• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 43
  • 13
  • 13
  • 13
  • 13
  • 10
  • 10
  • 8
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 202
  • 202
  • 77
  • 61
  • 44
  • 33
  • 26
  • 26
  • 25
  • 24
  • 21
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Algorithmes distribués de consensus de moyenne et leurs applications dans la détection des trous de couverture dans un réseau de capteurs / Distributed average consensus algorithms and their applications to detect coverage hole in sensors network

Hanaf, Anas 21 November 2016 (has links)
Les algorithmes distribués de consensus sont des algorithmes itératifs de faible complexité où les nœuds de capteurs voisins interagissent les uns avec les autres pour parvenir à un accord commun sans unité coordinatrice. Comme les nœuds dans un réseau de capteurs sans fil ont une puissance de calcul et une batterie limitées, ces algorithmes distribués doivent parvenir à un consensus en peu de temps et avec peu d’échange de messages. La première partie de cette thèse s’est basée sur l’étude et la comparaison des différents algorithmes de consensus en mode synchrone et asynchrone en termes de vitesse de convergence et taux de communications. La seconde partie de nos travaux concerne l’application de ces algorithmes de consensus au problème de la détection de trous de couverture dans les réseaux de capteurs sans fil.Ce problème de couverture fournit aussi le contexte de la suite de nos travaux. Il se décrit comme étant la façon dont une région d’intérêt est surveillée par des capteurs. Différentes approches géométriques ont été proposées mais elles sont limitées par la nécessité de connaitre exactement la position des capteurs ; or cette information peut ne pas être disponible si les dispositifs de localisation comme par exemple le GPS ne sont pas sur les capteurs. À partir de l’outil mathématique appelé topologie algébrique, nous avons développé un algorithme distribué de détection de trous de couverture qui recherche une fonction harmonique d’un réseau, c’est-à-dire annulant l’opérateur du Laplacien de dimension 1. Cette fonction harmonique est reliée au groupe d’homologie H1 qui recense les trous de couverture. Une fois une fonction harmonique obtenue, la détection des trous se réalise par une simple marche aléatoire dans le réseau. / Distributed consensus algorithms are iterative algorithms of low complexity where neighboring sensors interact with each other to reach an agreement without coordinating unit. As the nodes in a wireless sensor network have limited computing power and limited battery, these distributed algorithms must reach a consensus in a short time and with little message exchange. The first part of this thesis is based on the study and comparison of different consensus algorithms synchronously and asynchronously in terms of convergence speed and communication rates. The second part of our work concerns the application of these consensus algorithms to the problem of detecting coverage holes in wireless sensor networks.This coverage problem also provides the context for the continuation of our work. This problem is described as how a region of interest is monitored by sensors. Different geometrical approaches have been proposed but are limited by the need to know exactly the position of the sensors; but this information may not be available if the locating devices such as GPS are not on the sensors. From the mathematical tool called algebraic topology, we have developed a distributed algorithm of coverage hole detection searching a harmonic function of a network, that is to say canceling the operator of the 1-dimensional Laplacian. This harmonic function is connected to the homology group H1 which identifies the coverage holes. Once a harmonic function obtained, detection of the holes is realized by a simple random walk in the network.
182

Sur les groupes d’homotopie des sphères en théorie des types homotopiques / On the homotopy groups of spheres in homotopy type theory

Brunerie, Guillaume 15 June 2016 (has links)
L’objectif de cette thèse est de démontrer que π4(S3) ≃ Z/2Z en théorie des types homotopiques. En particulier, c’est une démonstration constructive et purement homotopique. On commence par rappeler les concepts de base de la théorie des types homotopiques et on démontre quelques résultats bien connus sur les groupes d’homotopie des sphères : le calcul des groupes d’homotopie du cercle, le fait que ceux de la forme πk(Sn) avec k < n sont triviaux et la construction de la fibration de Hopf. On passe ensuite à des outils plus avancés. En particulier, on définit la construction de James, ce qui nous permetde démontrer le théorème de suspension de Freudenthal et le fait qu’il existe un entier naturel n tel que π4(S3) ≃ Z/2Z. On étudie ensuite le produit smash des sphères, on construit l’anneau de cohomologie des espaces et on introduit l’invariant de Hopf, ce qui nous permet de montrer que n est égal soit à 1, soit à 2. L’invariant de Hopf nous permet également de montrer que tous les groupes de la forme π4n−1(S2n) sont infinis. Finalement, on construit la suite exacte de Gysin, ce qui nous permet de calculer la cohomologie de CP2 et de démontrer que π4(S3) ≃ Z/2Z, et que plus généralement on a πn+1(Sn) ≃ Z/2Z pour tout n ≥ 3 / The goal of this thesis is to prove that π4(S3) ≃ Z/2Z in homotopy type theory. In particular it is a constructive and purely homotopy-theoretic proof. We first recall the basic concepts of homotopy type theory, and we prove some well-known results about the homotopy groups of spheres: the computation of the homotopy groups of the circle, the triviality of those of the form πk(Sn) with k < n, and the construction of the Hopf fibration. We then move to more advanced tools. In particular, we define the James construction which allows us to prove the Freudenthal suspension theorem and the fact that there exists a natural number n such that π4(S3) ≃ Z/nZ. Then we study the smash product of spheres, we construct the cohomology ring of a space, and we introduce the Hopf invariant, allowing us to narrow down the n to either 1 or 2. The Hopf invariant also allows us to prove that all the groups of the form π4n−1(S2n) are infinite. Finally we construct the Gysin exact sequence, allowing us to compute the cohomology of CP2 and to prove that π4(S3) ≃ Z/2Z and that more generally πn+1(Sn) ≃ Z/2Z for every n ≥ 3
183

Formalidade geométrica e números de Chern em variedades flag / Geometric formality and Chern numbers on flag manifolds

Oliveira, Ailton Ribeiro de, 1987- 27 August 2018 (has links)
Orientadores: Caio José Colletti Negreiros, Lino Anderson da Silva Grama / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T16:12:58Z (GMT). No. of bitstreams: 1 Oliveira_AiltonRibeirode_D.pdf: 1000877 bytes, checksum: 4f91902c1ef47fbb7b02f75348402924 (MD5) Previous issue date: 2015 / Resumo: A primeira parte do trabalho é dedicada ao estudo da formalidade geométrica em variedades flag. Uma Estrutura Riemanniana (M,g) é geometricamente formal se g possui a propriedade que todos os produtos wedge de formas harmônicas são harmônicos. Tal métrica g é chamada formal. Vamos analisar esse fato quando M é uma variedade flag usando métodos topológicos. Na verdade, mostraremos que muitas variedades flag não admitem nenhuma métrica formal g. Na segunda parte do trabalho, calcularemos os números de Chern de várias variedades flag e vamos usá-los para classificar algumas estruturas quase complexas invariantes. Além disso, mostraremos, com o auxílio do Teorema de Kodaira, que os números de Chern satisfazem algumas relações impostas pelo Teorema de Hirzebruch-Riemann-Roch / Abstract: The first part of work is dedicated to the study of geometric formality on flag manifolds. A Riemannian Structure (M,g) is geometrically formal if g has the property that all wedge products of harmonic forms are harmonic. Such metric g is called formal. We are going to analyse this fact when M is a flag manifold using topological methods. Indeed, we will show that many flag manifolds do not admit a formal metric g. In the second part of work, we will calculate Chern numbers of many flag manifolds and we are going to use them to classify some invariant almost complex structures. Furthermore, we will show with help of the Kodaira Theorem that the Chern numbers satisfy some relations imposed by the Hirzebruch-Riemann-Roch Theorem / Doutorado / Matematica / Doutor em Matemática
184

Betti numbers of deterministic and random sets in semi-algebraic and o-minimal geometry

Abhiram Natarajan (8802785) 06 May 2020 (has links)
<p>Studying properties of random polynomials has marked a shift in algebraic geometry. Instead of worst-case analysis, which often leads to overly pessimistic perspectives, randomness helps perform average-case analysis, and thus obtain a more realistic view. Also, via Erdos' astonishing 'probabilistic method', one can potentially obtain deterministic results by introducing randomness into a question that apriori had nothing to do with randomness. </p> <p><br></p> <p>In this thesis, we study topological questions in real algebraic geometry, o-minimal geometry and random algebraic geometry, with motivation from incidence combinatorics. Specifically, we prove results along two different threads:</p> <p><br></p> <p>1. Topology of semi-algebraic and definable (over any o-minimal structure over R) sets, in both deterministic and random settings.</p><p>2. Topology of random hypersurface arrangements. In this case, we also prove a result that could be of independent interest in random graph theory.</p> <p><br></p> <p>Towards the first thread, motivated by applications in o-minimal incidence combinatorics, we prove bounds (both deterministic and random) on the topological complexity (as measured by the Betti numbers) of general definable hypersurfaces restricted to algebraic sets. Given any sequence of hypersurfaces, we show that there exists a definable hypersurface G, and a sequence of polynomials, such that each manifold in the sequence of hypersurfaces appears as a component of G restricted to the zero set of some polynomial in the sequence of polynomials. This shows that the topology of the intersection of a definable hypersurface and an algebraic set can be made <i>arbitrarily pathological</i>. On the other hand, we show that for random polynomials, the Betti numbers of the restriction of the zero set of a random polynomial to any definable set deviates from a Bezout-type bound with <i>bounded probability</i>.</p> <p><br></p> <p>Progress in o-minimal incidence combinatorics has lagged behind the developments in incidence combinatorics in the algebraic case due to the absence of an o-minimal version of the Guth-Katz <i>polynomial partitioning</i> theorem, and the first part of our work explains why this is so difficult. However, our average result shows that if we can prove that the measure of the set of polynomials which satisfy a certain property necessary for polynomial partitioning is suitably bounded from below, by the <i>probabilistic method</i>, we get an o-minimal polynomial partitioning theorem. This would be a tremendous breakthrough and would enable progress on multiple fronts in model theoretic combinatorics. </p> <p><br></p> <p>Along the second thread, we have studied the average Betti numbers of <i>random hypersurface arrangements</i>. Specifically, we study how the average Betti numbers of a finite arrangement of random hypersurfaces grows in terms of the degrees of the polynomials in the arrangement, as well as the number of polynomials. This is proved using a random Mayer-Vietoris spectral sequence argument. We supplement this result with a better bound on the average Betti numbers when one considers an <i>arrangement of quadrics</i>. This question turns out to be equivalent to studying the expected number of connected components of a certain <i>random graph model</i>, which has not been studied before, and thus could be of independent interest. While our motivation once again was incidence combinatorics, we obtained the first bounds on the topology of arrangements of random hypersurfaces, with an unexpected bonus of a result in random graphs.</p>
185

Bornes sur les nombres de Betti pour les fonctions propres du Laplacien

Nonez, Fabrice 10 1900 (has links)
In this thesis, we will work with the nodal sets of Laplace eigenfunctions on a few simple manifolds, like the sphere and the flat torus. We will obtain bounds on the total Betti number of the nodal set that depend on the corresponding eigenvalue. Our work generalize Courant's theorem. / Dans ce mémoire, nous travaillons sur les ensembles nodaux de combinaisons de fonctions propres du laplacien, particulièrement sur la sphère et le tore plat. On bornera les nombres de Betti de ces ensembles en fonction de la valeur propre maximale. D'une certaine façon, cela généralise le fameux théorème de Courant.
186

E_1 ring structures in Motivic Hermitian K-theory

López-Ávila, Alejo 02 March 2018 (has links)
This Ph.D. thesis deals with E1-ring structures on the Hermitian K-theory in the motivic setting, more precisely, the existence of such structures on the motivic spectrum representing the hermitianK-theory is proven. The presence of such structure is established through two different approaches. In both cases, we consider the category of algebraic vector bundles over a scheme, with the usual requirements to do motivic homotopy theory. This category has two natural symmetric monoidal structures given by the direct sum and the tensor product, together with a duality coming from the functor represented by the structural sheaf. The first symmetric monoidal structure is the one that we are going to group complete along this text, and we will see that the second one, the tensor product, is preserved giving rise to an E1-ring structure in the resulting spectrum. In the first case, a classic infinite loop space machine applies to the hermitian category of the category of algebraic vector bundles over a scheme. The second approach abords the construction using a new hermitian infinite loop space machine which uses the language of infinity categories. Both assemblies applied to our original category have like output a presheaf of E1-ring spectra. To get an spectrum representing the hermitian K-theory in the motivic context we need a motivic spectrum, i.e, a P1-spectrum. We use a delooping construction at the end of the text to obtain a presheaf of E1-ring P1-spectra from the two presheaves of E1-ring spectra indicated above.
187

Spectral sequences for composite functors / Spektralsekvenser för sammansatta funktorer

Erlandsson, Adam January 2022 (has links)
Spectral sequences were developed during the mid-twentieth century as a way of computing (co)homology, and have wide uses in both algebraic topology and algebraic geometry.  Grothendieck introduced in his Tôhoku paper the Grothendieck spectral sequence, which given left exact functors $F$ and $G$ between abelian categories, uses the right-derived functors of $F$ and $G$ as initial data and converges to the right-derived functors of the composition $G\circ F.$  This thesis focuses on instead constructing a spectral sequence that uses the derived functors of $G$ and $G\circ F$ as initial data and converges to the derived functors of $F.$ Our approach takes inspiration from the construction of the Eilenberg-Moore spectral sequence, which given a fibration of topological spaces can calculate the singular cohomology of the fiber from the singular cohomology of the base space and total space. The Eilenberg-Moore spectral sequence can be constructed through the use of differential graded algebras and their bar construction, since this defines a double complex for which the column-wise filtration of the corresponding total complex induces the spectral sequence. The correct analogue of this with respect to composite functors is the bar construction for monads. Specifically, we let $G$ have an exact left adjoint $H$, which makes $G\circ H$ into a monad. Then, we extend our adjunction so that the derived functor $RG$ has left adjoint $RH$ in the corresponding derived categories, making $RG\circ RH$ into a monad. This allows us to apply the bar construction in the derived category, but we show that there emerge issues in obtaining a double complex and subsequent total complex from this construction.  Additionally, we present the essential theory of spectral sequences in general, and of the Serre, Eilenberg-Moore and Grothendieck spectral sequences in particular. / Spektralsekvenser utvecklades under mitten av 1900-talet som ett verktyg för att beräkna (ko)homologi, och har många användningsområden inom både algebraisk topologi och algebraisk geometri. Grothendieck introducerade i sin Tôhoku-artikel Grothendieck-spektralsekvensen, som givet vänsterexakta funktorer $F$ och $G$ mellan abelska kategorier använder de högerderiverade funktorerna av $F$ och $G$ som initialdata och som konvergerar till de högerderiverade funktorerna av kompositionen $G\circ F$. Denna masteruppsats fokuserar på att istället konstruera en spektralsekvens som använder de deriverade funktorerna av $G$ och $G\circ F$ som initialdata och konvergerar till de deriverade funktorerna av $F$. Vår metod tar inspiration från konstruktionen av Eilenberg-Moore-spektralsekvensen, som givet en fibrering av topologiska rum kan beräkna den singulära kohomologin av fibern från den singulära kohomologin av basrummet och totalrummet. Eilenberg-Moore spektralsekvensen kan konstrueras genom användningen av graderade differentialalgebror och deras bar-konstruktion, eftersom detta definierar ett dubbelkomplex vars kolumnvisa filtrering av det resulterande totalkomplexet inducerar spektralsekvensen. Vad gäller kompositioner av funktorer så är den korrekta analogin till detta bar-konstruktionen för monader. Specifikt så låter vi $G$ ha en exakt vänsteradjungerad funktor $H$, vilket gör $G\circ H$ till en monad. Sedan utvidgar vi denna adjunktion sådant att den deriverade funktorn $RG$ har vänsteradjunkt $RH$ i den deriverade kategorin, vilket gör $RG\circ RH$ till en monad. Detta ger oss möjligheten att använda bar-konstruktionen i den deriverade kategorin, men vi visar att det uppstår problem när vi ska definiera ett dubbelkomplex och resulterande totalkomplex från denna konstruktion. Utöver detta så innehåller denna uppsats en genomgång av den viktigaste teorin om spektralsekvenser i allmänhet, och om Serre-, Eilenberg-Moore- och Grothendieck-spektralsekvensen i synnerhet.
188

Toric Ideals of Finite Simple Graphs

Keiper, Graham January 2022 (has links)
This thesis deals with toric ideals associated with finite simple graphs. In particular we establish some results pertaining to the nature of the generators and syzygies of toric ideals associated with finite simple graphs. The first result dealt with in this thesis expands upon work by Favacchio, Hofscheier, Keiper, and Van Tuyl which states that for G, a graph obtained by "gluing" a graph H1 to a graph H2 along an induced subgraph, we can obtain the toric ideal associated to G from the toric ideals associated to H1 and H2 by taking their sum as ideals in the larger ring and saturating by a particular monomial f. Our contribution is to sharpen the result and show that instead of a saturation by f, we need only examine the colon ideal with f^2. The second result treated by this thesis pertains to graded Betti numbers of toric ideals of complete bipartite graphs. We show that by counting specific subgraphs one can explicitly compute a minimal set of generators for the corresponding toric ideals as well as minimal generating sets for the first two syzygy modules. Additionally we provide formulas for some of the graded Betti numbers. The final topic treated pertains to a relationship between the fundamental group the finite simple graph G and the associated toric ideal to G. It was shown by Villareal as well as Hibi and Ohsugi that the generators of a toric ideal associated to a finite simple graph correspond to the closed even walks of the graph G, thus linking algebraic properties to combinatorial ones. Therefore it is a natural question whether there is a relationship between the toric ideal associated to the graph G and the fundamental group of the graph G. We show, under the assumption that G is a bipartite graph with some additional assumptions, one can conceive of the set of binomials in the toric ideal with coprime terms, B(IG), as a group with an appropriately chosen operation ⋆ and establish a group isomorphism (B(IG), ⋆) ∼= π1(G)/H where H is a normal subgroup. We exploit this relationship further to obtain information about the generators of IG as well as bounds on the Betti numbers. We are also able to characterise all regular sequences and hence compute the depth of the toric ideal of G. We also use the framework to prove that IG = (⟨G⟩ : (e1 · · · em)^∞) where G is a set of binomials which correspond to a generating set of π1(G). / Thesis / Doctor of Philosophy (PhD)
189

Cutkosky's Theorem: one-loop and beyond

Mühlbauer, Maximilian 27 October 2023 (has links)
Wir untersuchen die analytische Struktur von Feynman Integralen als mengenwertige holomorphe Funktionen mit topologischen Methoden, spezifisch mit Techniken für singuläre Integrale. Der Hauptfokus liegt auf dem Ein-Schleifen-Fall. Zunächst geben wir einen gründlichen Überblick über die Theorie der singulären Integrale und füllen einige Lücken in der Literatur. Anschließend untersuchen wir die Topologie von endlichen Vereinigungen und Schnitten von bestimmten nicht-degenerierten affinen komplexes Quadriken, welche die relevante Geometrie von Ein-Schleifen Feynman Integralen darstellen. Wir etablieren einige grundsätzliche topologische Eigenschaften und führen eine Kompaktifizierung von Bündeln solcher Räume und eine Whitney Stratifizierung dieser ein. Des Weiteren berechnen wir die Homologiegruppen der Fasern durch eine Dekomposition in die auftretenden Schnitte komplexer Sphären. Das Einführen einer CW-Dekomposition einer spezifischen Faser führt zu einer kombinatorischen Studie, welche es uns erlaubt explizite Generatoren in Sinne dieser CW-Strukture zu berechnen. Unter Verwendung dieser Generatoren berechnen wir die relevanten Schnittindizes, welche im Ramifizierungsproblem auftreten. Durch Anwendung dieser Resultate auf Ein-Schleifen Feynman Integrale finden wir die klassischen Landau Gleichungen wieder und erhalten einen vollständigen Beweis von Cutkoskys Theorem. Des Weiteren untersuchen wir, wie viel dieses Mechanismus sich auf den Mehr-Schleifen Fall überträgt. Insbesondere betrachten wir zwei Beispiele von Mehr-Schleifen Integralen und erhalten Resultate die über den aktuellen Stand der Literatur hinaus gehen. / We investigate the analytic structure of Feynman integrals as multivalued holomorphic functions with topological methods, specifically with techniques for singular integrals. The main focus lies on the one-loop case. First, we conduct a thorough review of the theory of singular integrals, filling some gaps in the literature. Then, we investigate the topology of finite unions and intersections of certain non-degenerate affine complex quadrics which constitute the relevant geometry of one-loop Feynman integrals. We establish some basic topological properties and introduce a compactification of bundles of such spaces and a Whitney stratification thereof. Furthermore, we compute the homology groups of the fibers via a decomposition into the direct sum of all occurring intersections of complex spheres. Introducing a CW-decomposition of a specific fiber leads to a combinatorial study, allowing us to obtain explicit generators in terms of this CW-structure. Using these generators, we compute the relative intersection indices that occur in the ramification problem. Applying these results to one-loop Feynman integrals, we retrieve the classical Landau equations and obtain a full proof of Cutkosky's Theorem. Furthermore, we investigate how much of this machinery applies to the multi-loop case. In particular, we consider two examples of multi-loop integrals and obtain results beyond the current state of the literature.
190

Topologia algébrica não-abeliana / Non-abelian algebraic topology

Vieira, Renato Vasconcellos 07 February 2014 (has links)
O presente trabalho é uma apresentação de aplicações de estruturas da álgebra de dimensões altas para a teoria de homotopia. Mais precisamente mostramos que existe uma equivalência entre as categorias dos cat$^n$-grupos e a dos $n$-cubos cruzados de grupos, ambas equivalentes a categoria das $n$-categorias estritas internas à categoria de grupos, e uma certa subcategoria da categoria dos $n$-cubos fibrantes, os chamados $n$-cubos de Eilenberg-MacLane. Além disso existe uma equivalência entre uma localização dessa subcategoria e a categoria homotópica dos $(n+1)$-tipos homotópicos, o que sugere a utilidade de usar as estruturas algébricas apresentadas como invariantes topológicas. O teorema central dessa teoria, o teorema generalizado de Seifert-van Kampen, diz que o funtor dos $n$-cubos de fibração aos cat$^n$-grupos usado para mostrar a equivalência mencionada preserva o colimite de certos diagramas e que nesses casos conectividade é preservada, o que permite certas computações. Apresentaremos definições das estruturas algébricas mencionadas além de como calcular certos colimites na categoria de $n$-cubos cruzados de grupos, demonstraremos os teoremas principais da teoria e mostramos como usar esses resultados para generalizar resultados clássicos da topologia algébrica como o teorema de Blakers-Massey, o teorema de Hurewicz e a fórmula de Hopf para homologia de grupos. / The present work is a presentation of applications to homotopy theory of structures in higher dimensional algebra. More precisely we show how the categories of crossed $n$-cubes of groups and of cat$^n$-groups, both equivalent to the category of strict $n$-categories internal to the category of groups, are equivalent to a subcategory of the category of fibrant $n$-cubes, namely the Eilenberg-MacLane $n$-cubes. There is also an equivalence between a localization of the category of Eilenberg-MacLane $n$-cubes and the homotopy category of homotopy $(n+1)$-types, which suggests the usefulness of the presented algebraic structures as topological invariants. The central theorem of this theory, the generalized Seifert-van Kampen theorem, states that the functor from $n$-cube of fibrations to the cat$^n$-groups used to show the aforementioned equivalence preserves the colimit of certain diagrams, and in these cases connectivity is preserved, which permits some computations. We present definitions of the relevant algebraic structures and also how to calculate certain colimits in the category of crossed $n$-cubes of groups, we demonstrate the main theorems of the theory and then we show how to generalize classical results in algebraic topology like the Blakers-Massey theorem, Hurewicz theorem and Hopf\'s formula for the homology of groups.

Page generated in 0.0689 seconds