• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 368
  • 71
  • 52
  • 31
  • 26
  • 25
  • 18
  • 15
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 704
  • 193
  • 174
  • 114
  • 76
  • 76
  • 65
  • 64
  • 61
  • 59
  • 57
  • 57
  • 56
  • 54
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Désassemblage de réseaux de filaments d'actine : rôle de l'architecture et du confinement / Actin filament network disassembly : role of architecture and confinement

Gressin, Laurène 18 November 2016 (has links)
Le cytosquelette est un assemblage de protéines intracellulaires qui assure le maintien de la forme des cellules et la production de force. Ce cytosquelette est formé de trois types de polymères, dont les filaments d'actine qui sont impliqués dans des fonctions essentielles telles que la motilité cellulaire, la division cellulaire ou encore la morphogénèse. Les filaments d'actine s'agencent en structures organisées dont la dynamique est assurée par la polymérisation et le désassemblage des filaments, contrôlés spatio-temporellement. La plupart des structures d'actine sont dans un état stationnaire dynamique où l'assemblage est compensé par le désassemblage, ce qui permet de maintenir une concentration de monomères intracellulaire élevée. En effet, le réservoir d'actine in vivo est limité et la formation de nouvelles structures de filaments d'actine est dépendante d'un désassemblage efficace des structures les plus âgées. Le but de ma thèse a été d'étudier comment l'organisation architecturale des structures d'actine influence le désassemblage par la machinerie protéique composée de l'ADF/cofiline et d'un de ses cofacteurs Aip1.J'ai d'abord pu montrer que l'efficacité du désassemblage dépendait de l'agencement des filaments d'actine. Quand les réseaux branchés ne requièrent que l'action de l'ADF/cofiline pour être désassemblés efficacement, les faisceaux de filaments d'actine ont besoin de la présence simultanée de l'ADF/cofiline et de l'Aip1. Une étude à l'échelle moléculaire a ensuite été menée pour comprendre le mécanisme du désassemblage des filaments d'actine par ces deux protéines au niveau du filament individuel.Dans un second temps, j'ai développé un système expérimental composé de micropuits de taille comparable à la cellule. Cette technologie nous a permis de réaliser des expériences en milieu confiné, dans lequel le réservoir d'actine était limité de la même manière que le réservoir d'actine cellulaire. J'ai mis ce système a profit pour reconstituer le turnover d'une comète d'actine, un réseau branché formé à la surface d'une bille recouverte de nucléateurs de l'actine.Ce travail de thèse a permis d’établir des lois fondamentales contrôlant la dynamique de l’actine et plus particulièrement comment l’architecture de l’actine et l’environnement peuvent influencer le désassemblage de structures complexes. / The actin cytoskeleton is a major component of the internal architecture of eukaryotic cells. Actin filaments are organized into different structures, the dynamics of which is spatially and temporally controlled by the polymerization and disassembly of filaments. Most actin structures are in a dynamic steady state regime where the assembly is balanced by the disassembly, which maintains a high concentration of intracellular actin monomers. In vivo the pool of actin monomers is limited and the formation of new actin filament structures is dependent on an effective disassembly of the older structures. The goal of my thesis was to study the influence of different architectures of actin by the disassembly machinery made of ADF/cofilin and its cofactor Aip1.Firstly, I showed that the efficiency of the disassembly was dependent on the architecture of actin filaments organizations. Although the branched networks need only ADF/cofilin to be efficiently disassembled, the actin cables require the simultaneous action of ADF/cofilin and Aip1. Further investigations at the molecular scale indicate that the cooperation between ADF/cofilin and Aip1 is optimal above a certain threshold of molecules of ADF/cofilin bound to actin filaments. During my PhD I demonstrated that although ADF/cofilin is able to dismantle selectively branched networks through severing and debranching, the stochastic disassembly of actin filaments by ADF/cofilin and Aip1 represents an efficient alternative pathway for the full disassembly of all actin networks. We propose a model in which the binding of ADF/cofilin is required to trigger a structural change of the actin filaments, as a prerequisite for their disassembly by Aip1.Secondly, I developed an experimental system made of cell-sized microwells. This technology allowed us to develop experiments in a closed environment in which the actin pool is limited in the same way as the cellular environment. I used this experimental system to study how a limited pool of components limits both the assembly and the disassembly of a branched network.This thesis highlights the importance of developing new tools to obtain more “physiological” reconstituted systems in vitro to establish some of the general principles governing actin dynamics.
312

Calcium Signaling and Ca<sup>2+</sup>/Calmodulin-Dependent Kinase II Activity in Epithelial To Mesenchymal Transition

McNeil, Melissa Ann 01 December 2015 (has links)
Epithelial to mesenchymal transition (EMT) is an important process in embryonic development, tissue repair, inflammation, and cancer. During EMT, epithelial cells disassemble cell-cell adhesions, lose apicobasal polarity, and initiate migratory and invasive processes that allow individual cells to colonize distant sites. It is the means by which non-invasive tumors progress into malignant, metastatic carcinomas. In vitro, EMT occurs in two steps. First, cells spread out, increasing in surface area and pushing the colony borders out. Then cells contract, pulling away from neighboring cells and rupturing cell-cell junctions, resulting in individual highly migratory cells. Recent discoveries indicate that calcium signaling is central in EMT. Both previous data with patch clamping and new calcium imaging data show a series of calcium influxes in cells induced to undergo EMT with hepatocyte growth factor (HGF). It has also been shown that blocking calcium signaling prevents EMT from progressing normally. However, it is not known if calcium alone is sufficient to drive EMT behaviors. By experimentally triggering calcium influxes with an optigenetic cation channel, the behaviors that calcium influxes induce can be determined noninvasively, without use of drugs that may have secondary effects. The results of using the optigenetic set up along with live cell imaging are that cells become more motile and disrupt normal epithelial cell-cell adhesions. This behavior is believed to be due to increased cell contractility downstream of calcium signaling, and is dependent on Ca2+/calmodulin-dependent protein kinase II (CaMKII). When cells are pre-treated with CaMKII inhibitor before HGF addition, they undergo the spreading step of EMT without subsequent cellular contraction and rupture of cell-cell junctions. CaMKII is a protein kinase that is activated by binding Ca2+/calmodulin, and is a known downstream component of calcium signaling. CaMKII is known to affect the actin cytoskeleton by both physically bundling actin filaments to increase their rigidity, and through signaling by activation of myosin light chain kinase (MLCK), which has a role in stress fiber formation. Immunofluorescence did not show colocalization of CaMKII with actin, ruling out regulation through actin bundling. However, CaMKII does appear to have a role in stress fiber formation. EMT induced with HGF treatment results in increased numbers of stress fibers as well as trans-cellular actin network formation, both actin structures decorated with non-muscle myosin II (NMII). CaMKII inhibition not only blocks these actin formations, but it also decreases stress fiber levels below basal unstimulated levels in cells that have not been treated with HGF. This suggests that CaMKII has a role in regulating contractility through cellular actin networks, indicating a mechanism for calcium's role in cellular contractility in EMT.
313

Dynamique des réseaux d'actine d'architecture contrôlée.

Reymann, Anne-Cécile 11 July 2011 (has links) (PDF)
Mon travail de thèse fut de développer différents projets en vue de mieux comprendre la dynamique et l'organisation des réseaux d'actine, ainsi que les mécanismes moléculaires à l'origine de la production de force grâce à différents systèmes reconstitués biomimétiques. Dans un premier temps, je me suis intéressée à l'étude de l'organisation spatiotemporelle des réseaux dynamiques d'actine et de ses protéines associées durant la propulsion de particules recouvertes de promoteurs de nucléation des filaments d'actine (Achard et al, Current Biology, 2010 et Reymann et al, accepté à MBoC). J'ai notamment suivi en temps réel l'incorporation de deux régulateurs de l'actine (Capping protein, protéine de coiffe et ADF/cofilin, protéine de fragmentation) et montré que leurs actions conjuguées assurent un contrôle biochimique de l'assemblage d'un réseau complexe d'actine, mais gouvernent également les propriétés mécaniques de ce réseau. Par ailleurs, afin de mieux caractériser les propriétés mécaniques de ces réseaux d'actine en expansion, j'ai développé un système biomimétique novateur utilisant la procédure de micropatrons ou "micropatterning" qui permet un contrôle spatial reproductible des sites de nucléation d'actine. Cela m'a permis de montrer comment des barrières géométriques, semblables à celles trouvées dans les cellules, peuvent influencer la formation dynamique de réseaux organisés d'actine et ainsi contrôler la localisation de la production de forces. (Reymann et al, Nature Materials, 2010). De plus, l'incorporation de moteurs moléculaires dans ce système versatile, nous a permis d'étudier la contraction induite par des myosines. En particulier, j'ai pu montrer que les myosines VI HMM interagissent de manière sélective avec différentes architectures d'actine (organisation parallèle ou antiparallèle, réseau enchevêtré), aboutissant à un processus en trois phases: tension, puis déformation des réseaux d'actine fortement couplée à un désassemblage massif des filaments. Aussi, ce phénomène de désassemblage massif induit par la myosine est intimement dépendant de l'architecture du réseau d'actine et pourrait, de ce fait, jouer un rôle essentiel dans la régulation spatiale des zones d'expansion et de contraction du cytosquelette in vivo.
314

Genetic, molecular and functional studies of RAC GTPases and the WAVE-like regulatory protein complex in Arabidopsis thaliana.

Brembu, Tore January 2006 (has links)
<p>Small GTP-binding proteins are molecular switches that serve as important regulators of numerous cellular processes. In animal and plant cells, the Rho family of small GTPases participate in e.g. organisation of the actin cytoskeleton, production of reactive oxygen species through the NADPH oxidase complex, regulation of gene expression. The three most extensively studied subgroups of the Rho GTPase family are Cdc42, Rho and Rac. One of the mechanisms by which animal Rac and Cdc42 GTPases regulate actin filament organisation is through activation of the ARP2/3 complex, a multimeric protein complex which induces branching and nucleation/elongation/polymerisation of actin filaments. Activation of the ARP2/3 complex by Rac and Cdc42 is mediated through the proteins WAVE and WASP, respectively.</p><p>In a search for Ras-like GTPases in Arabidopsis, we identified a family of genes with similarity to Rac GTPases. Screens of cDNA and genomic libraries resulted in the finding of 11 genes named ARACs/AtRACs. Genes encoding Rho, Cdc42 or Ras homologues were not identified. Expression analysis of AtRAC1 to AtRAC5 indicated that AtRAC1, AtRAC3, AtRAC4 and AtRAC5 are expressed in all parts of the plant, whereas AtRAC2 is preferentially expressed in root, hypocotyl and stem.</p><p>The AtRAC gene family can be divided into two main groups based on sequence similarity, gene structure and post-translational modification. AtRAC group II genes contain an additional exon, caused by the insertion of an intron which disrupts the C-terminal geranylgeranylation motif. Instead, group II AtRACs contain a putative motif for palmitoylation. Phylogenetic analyses indicated that the division of plant RACs into group I and group II occurred before the split of monocotyledonous and dicotyledonous plants. Analyses of the genes neighbouring AtRAC genes revealed that several of the plant RAC genes have been created through duplications.</p><p>The restricted/tissue-specific expression pattern of AtRAC2 led us to do a more detailed expression analysis of this gene. A 1.3 kb fragment of the upstream (regulatory) sequence of AtRAC2 directed expression of GUS or GFP to developing primary xylem in root, hypocotyl, leaves and stem. In root tips, the onset GUS staining or GFP fluorescence regulated by the AtRAC2 promoter slighty preceded the appearance of secondary cell walls. In stems, GUS staining coincided with thickening of xylem cell walls. Transgenic plants expressing constitutively active AtRAC2 displayed defects in the polar growth of leaf epidermal cells, indicating that AtRAC2 may be able to regulate the actin cytoskeleton. Surprisingly, an AtRAC2 T-DNA insertion mutant did not show any observable phenotypes. GFP fusion proteins of wild type and constitutively active AtRAC2 were both localised to the plasma membrane. The data suggest that AtRAC2 is involved in development of xylem vessels, likely through regulation of the actin cytoskeleton or NADPH oxidase.</p><p>The role of RAC GTPases in regulation of the actin cytoskeleton in plants is well documented. However, although the ARP2/3 complex had been identified in plants/Arabidopsis, the mechanisms regulating this complex were unknown. Through database searches, we identified three Arabidopsis genes, AtBRK1, AtNAP and AtPIR, which encoded proteins with similarity to subunits of a protein complex shown to regulate the activity of WAVE1 in mammalian cells. T-DNA inactivation mutants of AtNAP and AtPIR displayed morphological defects on epidermal cells undergoing polar expansion, such as trichomes and leaf pavement cells. The phenotypes were similar to those observed for ARP2/3 complex mutants, suggesting that AtNAP and AtPIR act in the same pathway as the ARP2/3 complex in plants. The actin cytoskeleton in atnap and atpir mutants was less branched than in wild type plants; instead, actin filaments aggregated in thick actin bundles.</p><p>Finally, we have recently discovered a small gene family encoding putative WAVE homologues. In mammalian cells, Rac activates WAVE1 through binding to PIR121 or Sra1 (the mammalian homologues of AtPIR). The discovery of a putative WAVE regulatory complex as well as putative WAVE homologues in Arabidopsis suggests that plant RAC GTPases regulate organisation of the actin cytoskeleton during polar growth at least partly through the ARP2/3 complex, using an evolutionarily conserved mechanism.</p>
315

Cbl in Regulation of Growth Factor Receptor Endocytosis and Actin Dynamics

Szymkiewicz, Iwona January 2003 (has links)
<p>Proteins belonging to the Cbl family are multidomain scaffolds that participate in numerous processes, assembling signaling complexes and mediating attachment of ubiquitin to receptor and non-receptor tyrosine kinases.</p><p>We characterized a novel role for Cbl and Cbl-b in ligand-dependent internalization of growth factor receptors. Upon stimulation with epidermal growth factor (EGF), Cbl proteins associate with EGF receptor, become phosphorylated, and bind to the three SH3 domains of CIN85, which brings endophilins to the complex with active receptors. Endophilins can induce internalization of the plasma membrane, contributing to formation of clathrin-coated pits. We identified a minimal binding domain for CIN85 in the carboxyl termini of Cbl/Cbl-b and observed constitutive association between CIN85, Cbl/Cbl-b and oncogenically stimulated receptor tyrosine kinases. In addition to functioning as a ubiquitin ligase, Cbl forms a complex with CIN85 and endophilin, which is required for efficient endocytosis and downregulation of membrane receptors.</p><p>In EGF stimulated cells, we observed inducible modification of CIN85 and related CMS proteins by attachment of a single ubiquitin molecule. Monoubiquitination of CIN85 was mediated by the RING finger and dependent on the carboxyl terminal part of Cbl/Cbl-b, and demanded an intact carboxyl terminus of CIN85. Prolonged stimulation with EGF induced concomitant degradation of EGF receptors, Cbl, and monoubiquitinated forms of CIN85 in lysosomes.</p><p>Cbl regulates cytoskeletal processes in a variety of cell systems. We identified SH3P2, a protein with SH3 domain and ankyrin repeats, as a Cbl partner and described its phosphorylation by Src and its distribution in fibroblasts and osteoclasts. SH3P2 formed inducible complexes with Cbl and actin in spread cells and colocalized with dynamic actin structures.</p><p>Our data contribute to better understanding of the role of Cbl in downregulation of receptor tyrosine kinases as well as in controlling actin rearrangement.</p>
316

Structural Study of the WH2 Family and Filamin: Implications for Actin Cytoskeleton Regulation

Aguda, Adeleke H. January 2006 (has links)
<p>Cellular processes like motility, chemotaxis, phagocytosis and morphogenesis are dependent on the dynamic regulation of the actin cytoskeleton. This cytoskeleton system is tightly controlled by a number of diverse actin-binding proteins (ABPs) by various mechanisms described as nucleation, polymerization, capping, severing, depolymerization and sequestration. The ABPs are grouped based on sequence identity as in the Wiskott-Aldrich Syndrome protein homology domain 2 (WH2), and the calponin homology domain (CH) containing proteins.</p><p>In this work, we elucidate the crystal structures of hybrids of gelsolin domain 1 with thymosin β4, ciboulot domain 2, and the second WH2 domain of N-WASP each bound to actin. We show that the single WH2 motif containing protein thymosin β4 in part sequesters actin by binding its pointed end via a C-terminal helix. This interaction prevents the addition of bound actin protomers to the barbed end of the filament. We propose that sequence variations in some WH2 motifs conferred F-actin binding ability to multiple repeat-containing proteins. These F-actin binding domains interact with the barbed end of a filament and the adjacent WH2 motifs are then freed to add their bound actin to the growing filament end. We demonstrate the binding of ciboulot domains 2 and 3 to both G- and F-actin and that full length ciboulot is capable of binding two actin monomers simultaneously. </p><p>We have also cloned, expressed, purified and crystallized rod domains 14-16 from the actin crosslinking protein a-filamin. Preliminary X-ray crystallography data gives us hope that we shall be able to solve the structure of this triple domain repeat.</p>
317

Identifying Mechanisms Associated with Innate Immunity in Cows Genetically Susceptible to Mastitis

Elliott, Alexandra Alida 01 December 2010 (has links)
Mastitis, or mammary gland inflammation, causes the greatest loss in profit for dairy producers. Mastitis susceptibility differs among cows due to environmental, physiological, and genetic factors. Prior research identified a genetic marker in a chemokine receptor, CXCR1, associated with mastitis susceptibility and decreased neutrophil migration. Current research seeks to identify reasons behind mastitis susceptibility by validating this model through in vivo challenge with Streptococcus uberis and studying specific mechanisms causing impaired neutrophil migration. Holstein cows with GG (n=19), GC (n=28), and CC (n=20) genotypes at CXCR1+777 were challenged intramammarily with S. uberis strain UT888. After challenge 68% of quarters from GG genotype, 74% from CC genotype and only 47% from GC genotype cows had ≥10 colony forming units/ml S. uberis for at least two sampling time points (P<0.05). However, among infected cows, number of S. uberis, somatic cell count, rectal temperature, milk scores and mammary scores were comparable among genotypes throughout infection. These findings suggest that cows with GC genotypes may be more resistant to S. uberis mastitis, but have similar responses if infected. To better understand the mechanisms associated with disease resistance, migration patterns in neutrophils from cows with different CXCR1+777 genotypes were evaluated. Neutrophils from cows with GG (n=11) and CC (n=11) genotypes were isolated and stimulated with zymosan activated sera (ZAS). Cells were fixed and stained for F-actin and evaluated for F-actin content, distribution, and cell morphology. Neutrophils from CC cows had significantly lower average F-actin polymerization than GG cows v (P=0.05). Directed migration of neutrophils from GG (n=10) and CC (n=10) genotypes was imaged and tracking data was analyzed for individual cells. Cells from GG genotype traveled further on an X axis and had higher X/Y movement towards IL8 compared to CC genotype, meaning they moved more directly towards IL8. Our findings suggest lower F-actin polymerization in combination with lower ability to directly move towards IL8 could impair neutrophil response to infection in cows with a CC genotype and may contribute to increased mastitis susceptibility. Finding what makes certain cows more susceptible to mastitis could lead to strategies aimed at improved prevention and treatment of mastitis.
318

Plasma membrane order; the role of cholesterol and links to actin filaments

Dinic, Jelena January 2011 (has links)
The connection between T cell activation, plasma membrane order and actin filament dynamics was the main focus of this study. Laurdan and di-4-ANEPPDHQ, membrane order sensing probes, were shown to report only on lipid packing rather than being influenced by the presence of membrane-inserted peptides justifying their use in membrane order studies. These dyes were used to follow plasma membrane order in live cells at 37°C. Disrupting actin filaments had a disordering effect while stabilizing actin filaments had an ordering effect on the plasma membrane, indicating there is a basal level of ordered domains in resting cells. Lowering PI(4,5)P2 levels decreased the proportion of ordered domains strongly suggesting that the connection of actin filaments to the plasma membrane is responsible for the maintaining the level of ordered membrane domains. Membrane blebs, which are detached from the underlying actin filaments, contained a low fraction of ordered domains. Aggregation of membrane components resulted in a higher proportion of ordered plasma membrane domains and an increase in cell peripheral actin polymerization. This strongly suggests that the attachment of actin filaments to the plasma membrane induces the formation of ordered domains. Limited cholesterol depletion with methyl-beta-cyclodextrin triggered peripheral actin polymerization. Cholesterol depleted cells showed an increase in plasma membrane order as a result of actin filament accumulation underneath the membrane. Moderate cholesterol depletion also induced membrane domain aggregation and activation of T cell signaling events. The T cell receptor (TCR) aggregation caused redistribution of domains resulting in TCR patches of higher order and the bulk membrane correspondingly depleted of ordered domains. This suggests the preexistence of small ordered membrane domains in resting T cells that aggregate upon cell activation. Increased actin polymerization at the TCR aggregation sites showed that actin polymerization is strongly correlated with the changes in the distribution of ordered domains. The distribution of the TCR in resting cells and its colocalization with actin filaments is cell cycle dependent. We conclude that actin filament attachment to the plasma membrane, which is regulated via PI(4,5)P2, plays a crucial role in the formation of ordered domains. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Manuscript.</p>
319

Genetic, molecular and functional studies of RAC GTPases and the WAVE-like regulatory protein complex in Arabidopsis thaliana.

Brembu, Tore January 2006 (has links)
Small GTP-binding proteins are molecular switches that serve as important regulators of numerous cellular processes. In animal and plant cells, the Rho family of small GTPases participate in e.g. organisation of the actin cytoskeleton, production of reactive oxygen species through the NADPH oxidase complex, regulation of gene expression. The three most extensively studied subgroups of the Rho GTPase family are Cdc42, Rho and Rac. One of the mechanisms by which animal Rac and Cdc42 GTPases regulate actin filament organisation is through activation of the ARP2/3 complex, a multimeric protein complex which induces branching and nucleation/elongation/polymerisation of actin filaments. Activation of the ARP2/3 complex by Rac and Cdc42 is mediated through the proteins WAVE and WASP, respectively. In a search for Ras-like GTPases in Arabidopsis, we identified a family of genes with similarity to Rac GTPases. Screens of cDNA and genomic libraries resulted in the finding of 11 genes named ARACs/AtRACs. Genes encoding Rho, Cdc42 or Ras homologues were not identified. Expression analysis of AtRAC1 to AtRAC5 indicated that AtRAC1, AtRAC3, AtRAC4 and AtRAC5 are expressed in all parts of the plant, whereas AtRAC2 is preferentially expressed in root, hypocotyl and stem. The AtRAC gene family can be divided into two main groups based on sequence similarity, gene structure and post-translational modification. AtRAC group II genes contain an additional exon, caused by the insertion of an intron which disrupts the C-terminal geranylgeranylation motif. Instead, group II AtRACs contain a putative motif for palmitoylation. Phylogenetic analyses indicated that the division of plant RACs into group I and group II occurred before the split of monocotyledonous and dicotyledonous plants. Analyses of the genes neighbouring AtRAC genes revealed that several of the plant RAC genes have been created through duplications. The restricted/tissue-specific expression pattern of AtRAC2 led us to do a more detailed expression analysis of this gene. A 1.3 kb fragment of the upstream (regulatory) sequence of AtRAC2 directed expression of GUS or GFP to developing primary xylem in root, hypocotyl, leaves and stem. In root tips, the onset GUS staining or GFP fluorescence regulated by the AtRAC2 promoter slighty preceded the appearance of secondary cell walls. In stems, GUS staining coincided with thickening of xylem cell walls. Transgenic plants expressing constitutively active AtRAC2 displayed defects in the polar growth of leaf epidermal cells, indicating that AtRAC2 may be able to regulate the actin cytoskeleton. Surprisingly, an AtRAC2 T-DNA insertion mutant did not show any observable phenotypes. GFP fusion proteins of wild type and constitutively active AtRAC2 were both localised to the plasma membrane. The data suggest that AtRAC2 is involved in development of xylem vessels, likely through regulation of the actin cytoskeleton or NADPH oxidase. The role of RAC GTPases in regulation of the actin cytoskeleton in plants is well documented. However, although the ARP2/3 complex had been identified in plants/Arabidopsis, the mechanisms regulating this complex were unknown. Through database searches, we identified three Arabidopsis genes, AtBRK1, AtNAP and AtPIR, which encoded proteins with similarity to subunits of a protein complex shown to regulate the activity of WAVE1 in mammalian cells. T-DNA inactivation mutants of AtNAP and AtPIR displayed morphological defects on epidermal cells undergoing polar expansion, such as trichomes and leaf pavement cells. The phenotypes were similar to those observed for ARP2/3 complex mutants, suggesting that AtNAP and AtPIR act in the same pathway as the ARP2/3 complex in plants. The actin cytoskeleton in atnap and atpir mutants was less branched than in wild type plants; instead, actin filaments aggregated in thick actin bundles. Finally, we have recently discovered a small gene family encoding putative WAVE homologues. In mammalian cells, Rac activates WAVE1 through binding to PIR121 or Sra1 (the mammalian homologues of AtPIR). The discovery of a putative WAVE regulatory complex as well as putative WAVE homologues in Arabidopsis suggests that plant RAC GTPases regulate organisation of the actin cytoskeleton during polar growth at least partly through the ARP2/3 complex, using an evolutionarily conserved mechanism.
320

Structural Study of the WH2 Family and Filamin: Implications for Actin Cytoskeleton Regulation

Aguda, Adeleke H. January 2006 (has links)
Cellular processes like motility, chemotaxis, phagocytosis and morphogenesis are dependent on the dynamic regulation of the actin cytoskeleton. This cytoskeleton system is tightly controlled by a number of diverse actin-binding proteins (ABPs) by various mechanisms described as nucleation, polymerization, capping, severing, depolymerization and sequestration. The ABPs are grouped based on sequence identity as in the Wiskott-Aldrich Syndrome protein homology domain 2 (WH2), and the calponin homology domain (CH) containing proteins. In this work, we elucidate the crystal structures of hybrids of gelsolin domain 1 with thymosin β4, ciboulot domain 2, and the second WH2 domain of N-WASP each bound to actin. We show that the single WH2 motif containing protein thymosin β4 in part sequesters actin by binding its pointed end via a C-terminal helix. This interaction prevents the addition of bound actin protomers to the barbed end of the filament. We propose that sequence variations in some WH2 motifs conferred F-actin binding ability to multiple repeat-containing proteins. These F-actin binding domains interact with the barbed end of a filament and the adjacent WH2 motifs are then freed to add their bound actin to the growing filament end. We demonstrate the binding of ciboulot domains 2 and 3 to both G- and F-actin and that full length ciboulot is capable of binding two actin monomers simultaneously. We have also cloned, expressed, purified and crystallized rod domains 14-16 from the actin crosslinking protein a-filamin. Preliminary X-ray crystallography data gives us hope that we shall be able to solve the structure of this triple domain repeat.

Page generated in 0.0518 seconds