paragraph above. Further some consequences of the mentioned results for electric network models are shown. According to both, the above mentioned analysis and the specialized literature of this field, the application of numerical methods to some special DAEs shows asymptotic stability problems. A few approaches are known to manage such difficult equations. Two exponents of these techniques are considered and their chances of success for index-2 DAEs are evaluated with the application to a critical example. A generalization of the Gear-Gupta-Leimkuhler (GGL) approach is proposed for full implicit linear DAEs. This generalization is investigated in detail in the rest of the paper, concerning both the analytical and the numerical asymptotic stability of the GGL equation and the numerical methods applied to it correspondingly. The result is, that, if some conditions are fulfilled, IRK(DAE) and BDF methods for the GGL equation will produce stable solutions. This result is illustrated by a numerical example. The application of the methods directly to the considered DAE produces unstable solutions. However, the integration of the corresponding GGL formulation is stable. The obtained result opens new possibility for the numerical treatment of instabilities by differential algebraic equations.
73

Numerical Analysis and Simulation of Coupled Systems of Stochastic Partial Differential Equations with Algebraic Constraints

Schade, Maximilian 20 September 2023 (has links)
Diese Dissertation befasst sich mit der Analyse von semi-expliziten Systemen aus stochastischen Differentialgleichungen (SDEs) gekoppelt mit stochastischen partiellen Differentialgleichungen (SPDEs) und algebraischen Gleichungen (AEs) mit möglicherweise stochastischen Anteilen in den Operatoren. Diese Systeme spielen eine entscheidende Rolle bei der Modellierung von realen Anwendungen, wie zum Beispiel elektrischen Schaltkreisen und Gasnetzwerken. Der Hauptbeitrag dieser Arbeit besteht darin, einen Rahmen bereitzustellen, in dem diese semiexpliziten Systeme auch bei stochastischen Einflüssen in den algebraischen Randbedingungen eine eindeutige Lösung haben. Wir führen einen numerischen Ansatz für solche Systeme ein und schlagen eine neue Möglichkeit vor, um Konvergenzergebnisse von driftimpliziten Methoden für SDEs auf stochastische Differential-Algebraische Gleichungen (SDAEs) zu erweitern. Dies ist wichtig, da viele Methoden für SDEs gut entwickelt sind, aber im Allgemeinen nicht für SDAEs in Betracht gezogen werden. Darüber hinaus untersuchen wir praktische Anwendungen in der Schaltkreis- und Gasnetzwerksimulation und diskutieren die dabei auftretenden Herausforderungen und Einschränkungen. Insbesondere stellen wir dabei auch einen Modellierungsansatz für Gasnetzwerke bestehend aus Rohren und algebraischen Komponenten vor. Abschließend testen wir in beiden Anwendungsfeldern die numerische Konvergenz anhand konkreter Beispiele mit verschiedenen Arten von stochastischer Modellierung. / This dissertation delves into the analysis of semi-explicit systems of stochastic differential equations (SDEs) coupled with stochastic partial differential equations (SPDEs) and algebraic equations (AEs) with possibly noise-driven operators. These systems play a crucial role in modeling real-world applications, such as electrical circuits and gas networks. The main contribution of this work is to provide a setting in which these semi-explicit systems have a unique solution even with stochastic influences in the algebraic constraints. We introduce a numerical approach for such systems and propose a new approach for extending convergence results of drift-implicit methods for SDEs to stochastic differential-algebraic equations (SDAEs). This is important, as many methods are well-developed for SDEs but generally not considered for SDAEs. Furthermore, we examine practical applications in circuit and gas network simulation, discussing the challenges and limitations encountered. In particular, we provide a modeling approach for gas networks consisting of pipes and algebraic components. To conclude, we test numerical convergence in both application settings on concrete examples with different types of stochastic modeling.
74

On Modeling and Control of Flexible Manipulators

Moberg, Stig January 2007 (has links)
Industrial robot manipulators are general-purpose machines used for industrial automation in order to increase productivity, flexibility, and quality. Other reasons for using industrial robots are cost saving, and elimination of heavy and health-hazardous work. Robot motion control is a key competence for robot manufacturers, and the current development is focused on increasing the robot performance, reducing the robot cost, improving safety, and introducing new functionalities. Therefore, there is a need to continuously improve the models and control methods in order to fulfil all conflicting requirements, such as increased performance for a robot with lower weight, and thus lower mechanical stiffness and more complicated vibration modes. One reason for this development of the robot mechanical structure is of course cost-reduction, but other benefits are lower power consumption, improved dexterity, safety issues, and low environmental impact. This thesis deals with three different aspects of modeling and control of flexible, i.e., elastic, manipulators. For an accurate description of a modern industrial manipulator, the traditional flexible joint model, described in literature, is not sufficient. An improved model where the elasticity is described by a number of localized multidimensional spring-damper pairs is therefore proposed. This model is called the extended flexible joint model. This work describes identification, feedforward control, and feedback control, using this model. The proposed identification method is a frequency-domain non-linear gray-box method, which is evaluated by the identification of a modern six-axes robot manipulator. The identified model gives a good description of the global behavior of this robot. The inverse dynamics control problem is discussed, and a solution methodology is proposed. This methodology is based on a differential algebraic equation (DAE) formulation of the problem. Feedforward control of a two-axes manipulator is then studied using this DAE approach. Finally, a benchmark problem for robust feedback control of a single-axis extended flexible joint model is presented and some proposed solutions are analyzed.
75

On Modeling and Control of Flexible Manipulators

Moberg, Stig January 2007 (has links)
<p>Industrial robot manipulators are general-purpose machines used for industrial automation in order to increase productivity, flexibility, and quality. Other reasons for using industrial robots are cost saving, and elimination of heavy and health-hazardous work. Robot motion control is a key competence for robot manufacturers, and the current development is focused on increasing the robot performance, reducing the robot cost, improving safety, and introducing new functionalities. Therefore, there is a need to continuously improve the models and control methods in order to fulfil all conflicting requirements, such as increased performance for a robot with lower weight, and thus lower mechanical stiffness and more complicated vibration modes. One reason for this development of the robot mechanical structure is of course cost-reduction, but other benefits are lower power consumption, improved dexterity, safety issues, and low environmental impact.</p><p>This thesis deals with three different aspects of modeling and control of flexible, i.e., elastic, manipulators. For an accurate description of a modern industrial manipulator, the traditional flexible joint model, described in literature, is not sufficient. An improved model where the elasticity is described by a number of localized multidimensional spring-damper pairs is therefore proposed. This model is called the extended flexible joint model. This work describes identification, feedforward control, and feedback control, using this model.</p><p>The proposed identification method is a frequency-domain non-linear gray-box method, which is evaluated by the identification of a modern six-axes robot manipulator. The identified model gives a good description of the global behavior of this robot.</p><p>The inverse dynamics control problem is discussed, and a solution methodology is proposed. This methodology is based on a differential algebraic equation (DAE) formulation of the problem. Feedforward control of a two-axes manipulator is then studied using this DAE approach.</p><p>Finally, a benchmark problem for robust feedback control of a single-axis extended flexible joint model is presented and some proposed solutions are analyzed.</p>
76

Aproximace maticemi malé hodnosti a jejich aplikace / Approximations by low-rank matrices and their applications

Outrata, Michal January 2018 (has links)
Consider the problem of solving a large system of linear algebraic equations, using the Krylov subspace methods. In order to find the solution efficiently, the system often needs to be preconditioned, i.e., transformed prior to the iterative scheme. A feature of the system that often enables fast solution with efficient preconditioners is the structural sparsity of the corresponding matrix. A recent development brought another and a slightly different phe- nomenon called the data sparsity. In contrast to the classical (structural) sparsity, the data sparsity refers to an uneven distribution of extractable information inside the matrix. In practice, the data sparsity of a matrix ty- pically means that its blocks can be successfully approximated by matrices of low rank. Naturally, this may significantly change the character of the numerical computations involving the matrix. The thesis focuses on finding ways to construct Cholesky-based preconditioners for the conjugate gradi- ent method to solve systems with symmetric and positive definite matrices, exploiting a combination of the data and structural sparsity. Methods to exploit the data sparsity are evolving very fast, influencing not only iterative solvers but direct solvers as well. Hierarchical schemes based on the data sparsity concepts can be derived...
77

[pt] ALGORITMOS DE RETORNO À SUPERFÍCIE PARA PLASTICIDADE ASSOCIATIVA UTILIZANDO PROGRAMAÇÃO CÔNICA / [en] RETURN-MAPPING ALGORITHMS FOR ASSOCIATIVE PLASTICITY USING CONIC OPTIMIZATION

17 September 2020 (has links)
[pt] Esse trabalho apresenta uma abordagem baseada em programação matemática para a solução de problemas de valor inicial de contorno constitutivo elastoplástico. Considerando a plasticidade associativa, as equações constitutivas locais, em sua forma discreta, são formuladas como problemas de otimização cônica. Especificamente, é demonstrado que métodos implícitos de retorno a superfície para os critérios mais conhecidos da literatura, como o de Rankine, von Mises, Tresca, Drucker-Prager e Mohr Coulomb, podem ser expressos como problemas de otimização cônica de segunda ordem e semidefinida. Além disso, um novo método numérico para a determinação do operador elastoplástico consistente, baseado na derivada paramétrica de primeira ordem das soluções ótimas, é proposto. / [en] This work presents a mathematical programming approach for elastoplastic constitutive initial boundary value problems. Considering associative plasticity, the local discrete constitutive equations are formulated as conic programs. Specifically, it is demonstrated that implicit return-mapping schemes for well-known yield criteria, such as the Rankine, von Mises, Tresca, Drucker-Prager, and Mohr-Coulomb criteria, can be expressed as secondorder and semidefinite conic programs. Additionally, a novel scheme for the numerical evaluation of the consistent elastoplastic tangent operator, based on a first-order parameter derivative of the optimal solutions, is proposed.
78

Parametric Optimal Design Of Uncertain Dynamical Systems

Hays, Joseph T. 02 September 2011 (has links)
This research effort develops a comprehensive computational framework to support the parametric optimal design of uncertain dynamical systems. Uncertainty comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it; not accounting for uncertainty may result in poor robustness, sub-optimal performance and higher manufacturing costs. Contemporary methods for the quantification of uncertainty in dynamical systems are computationally intensive which, so far, have made a robust design optimization methodology prohibitive. Some existing algorithms address uncertainty in sensors and actuators during an optimal design; however, a comprehensive design framework that can treat all kinds of uncertainty with diverse distribution characteristics in a unified way is currently unavailable. The computational framework uses Generalized Polynomial Chaos methodology to quantify the effects of various sources of uncertainty found in dynamical systems; a Least-Squares Collocation Method is used to solve the corresponding uncertain differential equations. This technique is significantly faster computationally than traditional sampling methods and makes the construction of a parametric optimal design framework for uncertain systems feasible. The novel framework allows to directly treat uncertainty in the parametric optimal design process. Specifically, the following design problems are addressed: motion planning of fully-actuated and under-actuated systems; multi-objective robust design optimization; and optimal uncertainty apportionment concurrently with robust design optimization. The framework advances the state-of-the-art and enables engineers to produce more robust and optimally performing designs at an optimal manufacturing cost. / Ph. D.
79

A Dissection concept for DAEs / structural decoupling, unique solvability, convergence theory and half-explicit methods

Jansen, Lennart 17 March 2015 (has links)
Diese Arbeit befasst sich mit Differential-algebraischen Gleichungen (DAEs). DAEs spielen eine wichtige Rolle in der Modellierung, der Simulation und der Optimierung von Netzwerken und gekoppelten Problemen in vielen Anwendungsgebieten. Es werden in Bezug auf die Modellierung und die numerische Simulation von DAEs bereits bestehende Ergebnisse diskutiert und erweitert. Des Weiteren wird die globale eindeutige Lösbarkeit und die Sensitivität der Lösungen mit Hinsicht auf Störungen der DAEs untersucht. Häufig wird die Modellierung von multiphysikalischen Anwendungen durch die Kopplung mehrerer einzelner DAE Systeme realisiert. Diese Herangehensweise kann hochdimensionale DAEs erzeugen, welche aufgrund von Instabilitäten nicht von klassischen numerischen Methoden, simuliert werden können. Angesichts dieser Herausforderungen werden drei Ziele formuliert: Erstens wird ein globales Lösungstheorem formuliert und bewiesen, welches auf gekoppelte Systeme angewandt werden kann, um deren Kopplungsansatz mathematisch zu rechtfertigen. Zweitens werden numerische Methoden vorgestellt, welche unter wesentlich schwächeren Strukturannahmen stabil sind und sich daher für die Simulation von gekoppelten Systemen eignen. Drittens wird eine Strategie präsentiert, die es ermöglicht, explizite Methoden auf gekoppelte Systeme anzuwenden. Um diese Ziele zu erreichen, braucht man ein Entkopplungsverfahren für DAEs, welches die folgenden drei Eigenschaften erfüllt: Die Komplexität des Entkopplungsverfahrens sollte nicht die Komplexität der DAE überschreiten. Das Entkopplungsverfahren sollte Eigenschaften wie Symmetrie, Monotonie und positive Definitheit erhalten. Das Entkopplungsverfahren sollte durch einen Schritt-für-Schritt Ansatz mit unabhängigen Schritten realisiert werden. Sowohl das Konzept des Tractability Index als auch das des Strangeness Index liefert kein solches Entkopplungsverfahren. Daher wird hier ein neues Index Konzept eingeführt, das diesen Anforderungen entspricht. / This thesis addresses differential-algebraic equations (DAEs). They play an important role in the modeling, simulation and optimization of networks and coupled problems in various applications. The main application in this thesis are coupled problems in electric circuit simulation. We discuss and extend existing results regarding the modeling and numerical simulation of DAEs. Furthermore, we investigate the global unique solvability and the sensitivity of solutions with respect to perturbations of DAEs. Nowadays the modeling of multi-physical applications is often realized by coupling systems of DAEs together with the help of additional coupling terms. This approach may yield high dimensional DAEs which cannot be simulated, due to instabilities, by standard numerical methods. Regarding these challenges we formulate three objectives: First we provide a global solvability theorem which can be applied to coupled systems to mathematically justify their coupling approach. Second we introduce numerical methods which are stable without needing any structural assumptions. Third we provide a way to apply explicit methods to coupled systems to be able to handle the size of the coupled systems by parallelizing the algorithms. To achieve these objectives, we need a decoupling procedure which fulfills the following three properties: The complexity of the decoupling procedure has to reflect the complexity of the DAE, i.e. the decoupling procedure should be state-independent if possible. The decoupling procedure should preserve properties like symmetry, monotonicity and positive definiteness. The decoupling procedure should be realized by a step-by-step approach with independent stages. Both the Tractability Index concept and the Strangeness Index concept do not provide such a decoupling procedure. For this reason we introduce a new index concept which provides such a decoupling procedure.
80

Problèmes inverses de points sources dans les modèles de transport dispersif de contaminants : identifiabilité et observabilité / Inverse problems of point-wise sources in dispersive transport models of contaminants : identifiability and observability

Khiari, Souad 19 October 2016 (has links)
La recherche et les questions abordées dans cette thèse sont de type inverse : la reconstitution d'une source ponctuelle ou la complétion d'une donnée à la limite inconnue à l'extrémité du domaine dans les modèles paraboliques de transport de contaminants. La modélisation mathématique des problèmes de pollution des eaux fait intervenir deux traceurs, l'oxygène dissous (OD) et la demande biochimique en oxygène (DBO) qui est la quantité d'oxygène nécessaire à la biodégradation de la matière organique. En effet, au cours des procédés d'autoépuration, certaines bactéries aérobies jouent un rôle principal. Ces micro-organismes décomposent les matières organiques polluantes en utilisant l'oxygène dissous dans le milieu. Afin de compenser ces données manquantes, les champs, solutions du problème, sont observés directement ou indirectement. Les problèmes inverses qui en résultent sont quasi certainement mal-posés voire même sévèrement mal-posés pour la plupart. Dans cette thèse, nous proposons justement une analyse aussi poussée que possible sur la question de l'identifiabilité pour les deux problèmes inverses décrits ci-dessus. Nous avons démontré un résultat d'unicité pour des sources fixes dans le cas d'observations décalées. La réalité pour l'observation est nuancée et l'idéal n'est pas acquis ; des mesures directes sur la DBO sont difficiles à obtenir. En revanche collecter des données sur l'OD est possible en temps réel et avec un faible coût. La DBO est donc observée de façon indirecte, grâce au couplage dans le système de Streeter et Phelps, l'information passe de l'OD à la DBO. Pour ce problème aussi, nous avons produit un résultat d'unicité pour la reconstruction de la source ou puits ponctuel qui serait présent dans l'équation de transport sur l'OD. Nous avons ensuite examiné des questions annexes à l'identifiabilité telles que le degré d'instabilité des équations à résoudre. De ce type d'informations dépendent le comportement des méthodes numériques et des algorithmes de calcul à utiliser. / The research and the questions approached on this thesis are inverse type : the reconstruction of point-wise source or the data completion problem in parabolic models of transport of contaminants. The mathematical modelling of the problems of water pollution includes two tracers, the dissolved oxygen (DO) and the biochemical demand in oxygen (BDO) which is the quantity of oxygen necessary for the biodegradation of organic matter. Indeed, during the biodegradation process, aerobic bacteria play a leading part. These micro-organisms decompose polluting organic matters by using the dissolved oxygen in the middle. To compensate these missing data, fields, solutions of the problem, are observed directly or indirectly. The resulting inverse problems are ill-posed. Their mathematical study rises big complications and their numerical treatment isn't easy. We demonstrated a uniqueness result for fixed sources in the case of moved observations. The reality for the observation is qualified and the ideal is not acquired; direct measures on the BOD are difficult to obtain. On the Other hand to collect data on the DO is possible in real time With a moderate cost. The BOD is thus observed in indirect way, thanks to the coupling in the system of Streeter and Phelps, the information passes from the DO to the BOD. For this problem, we produced a uniqueness result for the reconstruction of source. Then, we examined the degree of instability of the equation to be solved. The behaviour of numerical methods depend on this type of information.

Page generated in 0.0292 seconds