• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 2
  • Tagged with
  • 15
  • 15
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In Vitro and In Vivo Analysis of Protein-Protein Interactions Involved in the Formation of Epithelial Adherens Junctions / Protein-Protein Interactions in Forming Adherens Junctions

Melone, Michelle 04 1900 (has links)
Adherens junctions are a main cell-cell adhesion structure found in epithelial cells. The stability of adherens junctions is attributed to various protein-signaling cascades and importantly the interaction between the transmembrane protein E-cadherin and cytoplasmic p120 catenin. This interaction is critical for cell adhesion and prevention of uncontrolled growth in normal cells. The interaction interface between these two binding partners was previously determined to comprise p120's Armadillo repeat domain (p120Arm) and Ecadherin's cytoplasmic juxtamembrane domain (Ecadc). Based on this information, peptide aptamers were derived from p120Arm and their interaction with Ecadc was tested in vitro. We reasoned that those could be expressed in vivo to stabilize adherens junctions at the cell-cell junction. In this study, we established protein-protein interaction assays to demonstrate p120Arm's ability to bind Ecadc and then used these assays to determine if p120Arm-derived peptides may competitively bind Ecadc. We demonstrated the interaction between p120Arm and Ecadc using assays that were not previously used such as: co-precipitation, analytical gel filtration and the bacterial-2-hybrid assay. However, the p120Arm-derived peptides did not bind to Ecadc or compete its interaction with p120Arm. This may be due to the nature of the assays that may not reflect competitive binding or the aptamers may not adopt the native conformation preventing binding to Ecadc. / Thesis / Master of Science (MSc)
2

Mécanotransduction au complexe E-cadhérine/β-caténine lors de la transition épithelio-mésenchymateuse / Mechanotransduction at E-cadherin/β-catenin complex during epithelial-to-mesenchyme transition

Gayrard, Charlène 25 September 2017 (has links)
Dans les organismes multicellulaires, les cellules génèrent et subissent des forces mécaniques qui se propagent aux cellules voisines. Ces forces peuvent déterminer la forme des tissus et organes, et aussi être converties en signaux biochimiques. Dans un épithélium, les cellules forment un tissu en adhérant directement les unes aux autres grâce à des complexes d’adhérence, tels que les Jonctions Adhérentes. Ces Jonctions Adhérentes sont composées de protéines transmembranaires les E-cadhérines, dont la partie cytoplasmique est sous tension générée par le cytosquelette d’actomyosine par un lien assurée par la β-caténine. La β-caténine est aussi un cofacteur de transcription majeur qui régule l’activité de gènes impliqués dans la transition épithélio-mésenchymateuse une fois dans le noyau. L’accumulation nucléaire et l’activité transcriptionnelle de la β-caténine peuvent avoir lieu à la suite de stimulations mécaniques dans des situations physiologiques et pathologiques, et ont été proposées comme la conséquence d’une libération de la β-caténine des Jonctions Adhérentes suite à sa phosphorylation. Néanmoins, les preuves directes de ce phénomène et ses mécanismes manquent, et le rôle qu’y tient la tension des E-cadhérines n’est pas connu.Dans cette thèse, nous avons établi la relation entre la tension des E-cadhérines et la localisation nucléaire et l’activité de la β-caténine, prouvé l’existence d’une translocation de la membrane au noyau de la β-caténine, et caractérisé les mécanismes moléculaires sous-jacents dans des cellules en migration induite par un facteur de croissance ou par blessure sur un épithélium, deux conditions qui récapitulent au moins partiellement une transition épithélio-mésenchymateuse.Nous avons montré que l’accumulation nucléaire de la β-caténine est due à un départ substantiel de celle-ci de la membrane, spécifiquement dans les cellules en migration. Cette translocation a lieu en aval d’une voie de signalisation impliquant les kinases Src et FAK, et qui conduit à une relaxation de tension des E-cadhérines. Le mécanisme sous-jacent implique une réorganisation du cytosquelette d’actine, caractérisé par un enrichissement des fibres des stress ventrales, soutenant les protrusions, en phospho-myosine, au détriment du cortex d’actine des Jonctions Adhérentes. En revanche, les phosphorylations dans le complexe cadhérine/caténine ne sont pas requises. Ces résultats démontrent que les E-cadhérines ont un rôle de senseur de la mécanique intracellulaire, et que les adhésions focales sont impliquées dans l’activation de la voie de signalisation β-caténine / In multicellular organisms, cells generate and experience mechanical forces that propagate between and within cells. These forces may shape cells, tissues and organs, and also convert into biochemical signals. In a simple epithelium, cells form tissue sheets by directly adhering to one another through adhesion complexes, such as the Adherens Junctions. Adherens Junctions comprise transmembrane proteins E-cadherins, which are under actomyosin-generated tension via a link that contains β-catenin. β-catenin is also a major transcription cofactor that regulates gene activity associated with Epithelial-to-Mesenchyme Transition when translocated in the nucleus. β-catenin nuclear localization and transcriptional activity are mechanically inducible in a variety of healthy and disease models and were proposed to follow phosphorylation-induced -catenin release from E-cadherin. However, direct evidence for this translocation and these mechanisms are lacking, and whether E-cadherin tension is involved is unknown.In this thesis, we assess the relationship between E-cadherin tension and β-catenin nuclear localization and activity, determine the relevance of β-catenin shuttling between membrane and nucleus, and characterize the underlying molecular mechanisms in cells migrating in an at least partial EMT-like fashion upon hepatocyte growth factor (HGF) or wound stimulation. We showed that β-catenin nuclear activity follows a substantial release from the membrane that is specific to migrating cells. This translocation occurs downstream of the Src-FAK pathway, which targets E-cadherin tension relaxation. The underlying mechanisms sufficiently involve actomyosin remodeling, characterized by an enrichment of ventral stress fibers that capture phosphomyosin at the expense of the cortex at Adherens Junctions. In contrast, phosphorylations of the cadherin/catenin complex are not substantially required. These data demonstrate that E-cadherin acts as a sensor of intracellular mechanics in a crosstalk with cell-substrate adhesions that targets β-catenin signaling
3

The role of alpha-catenin and ZO-1 in coupling tight junctions to adherens junctions

Maiers, Jessica Louise 01 December 2013 (has links)
Cell-cell junctions are essential for tissue homeostasis. Prominent among these junctions are adherens junctions and tight junctions. Adherens junctions mediate adhesion between adjacent cells while tight junctions are responsible for establishing apical-basolateral polarity and limiting paracellular permeability. Loss or disruption of either adherens junctions or tight junctions leads to a myriad of disease states, thus these junctions need to be tightly regulated to prevent dysfunction. A unique property of tight junctions is their dependence on adherens junctions for proper assembly and maintenance. Loss or disruption of adherens junction leads to abnormal tight junctions. Understanding the mechanisms that mediate tight junction coupling to adherens junctions is important for treating diseases that arise from disrupted cell-cell junctions. Currently, two controversial models exist for how tight junctions are coupled to adherens junctions. In the first model, the adherens junction protein α-catenin is critical for tight junction assembly. The second model suggests that a second adherens junction protein, nectin is critical for tight junction assembly through binding the tight junction protein ZO-1, and disruption of tight junction assembly is independent of E-cadherin. α-catenin also binds ZO-1, but the consequences of this interaction are unknown. I hypothesized that α-catenin binding to ZO-1 plays a critical role in coupling tight junctions to adherens junctions. To test this, I mapped the ZO-1 binding site on α-catenin and engineered a point mutant of α-catenin that failed to bind ZO-1. Expression of this point mutant in epithelial cells showed that ZO-1 binding to α-catenin is essential for tight junction assembly and maintenance, while adherens junctions were unaffected. These findings established a role for ZO-1 binding to α-catenin in coupling tight junctions to adherens junctions during junction assembly, as well as at steady-state conditions. After discovering the importance of ZO-1 binding to α-catenin in coupling tight junctions to adherens junctions, I wanted to study whether this interaction is critical in a physiological setting. Tight junctions and adherens junctions are both strengthened in response to mechanical force; however the mechanisms responsible for tight junction strengthening were unknown. Using the system I previously developed, I show that ZO-1 binding to α-catenin is essential for increased tight junction integrity in response to mechanical force, coupling changes in tight junctions to increased stability of adherens junctions. Together, these findings identify a novel interaction that is critical for coupling tight junctions to adherens junctions under several conditions, and provide mechanistic insight into the cellular response to mechanical force.
4

The Role of Formins in Endothelial Adherens Junction Regulation

Mumal, Iqra January 2016 (has links)
Adherens junctions are cadherin-dependent structures that mediate intercellular signaling and structural integrity of the endothelial barrier. Formins are a highly conserved family of cytoskeletal remodeling proteins whose activity has been implicated in regulating adherens junction formation in other cell-types. Therefore, we tested the hypothesis that formin activity is essential for adherens junction assembly in endothelial cells. A small-molecule formin inhibitor (smiFH2) was used to determine the effect of formin inhibition on junction formation using an in vitro vascular permeability assay. We determined that smiFH2 treatment caused a dose-dependent inhibition of junction formation. We used siRNAs to knockdown expression of the seven formins shown to be expressed in TIME cells and determined that individual knockdown of FHOD1, FHOD3 and Dia1 significantly increased the permeability of the endothelial monolayer. Interestingly, FMNL2 knockdown actually potentiated barrier function. Knockdown of the remaining formins had little or no effect on junction formation. Knockdown of FHOD3 had the greatest inhibitory effect on junction assembly; VE-cadherin protein levels were decreased in FHOD3-depleted cells. The FHOD3 knockdown cells were also elongated in comparison to controls and formed thin linear adherens junctions and few focal adherens junctions. In contrast, the morphology of FMNL2-depleted cells did not appear obviously different from controls. In conclusion, our results suggest that multiple formins play diverse roles in adherens junction formation and maintenance in endothelial cells.
5

Etude du rôle de nouveaux partenaires des cadhérines, les flotillines, dans la formation des jonctions adhérentes / Role of new partners of cadherins, flotillins, in the establishment of adherens junctions

Guillaume, Émilie 26 October 2011 (has links)
Les jonctions adhérentes sont des jonctions intercellulaires essentielles à la morphogenèse et à la maintenance des tissus. Elles reposent sur l'assemblage de grands complexes multiprotéiques aux contacts intercellulaires, centrés sur des protéines transmembranaires appelées cadhérines. Nous avons découvert deux nouveaux partenaires des cadhérines N, E, M, P, R et 11, les flotillines. Nous avons caractérisé leur interaction avec la N-cadhérine et découvert qu'elle était constitutive à la membrane plasmique et vraisemblablement indirecte. Nous avons démontré que les flotillines sont essentielles à la stabilisation des jonctions adhérentes dans des cellules musculaires et épithéliales, ainsi qu'à des processus cellulaires dépendants des jonctions. Nous montrons qu'en effet, les flotillines sont nécessaires à l'interaction des cadhérines avec la p120-caténine, qui inhibe leur internalisation et leur dégradation. Nos expériences suggèrent que les flotillines seraient impliquées dans la formation d'un microdomaine membranaire particulier au niveau de la jonction en cours de maturation, permettant le recrutement de la p120-caténine. / Cadherins are essential in many fundamental processes such as tissue patterning during development and in the maintenance of adult tissue architecture. At regions of cell-cell contact, cadherins assemble into large macromolecular complexes named adherens junctions. Here we identify flotillin 1 and 2 as new partners of several classical cadherins. The interaction between flotillines and N-cadherin is constitutive at the plasma membrane and seems to require an intermediate partner. Knockdown of flotillins had a dramatic effect on N- and E-cadherin recruitment at the adherens junctions in both mesenchymal and epithelial cell types. At the molecular level, we show that flotillins stabilize cadherins at the PM hence allowing the coupling of 120 catenin, one of their main stabilizing partners. Our results suggest that flotillins might scaffold a membrane microdomaine at maturing junctions, allowing the recruitment of p120-catenin.
6

The Cx43 Carboxyl-Terminal Mimetic Peptide αCT1 Protects Endothelial Barrier Function in a ZO1 Binding-Competent Manner

Strauss, Randy E. 20 January 2022 (has links)
The Cx43 CT mimetic peptide, αCT1, originally designed to bind to ZO1 and thereby inhibit Cx43/ZO1 interaction, was used as a tool to probe the role of Cx43/ZO1 association in regulation of epithelial/endothelial barrier function. Using both in vitro and ex vivo methods of barrier function measurement, including Electric Cell-Substrate Impedance Sensing(ECIS), a TRITC-dextran transwell permeability assay, and a FITC-dextran cardiovascular leakage protocol involving Langendorff-perfused mouse hearts, αCT1 was found to protect the endothelium from thrombin-induced breakdown in cell-cell contacts. Barrier protection was accompanied by significant remodeling of the F-actin cytoskeleton, characterized by a redistribution of F-actin away from the cytoplasmic and nuclear regions of the cell, towards the endothelial cell periphery, in association with alterations in cellular orientation distribution. In line with observations of increased cortical F-actin, αCT1 upregulated cell-cell border localization of endothelial VE-cadherin, the Tight Junction protein Zonula Occludens 1 (ZO1) , and the Gap Junction Protein (GJ) Connexin43 (Cx43). A ZO1-binding-incompetent variant of αCT1, αCT1-I, indicated that these effects on barrier function and barrier-associated proteins, were likely associated with Cx43 CT sequences retaining ability to interact with ZO1. These results implicate the Cx43 CT and its interaction with ZO1, in the regulation of endothelial barrier function, while revealing the therapeutic potential of αCT1 in the treatment of vascular edema. / Doctor of Philosophy / Endothelial cells make up blood vessels within the heart and regulate the exchange of fluids between the circulation and heart tissue. In many forms of heart disease, the cardiac endothelium is disrupted, resulting in a damaging leakage and buildup of fluids within the heart. This work explores how a small peptide, derived from a naturally occurring molecule, may help to prevent fluid-associated damage to the heart by stabilizing the blood endothelium.
7

Etude du maintien de l'adhérence dans les tissus prolifératifs / Study of Adhesion Maintenance During Cell Division in Epithelial Tissues.

Guillot, Charlene 26 August 2014 (has links)
Les tissus épithéliaux présentent deux caractéristiques majeures, ils sont robustes (rôle de barrière) mais également plastiques lors de la morphogénèse. L'homéostasie des tissus épithéliaux repose sur la régulation de la balance prolifération/mort cellulaire. Dans ma thèse, je décris tout d'abord, les mécanismes moléculaires permettant à la cellule épithéliale de se diviser tout en maintenant l'intégrité du tissu. J'ai ensuite altéré cette intégrité, en utilisant le système de génération de clônes mosaïques, afin de comprendre comment la cohésion du tissu est maintenue. Ce travail m'a alors permis de comprendre comment l'adhérence est modulée, puis restaurée, au cours de la division cellulaire. Ainsi, j'ai montré que l'intégrité des tissus est assurée par l'action concomitante des forces d'adhésion et des forces de tension. Enfin, mon travail apporte également des éléments clés pour l'étude de la perte d'adhérence des cellules tumorales responsable en partie, de la progression des tumeurs solides en métastases. / Tissue homeostasis relies on the tight regulation of cell proliferation and cell death. Epithelial tissues are robust tissues that support the structure of developing embryos and adult organs and are effective barriers that physically protect the organism against pathogens. In my thesis, I have first described the molecular mechanisms responsible for maintaining tissue integrity during epithelial cell division. I have then abrogated this integrity by inducing mosaic clones within tissues to understand how tissue cohesion is maintained. This work shows how the continuity of adhesive properties is ensured during cell division. It also reveals new key elements that result in loss of adhesion in tissues and thus may be responsible for the progession from solid cancer to metastasis.
8

The role of bone morphogenetic proteins in the development of the vertebrate midbrain

Eom, Dae Seok 08 February 2011 (has links)
The purpose of the thesis is to explore the role of BMP signaling in developing vertebrate midbrain. BMP signaling plays important roles in various tissues and stages of neural development to regulate cell fate, proliferation, differentiation, morphogenesis and more. We observed that several major BMPs are expressed not only at the roof plate but also the floor plate of the midbrain. This has led us to ask the role of BMP signaling in dorsal and ventral midbrain patterning. Despite ventral experiments, we found that BMP signaling does not regulate ventral cell fate specification in the midbrain. Instead BMPs profoundly influence the shape and early morphogenesis of the midbrain neural plate as it closes into a neural tube. During neural tube closure, one of the early events occurring at the ventral midline is median hinge point (MHP) formation. Failure to form MHP leads to neural tube closure defects, the 2nd most common birth defects in humans. However, the molecular mechanisms underlying MHP formation are not well known. We found that the lowest BMP signaling occurs at the MHP during early neurulation and BMP blockade is necessary and sufficient for MHP formation. Interestingly, we also demonstrated that BMP blockade directs MHP formation by regulating the apicobasal polarity pathway and this regulation may be mediated by biochemical interactions between pSMAD5 and the apical protein, PAR3. Additionally, our time-lapse data suggest that BMP blockade slows cell cycle progression by increasing duration of G1 to S transition and S phase which leads cell nuclei stay at the basal location longer. This mimics basal nuclear migration seen at the MHP where low BMP signaling occurs. Thus, we conclude that BMP signaling regulates neural tube closure via the apicobasal polarity pathway and in a cell cycle dependent manner at the ventral midline. We observed that BMP signaling is necessary and sufficient for the dorsal cell fate specification in a context-dependent manner and ventral BMP signaling affects dorsal cell fates. Taken together, we propose the idea that BMP signaling has distinct roles in different contexts. BMPs regulate tissue morphogenesis in the ventral midbrain and dorsally cell fate specification. / text
9

Remodelage des jonctions sous stress mécanique / Junction remodeling under mechanical forces

Yang, Xinyi 25 September 2017 (has links)
Les changements de forme des cellules épithéliales sont cruciaux pour la morphogenèse embryonnaire. Chez les embryons de C. elegans, l'activité musculaire sous les cellules épidermiques est l'une des deux forces mécaniques qui dirigent ce processus. Cependant, les mécanismes moléculaires détaillés à travers lesquels l'activité musculaire favorise l'allongement polarisé le long de l'axe antérieur / postérieur (A / P) restent à être totalement compris. Ici, en utilisant l'imagerie rapide-3D, on découvre que les embryons tournent après l'activation musculaire et on décrit le schéma local et global de la rotation de l'embryon induite par activité musculaire. En outre, on a observé que les muscles des côtés opposés de l'embryon se contractent alternativement, expliquant les rotations de l'embryon. Par conséquent, les jonctions adhérentes sont étirées le long de la direction A / P pendant les rotations de l'embryon et sont donc sous une tension plus élevée. Nos résultats préliminaires d'imagerie en molécule unique ont montré que plus de E-cadhérine, matériau de jonction, fusionne avec des jonctions orientées A / P quand il y a une tension élevée sur ces jonctions. / Epithelial cell shape changes is essential for embryonic morphogenesis. In C. elegans embryos, muscle activity from underneath epidermal cells is one of the two mechanical force inputs driving this process. However, the detailed molecular mechanisms through which muscle activity promotes the polarized elongation along the anterior/posterior (A/P) axis remains to be fully understood. Here, using fast-3D imaging, we discover that embryos rotate after muscle activation and we describe the local and global pattern of embryo rotation induced by muscle activity. Furthermore, we observed that muscles located on opposite sides of the embryo mostly contract alternatively, accounting for embryo rotations. As a consequence, adherens junctions get stretched along the A/P direction during embryo rotations and therefore are under higher tension. Our preliminary results from single molecule imaging showed that more junction material E-cadherin fuses with A/P oriented junctions when there is high tension on these junctions.
10

Étude des mécanismes cellulaires activés par l'Angiopoïétine-1 et le VEGF régulant la perméabilité et la migration endothéliales

Oubaha, Malika 11 1900 (has links)
L’angiogenèse est la formation de nouveaux vaisseaux sanguins à partir d’un réseau vasculaire existant. C’est un phénomène essentiel pour des processus physiologiques et pathologiques. L’activation des cellules endothéliales est contrôlée par plusieurs facteurs de croissance. Le VEGF et son récepteur le VEGFR-2 ont été prouvés comme étant spécifiques et critiques pour la formation des vaisseaux sanguins alors que Tie2, le récepteur auquel se lie l’Ang-1, est requis aussi bien dans le développement vasculaire que dans l’angiogenèse tumorale. Il est connu que l’activation de Tie2 est nécessaire à la stabilisation finale de la vascularisation en inhibant la perméabilité vasculaire induite par le VEGFR-2. Nous avons premièrement découvert que le facteur de croissance pro-angiogénique, l’Ang-1 contrecarre les effets de perméabilité cellulaire induits par le VEGF en inhibant la production de NO dans les cellules endothéliales. Cet effet inhibiteur de Tie2 intervient directement au niveau de l’activité de l’enzyme eNOS. Suite à l’activation de Tie2 par l’Ang-1, eNOS devient fortement phosphorylé sur la Thr497 après la phosphorylation et l’activation de la PKCζ. Nos résultats suggèrent que l’inhibition, par Tie2, de la perméabilité vasculaire durant l’angiogenèse serait due, en partie, à l’inhibition de la production de NO. Deuxièmement nous avons pu distinguer entre deux modes de migration cellulaire endothéliale induits par l’Ang-1 et le VEGF. À l’opposé du VEGF qui promeut une migration individuelle aléatoire, l’Ang-1 induit une migration collective directionnelle. Dans cette étude, nous avons identifié la β-caténine comme un nouveau partenaire moléculaire de la PKCζ. Cette association de la PKCζ à la β-caténine amène le complexe de polarité Par6-aPKC et le complexe des jonctions d’adhérences cellulaires à interagir ensemble à deux localisations différentes au niveau de la cellule endothéliale. Au niveau des contacts intercellulaires, le complexe PKCζ/β-caténine maintien la cohésion et l’adhésion cellulaire nécessaire pour le processus migratoire collectif. Ce complexe se retrouve aussi au niveau du front migratoire des cellules endothéliales afin d’assurer la directionalité et la persistance de la migration endothéliale en réponse à l’Ang-1. D’une manière intéressante, lors de l’inhibition de la PKCζ ou de la β-caténine on assiste à un changement du mode de migration en réponse à l’Ang-1 qui passe d’une migration directionnelle collective à une migration individuelle aléatoire. Ce dernier mode de migration est similaire à celui observé chez des cellules endothéliales exposées au VEGF. Ces résultats ont été corroborés in vivo par une polarité et une adhésion défectueuses au cours de la vasculogenèse chez le poisson zèbre déficient en PKCζ. En résumé, Ang-1/Tie2 module la signalisation et les réponses biologiques endothéliales déclenchées par le VEGF/VEGFR-2. L’identification des mécanismes moléculaires en aval de ces deux récepteurs, Tie2 et VEGFR-2, et la compréhension des différentes voies de signalisation activées par ces complexes moléculaires nous permettra de mettre la lumière sur des nouvelles cibles thérapeutiques pour le traitement des maladies angiogéniques. / Angiogenesis is the formation of new blood vessels from a pre-existing vascular network. It is an essential mechanism for many physiological and pathological conditions. Also, the general mechanism in both conditions remains the same. VEGF and its receptor VEGFR-2 have been proven to be specific and critical for blood vessel formation. The Angiopoietin-1 receptor, Tie2, is required for vascular development as well as in tumor angiogenesis. It is known that the activation of Tie2 is required for vascular stabilization by inhibiting vascular permeability induced by VEGFR-2. First, we found that the pro-angiogenic growth factor, Ang-1 counteracts the effects of VEGF-induced permeability by inhibiting NO production by endothelial cells. This inhibitory effect of Tie2 acts directly on eNOS activity. Following activation of Tie2 by Ang-1, eNOS becomes highly phosphorylated on the inhibitory site, the Thr497, following PKCζ phosphorylation and activation. Our results suggest that the inhibition by Tie2 of vascular permeability during angiogenesis is due, in part, to the inhibition of NO production. In our second study we distinguished between two types of endothelial cell migration induced by Ang-1 and VEGF. At the opposite of Ang-1 that induced collective and directional cell migration, VEGF promoted individual and random cell motility. We identified β-catenin as a new molecular partner of PKCζ. This association of PKCζ with β-catenin brings the Par6-aPKC polarity complex and the adherens junctions complex to interact with each other at two different locations in endothelial cells. PKCζ/β-catenin complex is located specifically at cell-cell contacts to maintain cohesion and cell adhesion necessary for the collective migration process. This complex was located also at the leading edge of endothelial cells during migration to ensure the directionality and the persistence of migration in response to Ang-1. In addition, inhibition of PKCζ or β-catenin switched the migration mode, in response to Ang-1, from directional and collective to a more random and individual cell migration which resembles the type of migration of endothelial cells exposed to VEGF. These results were confirmed in vivo by aberrant cell polarity and cell adhesion defects of tip cell during vascular sprouting of intersegmental vessels in PKCζ deficient zebrafish embryos. In summary, Ang-1/Tie2 modulates endothelial cell signaling and biological responses induced by VEGF/VEGFR-2. The identification of molecular mechanisms involved in the action of these two receptors, VEGFR-2 and Tie2, and the understanding of the different signaling pathways activated by these molecular complexes will allow us to identify new therapeutic targets for the treatment of angiogenic diseases treatment.

Page generated in 0.072 seconds