161 |
Interféromètres atomiques dans un réseau optiquePelle, Bruno 16 October 2013 (has links) (PDF)
Le projet ForCa-G, pour Force de Casimir et Gravitation à courte distance, a pour objectif la réalisation de mesures de forces à faible distance entre des atomes et un miroir en utilisant des techniques d'interférométrie atomique. Sont principalement visées la mesure de la force de Casimir-Polder ainsi que la poursuite des tests de gravitation à faible distance dans le cadre d'éventuelles déviations à la loi de Newton. Cette expérience s'appuie sur le piégeage d'atomes neutres dans un réseau optique 1D vertical, où les énergies propres de cet Hamiltonien réalisent une échelle de niveaux d'énergie discrets localisés dans chacun des puits du réseau, appelée échelle de Wannier-Stark. La thèse présentée dans ce manuscrit constitue une démonstration de principe de ce projet avec des atomes situés loin du miroir. Chaque niveau d'énergie est alors séparé de celui du puits adjacent par un incrément en énergie potentielle de pesanteur, représenté par la fréquence de Bloch $\nu_{\mathrm{B}}$. Des interféromètres atomiques sont ensuite réalisés dans le réseau à l'aide d'impulsions Raman ou micro-onde où les paquets d'onde des atomes piégés sont placés, puis recombinés, dans une superposition d'états entre différents niveaux d'énergie localisés soit dans le même puits, soit dans des puits adjacents. Ce travail présente l'étude de différents interféromètres, caractérisés en termes de sensibilité et d'effets systématiques sur la mesure de la fréquence de Bloch. Une sensibilité de $\sigma_{\mathrm{\delta \nu_B}} /\nu_{\mathrm{B}} = 9,0 \times 10^{-6}$ à $1$~s en relatif a été obtenue, qui s'intègre jusqu'à $\sigma_{\mathrm{\delta \nu_B}} /\nu_{\mathrm{B}} = 1,9 \times 10^{-7}$ en $2 \, 800$~s. Ce qui constitue une mesure de l'accélération de la pesanteur g à l'état de l'art des gravimètres atomiques piégés.
|
162 |
Décélération Zeeman-Stern Gerlach d'un jet supersonique de particules paramagnétiques par une onde de champ magnétique progressive.Trimeche, Azer 17 December 2013 (has links) (PDF)
Ce travail porte sur l'étude et la réalisation d'une nouvelle technique de décélération d'un jet supersonique de particules paramagnétiques en utilisant une onde de champ magnétique progressive co-mobile. Cette technique repose sur une méthode de ralentissement basée sur les forces de type Stern Gerlach agissant sur un système paramagnétique en mouvement en présence d'un champ magnétique co-propageant. Cette méthode très innovatrice a l'avantage de pouvoir s'appliquer à une grande palette d'espèces ouvrant ainsi de nouvelles possibilités d'applications. On décrit une approche théorique adaptée qui permet de faire un lien direct entre la théorie, la programmation des paramètres expérimentaux, les résultats obtenus et ce d'une manière systématique, rationnelle et prédictive.Ce mémoire est composé de trois parties. La première porte sur les forces décélératrices et le calcul des différentes forces, de type Stern Gerlach, utilisées dans nos expériences. Les formules établies dans cette partie sont essentielles pour l'interprétation des résultats expérimentaux. La deuxième partie porte sur le dispositif expérimental : le jet supersonique pré-refroidi, la zone d'interaction et la détection. On donne le détail de la réalisation des circuits créant les champs magnétiques nécessaires au guidage et à la décélération du jet. La troisième partie porte sur les résultats des expériences réalisées et leur interprétation directement à partir des équations du mouvement de l'effet Stern Gerlach. Des simulations sont présentées pour étayer les interprétations. On présente les résultats de décélération obtenus récemment sur l'argon et le néon métastables. Ces résultats valident clairement l'importance de l'ajout d'un champ magnétique uniforme qui définit un axe de quantification adiabatique global pour toutes les particules du jet et permet le découplage entre la précession des moments magnétiques et l'action des forces de gradient. Ces résultats mettent en évidence, aussi, l'effet de polarisation du jet qui dépend du sens relatif du champ magnétique uniforme ajouté par rapport à l'onde de champ magnétique progressive.Enfin, la compréhension et le contrôle de la dynamique du piégeage à une vitesse donnée, de l'accélération et de la décélération nécessitent le découplage entre les effets transverses et les effets longitudinaux de l'onde. Ces derniers sont clairement visibles quand le champ magnétique uniforme ajouté vient limiter les effets transverses de l'onde de champ magnétiques progressive. Les perspectives pour ce nouveau décélérateur Zeeman Stern Gerlach sont grandes. Un premier résultat de piégeage du di-azote métastable à 560m/s est présenté et ceci ouvre la voie pour décélérer les molécules paramagnétiques en jet supersonique pulsé. La décélération des radicaux libres et des neutrons est aussi envisageable.
|
163 |
L'Effet Hanbury Brown et Twiss pour les Atomes FroidsSchellekens, Martijn 10 May 2007 (has links) (PDF)
Cette thèse détaille la mesure des corrélations d'intensité quantiques dans des gaz d'hélium métastable. La mesure s'est opérée sur des gaz thermiques bosoniques 4He et fermioniques 3He, ainsi que sur des condensats de Bose-Einstein.<br /><br />En 1956, Robert Hanbury Brown et Richard Twiss ont mesuré la corrélation entre des photons provenant d'une même source thermique. Ils avaient ainsi mis en évidence que les photons emis par une telle source arrivaient préférentiellement groupés sur le détecteur. Ce groupement charactérise les bosons provenant d'une source non-cohérente. Les fermions manifestent un anti-groupement dans les mêmes conditions.<br /><br />En utilisant des atomes d'hélium métastables, dont l'utilisation de galettes de micro-canuax facilite la détection individuelle, nous avons pu mettre en évidence un regroupement similaire des bosons 4He provenant de sources thermiques de l'ordre du microkelvin. La cohérence des condensats de Bose-Einstein n'a pas permis de dégager une corrélation particulière, comme attendue. Une mesure sur des gaz thermiques des fermions 3He a permis de mettre en évidence leur anti-groupement. Un soin particulier a été pris pour décrire le détecteur à base de galettes de microcanaux et de lignes à retard, une des clés de la réussite de la mesure.
|
164 |
Few and Many-body Physics in cold Rydberg gases / Physique à quelques et à N- corps dans les gaz de Rydberg froidsHuillery, Paul 12 March 2013 (has links)
Au cours de cette thèse, la physique des systèmes en interaction à été étudié expérimentalement à partir de gaz froids d'atomes de Rydberg. Les atomes de Rydberg sont des atomes dans un état fortement excités et ils ont la propriété d'interagir fortement du fait d'interactions électrostatiques à longue portée. Le premier résultat majeur de cette thèse est l'observation expérimentale d'un processus à quatre corps. Ce processus consiste en l'échange d'énergie interne entre quatre atomes de Rydberg induit par leurs interactions mutuelles. Il a été possible, en plus de son observation expérimentale, de décrire théoriquement ce processus, au niveau quantique. L'excitation par laser des gaz d'atomes de Rydberg en forte interaction a aussi été étudiée durant cette thèse. Cette situation donne lieu à de très intéressants comportements à N-corps. Ce sujet d'intérêt fondamental pourrait aussi amener à d'éventuelles applications pour la réalisation de simulateurs quantiques ou de sources de lumière non classiques. Un second résultat majeur de cette thèse est l'observation expérimentale d'une statistique fortement sub-poissonienne, i.e corrélée de l'excitation Rydberg. Ce résultat confirme le caractère à N-corps de tels systèmes. Le troisième résultat majeur de cette thèse est le développement d'un modèle théorique pour l'excitation par laser des gaz d'atomes de Rydberg en forte interaction. En utilisant les états quantiques dit états collectifs de Dicke, il a été possible de mettre au jour de nouveaux mécanismes liés au comportement à N-corps de ces sytèmes atomiques en forte interaction. / Uring this thesis, the Physics of interacting systems has been investigated experimentally using Cold Rydberg gases. Rydberg atoms are highly excited atoms and have the property to interact together through long-range electrostatic interactions.The first highlight of this thesis is the direct experimental observation of a 4-body process. This process consists in the exchange of internal energy between 4 Rydbergs atoms due to their mutual interactions. In addition to its observation, it has been possible to describ this process theoretically at a quantum level.The laser excitation of strongly interacting Rydberg gases has been also investigated during this thesis. In this regime, the interactions between Rydberg atoms give rise to very interesting many-body behaviors. In addition to fundamental interest, such systems could be used to realyze quantum simulators or non-classical light sources.A second highlight of this thesis is the experimental observation of a highly sub-poissonian, i.e correlated, excitation statistics. This result confirms the many-body character of the investigated system.The third highlight of this thesis is the development of a theoretical model to describ the laser excitation of strongly interacting Rydberg gases. Using the so-called Dicke collective states it has been possible to point out new mechanismes related to the many-body character of strongly atomic interacting systems.
|
165 |
Réalisation d'une source d'électrons par ionisation d'un jet d'atomes de césium refroidis par laser / Realization of an electron source by ionization of a laser-cooled cesium atomic beamKhalili, Guyve 10 July 2015 (has links)
Les faisceaux d’électrons et d’ions sont au cœur de nombreuses techniques instrumentales servant à explorer, analyser et agir sur des matériaux à l’échelle du micromètre au nanomètre (Microscopie électronique, spectrométrie d’électrons, techniques de « FIB »). Les limites de résolution spatiale et énergétique de ces techniques dépendent en grande partie des propriétés des sources qu’elles utilisent et en particulier de leur température de fonctionnement. De fait, depuis plus de 10 ans, le potentiel des atomes froids ionisés comme nouveau type de source d’électrons ou d’ions est intensivement exploré.Le projet expérimental réalisé au LAC et décrit dans cette thèse utilise un jet d’atomes de césium issu d’un piège magnéto-optique à deux dimensions. La température transverse du jet est de l’ordre de 100 µK. Malgré cela, le jet est encore trop divergent après la sortie de la zone de refroidissement pour notre expérience. Afin guider le jet d’atomes jusqu’à la zone d’ionisation, nous avons étudié une méthode particulière de guidage dipolaire. L’utilisation d’un seul laser convenablement réglé nous a permis de guider et pousser les atomes du jet en même temps tout en limitant le chauffage. Nous avons ainsi pu compresser avec ce laser pousseur-guideur le jet d’atomes sur un diamètre de 400 µm à 60 cm de la zone de refroidissement du PMO-2D.Le jet est ensuite ionisé par la méthode d’ionisation en champ électrique statique d’atomes de Rydberg. Les atomes sont tout d’abord excités par laser sur un état de Rydberg (n~30) en présence d’un champ électrique uniforme et homogène. Les atomes du jet ainsi excités voyagent vers une zone présentant un fort gradient de champ où ils vont alors s’ioniser autour de la même valeur de potentiel, réduisant ainsi la taille de la zone d’ionisation et donc de la dispersion en énergie potentielle initiale du faisceau d’électron. La probabilité d’ionisation des atomes dans le champ dépend grandement de l’état de Rydberg préalablement excité. Le choix de l’état de Rydberg optimal, i.e. qui a une probabilité d’ionisation la plus grande possible, nécessite une étude de l’ionisation des états de Rydberg du césium. Un modèle à deux niveaux est présenté dans cette thèse qui permet de retrouver le comportement d’ionisation d’état de Rydberg observé expérimentalement. Ce modèle simple nous a permis de comprendre quel type d’état nous devions exciter. Enfin une étude expérimentale est également présentée. / Electron and Ion beams are at the base of many instrumental techniques used to explore, to analyse and to modify materials from the micrometer to the manometer scale (Electronic Microscopy, Electron Spectrometry, Focused Ion beams techniques…). Spatial and Energetic resolutions of these techniques are strongly dependent on its source‘s properties and particularly their working temperature. In fact, for more than ten years, the potential of ionised cold atoms have been intensively studied. Our experiment at LAC, described in this thesis, uses a 2 dimensional magneto-optical trap (2D-MOT) to create a caesium atomic beam. The transverse temperature of the beam is around 100 µK. Despite this, the beam is still too divergent after exiting the cooling area. To guide the atomic beam up to the ionisation area, we have studied and implemented a particular method of dipolar guiding. The use of a unique laser properly set allowed us to push and guide altogether the atoms of the beam while limiting the heating effect. Thus, we have managed to compress the atomic beam’s size to 400 µm at 60 cm from the output of the MOT.Afterward, the atomic beam is ionised by the method of Rydberg (static) field ionisation. The atoms are firstly excited by laser on a Rydberg state (n~30) as a static homogeneous and uniform electric field is applied. The excited atoms of beam travel therefore to a high-gradient field area where they ionise around the same electric potential value, therefore reducing the ionisation area’s size and the initial potential energy spread of the electron beam. The ionisation probability of the atoms in the field depends greatly on the excited Rydberg state. The choice of an optimal Rydberg state , i.e. with the highest probability of ionisation, needs better knowledge of the ionisation of cesium Rydberg states. A two levels model us to describe the ionisation behaviour of some Ryberg. This simple models helps to understand what kind of states we want to excite in order to optimise the ionisation area‘s size. An experimental study of cesium Rydberg states is also presented.
|
166 |
Senseur inertiel à ondes de matière aéroporté / Airborne matter-wave inertial sensorGeiger, Remi 17 October 2011 (has links)
: cette thèse porte sur l’étude d’un accéléromètre à ondes de matière fonctionnant à bord d’un avion effectuant des vols paraboliques et permettant des expériences en micro-gravité (0-g). Un interféromètre à atomes de 87Rb refroidis par laser, et dont les états quantiques sont manipulés à l’aide de transitions Raman stimulées, constitue l’élément physique du capteur. Lors de la conception du dispositif expérimental, un effort particulier a été apporté au choix d’une source laser transportable, stable, et robuste. Nous démontrons pour la première fois le fonctionnement aéroporté d’un senseur inertiel à ondes de matière, à la fois en 0-g et durant les phases de gravité des vols (1-g). Nous proposons une technique combinant le signal de l’interféromètre à celui d’accéléromètres mécaniques auxiliaires pour effectuer des mesures au dela de la dynamique intrinsèque du capteur atomique. Nous expliquons comment bénéficier du haut niveau de sensibilité de l’interféromètre dans l’avion, et indiquons des voies d’améliorations significatives de notre dispositif pour le futur. En 0-g, nous montrons une amélioration de la sensibilité de l’accéléromètre jusque 2 x 10-4 m.s-2 à une seconde, et étudions une réjection des vibrations de l’avion à l’aide d’un interféromètre à quatre impulsions Raman. L’objectif de notre projet consiste en un test du principe d’universalité de la chute libre avec un double accéléromètre à atomes de 87Rb et de 39K. Notre système laser double-espèce emploie des composants optiques fibrés aux longueurs d’onde de 1.56 et 1.54 μm, ainsi qu’un doublage de fréquence pour obtenir la lumière utile à 780 et 767 nm pour le refroidissement et la manipulation des deux atomes. Nous étudions théoriquement la sensibilité d’une mesure de leur différence d’accélération en tenant compte des vibrations de l’avion, et précisons comment une résolution de l’ordre de 10-10 m.s-2 pourra être atteinte dans le futur avec notre expérience aéroportée. / This thesis reports the study of a matter-wave accelerometer operated aboard a 0-g plane in ballistic flights. The acceleration measurements are performed with a cold 87Rb atom interferometer using stimulated Raman transitions to manipulate the quantum states of the atoms. When designing the instrument, we took special care to make the laser source transportable, robust, and stable. With our setup, we demonstrate the first operation of a matter-wave inertial sensor aboard a plane, both in 0-g and during the gravity phases of the flights (1-g). Thanks to additional mechanical accelerometers probing the coarse inertial effects, we are able to detect acceleration fluctuations much greater than the intrinsic measurement range of the interferometer. We explain our method to benefit from the full sensitivity of the matter-wave sensor in the plane, and suggest significant improvements of our system for the future. In 0-g, we show the enhancement of the accelerometer sensitivity up to 2 x 10-4 m.s-2 in one second, and investigate a rejection of the vibrations of the plane with a four Raman pulses interferometer. The goal of our project is to perform a test of the universality of free fall with two atom accelerometers using 87Rb and 39K. The laser system for the two-species interferometer is based on fiber optical components at wavelengths of 1.56 and 1.54 μm, and optical frequency doubling to generate the useful light at 780 and 767 nm to cool and manipulate the atoms. We study theoretically the sensitivity of the differential acceleration measurement by taking into account the vibrations of the plane, and discuss how a resolution of the order of 10-10 m.s-2 could be achieved in the future with our airborne experiment.
|
167 |
Mélange à quatre ondes atomique dans un réseau optique / Atomic four-wave mixing in an optical latticeBonneau, Marie 16 December 2011 (has links)
Ce mémoire de thèse décrit une expérience de création de paires d’atomes jumeaux par mélange à quatre ondes en présence d’un réseau optique. Ces atomes jumeaux sont analogues aux photons jumeaux obtenus par conversion paramétrique, lesquels ont été employés dans plusieurs expériences fondamentales d’optique quantique, ainsi que pour des applications en interférométrie et en information quantique. En raison de la relation de dispersion, l’accord de phase peut être obtenu quand les atomes se déplacent dans le réseau optique. Le mélange à quatre ondes qui se produit alors spontanément constitue un cas particulier d’instabilité dynamique. Nous avons réalisé cette expérience à partir d’un gaz dégénéré d’hélium métastable, obtenu dans un piège optique très allongé. On a superposé aux atomes un réseau optique en mouvement, qui est également décrit dans ce mémoire. Au moyen d’un détecteur d’atomes uniques résolu à trois dimensions, nous avons caractérisé le mélange à quatre ondes obtenu. Nous avons étudié les conditions d’accord de phase de ce processus, et les différents modes peuplés, montrant que la méthode que nous employons permet de diffuser préférentiellement les atomes dans deux fines classes de vitesse, que l’on peut ajuster et dont on contrôle les populations. Cette flexibilité facilitera l’utilisation des paires d’atomes pour des expériences futures. Au niveau de chacune de ces deux classes de vitesses, nous avons mesuré une corrélation de type Hanbury Brown et Twiss. Par ailleurs, nous avons démontré une réduction des fluctuations de la différence de population entre les deux classes sous le bruit de grenaille. La coexistence de ces deux effets témoigne du caractère non-classique des paires générées, qui pourront être exploitées pour des expériences d’optique atomique quantique, comme par exemple pour observer l’effet Hong-Ou-Mandel sur des atomes. / In this thesis, an experiment of correlated atom pairs production through four-wave mixing in an optical lattice is described. The twin atoms are analogous to the twin photons produced by parametric down conversion, used in many fondamental quantum optics experiments, and applied in interferometry and quantum information. Because of the dispersion relation, phase matching can be obtained when atoms move in a periodic potential. Four-wave mixing then spontaneously occurs and is a special case of dynamical instability. We performed the experiment with a degenerate metastable helium gas, obtained in a very elongated optical trap. A moving optical lattice, whose characterisation can also be found in the manuscript, was applied on the atoms. The resulting four-wave mixing was studied using a 3D-resolved single atom detector. The phase-matching conditions of this process and the populated modes were investigated. We showed that with our method atoms are preferentially scattered into two narrow classes with tunable velocities and populations. This versatility should be an advantage when using the pairs in future experiments. For each of these velocity classes, we mesured a Hanbury Brown and Twiss local correlation. Furthermore, we demonstrated relative number squeezing between both classes. These two simultaneous effects indicate the non-classicality of the generated pairs, which can be used in quantum atom optics experiments, for example to observe the Hong-Ou-Mandel effect with atoms.
|
168 |
Atomes de Rydberg en interaction : des nuages denses d'atomes de Rydberg à la simulation quantique avec des atomes circulaires / Interacting Rydberg atoms : from dense clouds of Rydberg atoms to quantum simulation with circular atomsCantat-Moltrecht, Tigrane 11 January 2018 (has links)
Les systèmes quantiques à N corps en interaction sont au cœur des problèmes actuels de la recherche en physique quantique. La compréhension de tels systèmes est un enjeu crucial pour le développement des connaissances en physique de la matière condensée. De nombreux efforts de recherche visent à la construction d'un « simulateur quantique » : une plateforme permettant de modéliser, grâce à un système quantique bien contrôlé, un système quantique dont l'accès expérimental est difficile. Les fortes interactions dipolaires entre atomes de Rydberg représentent un objet d'étude choix pour ce type de problème. Nous présentons dans le présent manuscrit une étude des conditions d'excitation d'un nuage dense d'atomes de Rydberg en interaction, permise par le dispositif expérimental dont nous disposons, qui mêle les techniques de piégeage et de refroidissement d’atomes sur puce avec les techniques de manipulation des niveaux de Rydberg. Les résultats de cette étude nous permettent de formuler une proposition expérimentale complète de développement d'un simulateur quantique fondé sur le piégeage d'atomes de Rydberg circulaires. Le simulateur que nous proposons est très prometteur, grâce à sa flexibilité et aux longs temps de simulation qu’il permettrait. Nous terminons ce manuscrit par la description détaillée de la première étape sur le chemin vers ce simulateur : l'excitation d’atomes de Rydberg circulaires sur puce. / Interacting many-body quantum systems are at the heart of contemporary research in quantum physics. The understanding of such systems is crucial to the development of condensed-matter physics. Many research efforts aim at building a "quantum simulator": a platform which allows to model a hard-to-access quantum system with a more controllable one. Ensembles of Rydberg atoms, thanks to their strong dipolar interactions, make for an excellent system to study many-body quantum physics. We present here a study of the excitation of a dense cloud of interacting Rydberg atoms. This study was conducted on an experimental setup mixing on-chip cold atoms techniques with Rydberg atoms manipulation techniques. The result of this study leads us to make a full-fledged proposal for the realisation of a quantum simulator, based on trapped circular Rydberg atoms. The proposed simulator is particularly promising due to its flexibility and to the long simulation times for which it would allow. We conclude this manuscript with a detailed description of the first experimental step towards building such a simulator: the on-chip excitation of circular Rydberg atoms.
|
169 |
Développement de méthodes asymptotiques pour l'étude des interactions entre atomes froids ; détermination de longueurs de diffusion du sodium et du césiumT'Jampens, BenoÎt 17 December 2002 (has links) (PDF)
Une connaissance précise des propriétés de collision entre atomes froids est essentielle pour l'étude de la condensation de Bose-Einstein ou la formation de molécules froides. Dans ces expériences, les phénomènes importants ont lieu principalement à des distances interatomiques grandes, c'est-à-dire dans la zone asymptotique. Nous avons développé une méthode purement asymptotique qui nous permet de décrire les propriétés collisionnelles des atomes alcalins froids sans avoir recours à la partie interne des potentiels moléculaires, qui est connue avec une précision moindre. Le point clé de la méthode est l'utilisation des lignes de noeuds, qui sont des lignes joignant les noeuds des fonctions d'onde radiales successives proches du seuil de dissociation du fondamental. Dans le cadre de l'approximation de Born-Oppenheimer, l'utilisation de ces lignes de noeuds, obtenues par intégration de l'équation de Schrödinger radiale dans la zone asymptotique uniquement, fournit un moyen simple pour déterminer des longueurs de diffusion à partir des positions expérimentales de niveaux liés. La méthode a ensuite été étendue au cas des potentiels couplés. Elle apparaît comme une véritable méthode paramétrique dans laquelle quelques paramètres décrivant des lignes de noeuds bien choisies remplacent la partie interne des potentiels. Ces paramètres sont ajustés sur des résultats expérimentaux. Une fois ces paramètres connus, toutes les propriétés de collision telles que les longueurs de diffusion, les décalage en fréquence des horloges atomiques ou encore les résonnances de Feshbach induites par un champ magnétique, peuvent en principe être déduites. Cette méthode a été utilisée pour obtenir les propriétés de collision des atomes de sodium et de césium ultrafroids.
|
170 |
Condensation de Bose-Einstein de l'hélium métastablePereira Dos Santos, Franck 17 January 2002 (has links) (PDF)
Nous présentons dans ce<br />mémoire la réalisation expérimentale de la condensation de<br />Bose-Einstein de l'hélium métastable $2^3S_1$ polarisé. Nous<br />commençons par y résumer les prédictions théoriques concernant les<br />taux de collisions élastiques et inélastiques entre atomes<br />métastables polarisés. Ce sont sur ces prédictions très<br />encourageantes que reposait l'espoir d'atteindre la condensation<br />de Bose-Einstein de l'hélium métastable. Nous présentons ensuite<br />le dispositif expérimental que nous avons construit. La technique<br />que nous avons utilisée consiste à pré-refroidir un échantillon de<br />gaz dans un piège magnéto-optique, que l'on charge à partir d'un<br />jet atomique intense et ralenti. La densité dans le piège<br />magnéto-optique est limitée par de très forts taux de collisions<br />inélastiques assistées par la lumière, que nous avons mesurés pour<br />une large gamme de paramètres de piégeage. Le gaz piégé est<br />ensuite transféré dans un piège magnétostatique où il est refroidi<br />par la technique du refroidissement évaporatif jusqu'au seuil de<br />dégénérescence quantique. Nous avons mesuré des temps de vie des<br />atomes dans le piège magnétique de l'ordre de la minute, ce qui<br />démontre que les collisions inélastiques sont supprimées par au<br />moins deux ordres de grandeur dès lors que les atomes sont<br />polarisés. A l'aide d'une méthode de détection purement optique,<br />basée sur l'absorption d'un faisceau laser résonnant à la<br />traversée du nuage atomique, nous avons pu mettre en évidence la<br />condensation de Bose-Einstein. Finalement, des mesures du nombre<br />d'atomes et de la taille du condensat, nous avons déduit une<br />estimation de la longueur de diffusion, $a=(16\pm8)$ nm.
|
Page generated in 0.0281 seconds