Spelling suggestions: "subject:"análise bayesiana"" "subject:"análise bayesianas""
21 |
The new class of Kummer beta generalized distributions: theory and applications / A nova classe de distribuições Kummer beta generalizada: teoria e aplicaçõesRodrigo Rossetto Pescim 06 December 2013 (has links)
In this study, a new class of generalized distributions was developed, based on the Kummer beta distribution (NG; KOTZ, 1995), which contains as particular cases the exponentiated and beta generators of distributions. The main feature of the new family of distributions is to provide greater flexibility to the extremes of the density function and therefore, it becomes suitable for analyzing data sets with high degree of asymmetry and kurtosis. Also, two new distributions belonging to the new class of distributions, based on the Birnbaum-Saunders and generalized gamma distributions, that has as main characteristic the hazard function which assumes different forms (unimodal, bathtub shape, increase, decrease) were studied. In all studies, general mathematical properties such as ordinary and incomplete moments, generating function, mean deviations, reliability, entropies, order statistics and their moments were discussed. The estimation of parameters is approached by the method of maximum likelihood and Bayesian analysis and the observed information matrix is derived. It is also considered the likelihood ratio statistics and formal goodness-of-fit tests to compare all the proposed distributions with some of its sub-models and non-nested models. The developed results for all studies were applied to six real data sets. / Neste trabalho, foi proposta uma nova classe de distribuições generalizadas, baseada na distribuição Kummer beta (NG; KOTZ, 1995), que contém como casos particulares os geradores exponencializado e beta de distribuições. A principal característica da nova família de distribuições é fornecer grande flexibilidade para as extremidades da função densidade e portanto, ela torna-se adequada para a análise de conjuntos de dados com alto grau de assimetria e curtose. Também foram estudadas duas novas distribuições que pertencem à nova família de distribuições, baseadas nas distribuições Birnbaum-Saunders e gama generalizada, que possuem função de taxas de falhas que assumem diferentes formas (unimodal, forma de banheira, crescente e decrescente). Em todas as pesquisas, propriedades matemáticas gerais como momentos ordinários e incompletos, função geradora, desvios médio, confiabilidade, entropias, estatísticas de ordem e seus momentos foram discutidas. A estimação dos parâmetros é abordada pelo método da máxima verossimilhança e pela análise bayesiana e a matriz de informação observada foi derivada. Considerou-se, também, a estatística de razão de verossimilhanças e testes formais de qualidade de ajuste para comparar todas as distribuições propostas com alguns de seus submodelos e modelos não encaixados. Os resultados desenvolvidos foram aplicados a seis conjuntos de dados.
|
22 |
Problemas respiratórios e fatores ambientais: uma análise Bayesiana para dados de Ribeirão Preto / Respiratory problems and environmental factors: a Bayesian analysis for data from Ribeirão Preto City.Estela Cristina Carneseca 16 December 2011 (has links)
Estudos envolvendo o meio ambiente estão sendo cada vez mais desenvolvidos devido ao fato dos níveis de poluição e das mudanças climáticas estarem causando a degradação da qualidade do ar e dos reservatórios de água de maneira alarmante nos últimos anos, comprometendo sobretudo, a qualidade de vida do ser humano. Dado que estes fatores são preponderantes nos agravos e complicações respiratórias dos indivíduos, buscou-se compreender com este estudo a relação entre as condições atmosféricas e os problemas respiratórios nos residentes do município de Ribeirão Preto, interior de São Paulo, onde há um elevado número de focos de queimadas nos períodos de estiagem e, consequentemente, altas concentrações de poluentes, como o material particulado. Considerando os dados mensais de contagem de inalações/nebulizações, foram assumidos diferentes modelos de regressão de Poisson na presença de um fator aleatório que captura a variabilidade extra-Poisson entre as contagens. A análise dos dados foi feita sob enfoque Bayesiano, utilizando métodos de simulação MCMC (Monte Carlo em Cadeias de Markov) para obter os sumários a posteriori de interesse. / Many studies involving the environment are being developed in the last years due to the fact that the levels of pollution and climate changes are causing the degradation of air quality and water reservoirs at an alarming rate in recent years, with great consequences for the quality of life of the population. Since these factors are prevalent in respiratory disorders and complications of the health for the individuals, we intended to understand from this study the relationship between weather conditions and respiratory problems for the residents of the municipality of Ribeirão Preto, São Paulo, which has a high number of outbreaks of fires in drought periods and, consequently, high concentrations of pollutants such as particulate matter. Considering the monthly count of inhalations / nebulizations, we assumed different Poisson regression models in the presence of a random factor that captures the extra-Poisson variability between the counts. The data analysis was performed under a Bayesian approach using MCMC simulation methods (Markov Chain Monte Carlo) to get the posterior summaries of interest.
|
23 |
Análise estatística de curvas de crescimento sob o enfoque clássico e Bayesiano: aplicação à dados médicos e biológicos / Statistical analysis of growth curves under the classical and Bayesian approach: application to medical and biological dataBreno Raphael Gomes de Oliveira 16 February 2016 (has links)
Introdução: A curva de crescimento é um modelo empírico da evolução de uma quantidade ao longo do tempo. As curvas de crescimento são utilizadas em muitas disciplinas , em particular no domínio da estatística, onde há uma grande literatura sobre o assunto relacionado a modelos não lineares. Método:No desenvolvimento dessa dissertação de mestrado, foi realizado um estudo baseado em dados de crescimento nas áreas biológica e médica para comparar os dois tipos de inferência (Clássica e Bayesiana), na busca de melhores estimativas e resultados para modelos de regressão não lineares, especialmente considerando alguns modelos de crescimento introduzidos na literatura. No método Bayesiano para a modelagem não linear assumimos erros normais uma suposição usual e também distribuições estáveis para a variável resposta. Estudamos também alguns aspectos de robustez dos modelos de regressão não linear para a presença de outliers ou observações discordantes considerando o uso de distribuições estáveis para a resposta no lugar da suposição de normalidade habitual. Resultados e Conclusões: Análise dos dois exemplos pode-se observar melhores ajustes quando utilizada o método Bayesiano de ajustes de modelos não lineares de curvas de crescimento. É bem sabido que, em geral, não há nenhuma forma fechada para a função densidade de probabilidade de distribuições estáveis. No entanto, sob uma abordagem Bayesiana, a utilização de uma variável aleatória latente ou auxiliar proporciona uma simplificação para obter qualquer distribuição a posteriori quando relacionado com distribuições estáveis. Esses resultados poderiam ser de grande interesse para pesquisadores e profissionais, ao lidar com dados não Gauss. Para demonstrar a utilidade dos aspectos computacionais, a metodologia é aplicada a um exemplo relacionado com as curvas de crescimento intra-uterino para prematuros. Resumos a posteriori de interesse são obtidos utilizando métodos MCMC (Markov Chain Monte Carlo) e o software OpenBugs. / Introduction: The growth curve is an empirical model of the evolution of a quantity over time. Growth curves are used in many disciplines, particularly in the field of statistics, where there is a large literature on the subject related to nonlinear models. Method: In the development of this dissertation, a study based on data growth in biological areas and medical was conducted to compare two types of inferences (Classical and Bayesian), in search of better estimates and results for nonlinear regression models, especially considering some growth models introduced in the literature. The Bayesian method for nonlinear modeling assume normal errors an usual assumption and also stable distributions for the response variable. We also study some aspects of robustness of nonlinear regression models for the presence of outliers or discordant observations regarding the use of stable distributions to the response in place of the usual assumption of normality. Results and Conclusions: In the analysis of two examples it can be seen best results using Bayesian methodology for non linear models of growth curves. It is well known that, in general, there is no closed form for the probability density function of stable distributions. However, under a Bayesian approach, the use of a latent random variable or auxiliary variable provides a simplification to get every conditional posterior related to stable distributions. These results could be of great interest to researchers and practitioners when dealing with non-Gaussian data. To demonstrate the utility of the computational aspects, the methodology is also applied to an example related to intrauterine growth curves for premature infants. Posterior summaries of interest are obtained using MCMC methods (MCMC) and the OpenBugs software.
|
24 |
Sistemática e taxonomia de Rudgea Salisb. (Palicoureeae, Rubiaceae) / Systematics and taxonomy of Rudgea Salisb. (Palicoureeae, Rubiaceae)Carla Poleselli Bruniera 17 April 2015 (has links)
A sistemática da família Rubiaceae passou por grandes mudanças nas últimas duas décadas. O uso de dados moleculares levou a revisões significativas na classificação intra-familiar, principalmente a nível genérico. As relações entre alguns dos gêneros neotropicais mais diversos de Rubiaceae (e.g. Psychotria, Palicourea e Rudgea) estão sendo investigadas. O gênero neotropical Rudgea possui c. 130 espécies, distribuídas do México ao nordeste da Argentina, com dois centros de diversidade, um no noroeste da América do Sul, e outro no sudeste do Brasil. As espécies são caracterizadas pelas estípulas inteiras ou fimbriadas, com apêndices glandulares, presença de domácias nas folhas, inflorescência terminal, lobos da corola corniculados e sementes profundamente sulcadas na face adaxial. Trabalhos filogenéticos anteriores incluíram uma amostragem limitada de espécies do gênero Rudgea. Nossas análises moleculares mostram Rudgea como um gênero monofilético com a exclusão de R. woronovii, uma espécie mais próxima de Palicourea sensu lato. Por outro lado, R. stipulacea emergiu como grupo-irmão das demais espécies de Rudgea, sendo o grupo formado por estas espécies altamente sustentado e denominado \"Rudgea sensu stricto\". Mudanças taxonômicas serão necessárias para acomodar Rudgea stipulacea, e uma classificação infragenérica de Rudgea será proposta, com suporte molecular e morfológico. Além da análises filogenéticas, também foi realizado um tratamento taxonômico para as espécies brasileiras de Rudgea, com 64 espécies aceitas e 26 sinônimos novos. Informações nomenclaturais completas foram fornecidas e 36 lectótipos foram designados. Chaves de identificação para as espécies e subespécies (quando apropriado) também foram apresentadas. Informações sobre distribuição geográfica, habitat, fenologia, discussões taxonômicas, material examinado e figuras também foram apresentadas. Este é o primeiro tratamento de Rudgea para o Brasil desde a monografia de Mueller Argoviensis em 1881 para a Flora Brasiliensis. Como parte dos estudos taxonômicos em Rudgea, o manuscrito que compreende as descrições de duas novas espécies da Bahia (Brasil) e o manuscrito com novas combinações em Rudgea e Palicourea sensu lato também foram incluídos nesta tese / Systematics of Rubiaceae has undergone major changes during the last two decades. The use of molecular data has lead to a profound revision in the intra-familiar classification, mainly at generic level. It has become clear that the relationships between some of the largest genera of Neotropical Rubiaceae (e.g. Psychotria, Palicourea and Rudgea) had to be investigated. The neotropical genus Rudgea encompasses c. 130 species distributed from Mexico to northeastern Argentina with two main centers of diversity, one in the western portion of South America and another in southeastern Brazil. The species are characterized by the entire to fimbriate stipules, with glandular appendages, presence of domatia in the leaves, terminal inflorescence, corniculate corolla-lobes and pyrenes deeply furrowed adaxially. Previous Rubiaceae phylogenies have included a limited sample of Rudgea species. Our molecular analyses have shown Rudgea as a monophyletic genus with the exclusion of R. woronovii, a species more closely related to Palicourea sensu lato. On the other hand, R. stipulacea appears as sister to all other Rudgea, this last group strongly supported and formed by the species of \"Rudgea sensu stricto\". Taxonomic changes will be necessary to accommodate R. stipulacea and an infrageneric classification of Rudgea will be proposed, with molecular and morphological support. Besides the phylogenetic analyses, it was also conducted a taxonomic study for the Brazilian species of Rudgea, with 64 species accepted species and 26 new synonyms proposed. Comprehensive nomenclatural information is supplied and 36 lectotypes are designated. Identification key for the species and subspecies (where appropriate) are provided and information on geographical distribution, habitat, phenology, taxonomic notes, examined material and illustrations are also provided. This is the first comprehensive treatment of Rudgea for Brazil since Mueller Argoviensis published the Flora Brasiliensis monograph in 1881. As part of the taxonomic studies with Rudgea, the manuscript comprising the descriptions of two new species from Bahia (Brazil) and the manuscript with new combinations in Rudgea and Palicourea sensu lato were also included in this thesis
|
25 |
Resposta sorológica de bovinos vacinados contra o Clostridium chauvoei avaliada pelos testes de aglutinação em placa e ElisaAraujo, Rafael Ferreira [UNESP] 19 February 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:16Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-02-19Bitstream added on 2014-06-13T18:48:02Z : No. of bitstreams: 1
araujo_rf_me_jabo.pdf: 248554 bytes, checksum: e7d4bd27c73efa391fb0fac3082dd622 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O carbúnculo sintomático é um problema sanitário mundial, responsável por elevados coeficientes de mortalidade em bovinos e ovinos. A imunização dos animais jovens, seguida de reforço anual até 2,5 anos de idade, é a principal medida profilática. Foram realizados três experimentos distintos com intuito de avaliar as respostas sorológicas de bovinos vacinados contra o carbúnculo sintomático, pelos testes de aglutinação em placa e Elisa, empregando-se como antígenos a cepa de referência (MT) e uma cepa de campo (SP). No primeiro experimento, os bezerros foram organizados em três grupos (G1, G2 e G3) e submetidos a três protocolos distintos de vacinação empregando-se uma vacina comercial polivalente contra clostridioses. O G1 foi primovacinado aos 4 meses de idade e recebeu o reforço na desmama (8 meses). O G2 recebeu a primeira dose na desmama e reforço 30 dias após. O G3 foi vacinado somente na desmama. As coletas de soro foram realizas aos 4, 8, 9 e 10 meses de idade dos bezerros. O G1 apresentou a melhor resposta sorológica em comparação aos outros dois protocolos. Quando a avaliação dos grupos foi realizada aos 10 meses de idade, independente do protocolo empregado, a resposta sorológica foi similar. No segundo experimento, foi avaliada a imunidade natural passiva de bezerros, filhos de vacas vacinadas até 30 dias antes do parto (2ª dose), empregando-se duas vacinas comercias polivalente contra clostridioses. As coletas de soro foram realizadas aos (±)7, 45 e 90 dias de idade dos bezerros. Independente das vacinas empregadas na imunização ativa das mães, a resposta sorológica passiva dos bezerros avaliados foi similar até os 3 meses de idade. Houve uma correlação linear da resposta sorológica passiva dos bezerros com a data de vacinação das mães e o dia do parto quando empregado o teste de Elisa. No terceiro experimento, as 30 vacas... / Black leg disease is one of the most important sanitary problem, responsible for high levels of mortality observed in bovines and ovines herds. The vaccination of young animals, followed by annual booter until 2,5 years-old, is the major preventive measure against outbreaks. Three distinct experiments were conducted to measure the vaccinal response from bovines. The vaccinal strains used were the reference MT and field Clostridium chauvoei isolated. Sera from vaccinated animals were tested by agglutination and Enzyme Linked Immunosorbent Assay (Elisa), both standardized for the present study. First experiment, calves were divided into three groups (G1, G2 and G3); and submitted to three vaccination schedule with a polyvalent vaccine. The G1 received first vaccine at 4 months of age and a subsequent booster after calving (8 month-old). The G2 received first vaccine dose after calving and booster at 30 days after. The G3 received only one vaccine dose at 8 months. The sera were colleted at 4, 8, 9 and 10 months for all groups studied. The G1 group showed the best serological response at 10 months of age in comparison to G2 e G3 and control. Moreover, at 10 months of age all groups presented similar levels of serological response. The second experiment, the natural immunity of calves, separated from their mothers vaccinated 30 days before calving with two polyvalent vaccines. The respective serum was colleted at (±) 7, 45 and 90 days of age. All calves presented similar serological response at 3 months of age, independent of vaccinal strain used. The third experiment, 30 heifers, Nelore race, aged above 4 years-old, without vaccination against black leg, were vaccinated with two Clostridium strains. When the SP strain was used the serological response was considered good in G3 (first experiment), second and third experiment for agglutination assay. To compare both techniques, agglutination... (Complete abstract click electronic access below)
|
26 |
Alternative regression models to Beta distribution under Bayesian approach / Modelos de regressão alternativos à distribuição Beta sob abordagem bayesianaRosineide Fernando da Paz 25 August 2017 (has links)
The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models. / A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.
|
27 |
Abordagem bayesiana para curva de crescimento com restrições nos parâmetrosAMARAL, Magali Teresópolis Reis 18 August 2008 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-08-04T13:26:23Z
No. of bitstreams: 1
Magali Teresopolis Reis Amaral.pdf: 5438608 bytes, checksum: a3ca949533ae94adaf7883fd465a627a (MD5) / Made available in DSpace on 2016-08-04T13:26:23Z (GMT). No. of bitstreams: 1
Magali Teresopolis Reis Amaral.pdf: 5438608 bytes, checksum: a3ca949533ae94adaf7883fd465a627a (MD5)
Previous issue date: 2008-08-18 / The adjustment of the weight-age growth curves for animals plays an important role in animal production planning. These adjusted growth curves must be coherent with the biological interpretation of animal growth, which often demands imposition of constraints on model parameters.The inference of the parameters of nonlinear models with constraints, using classical techniques, presents various difficulties. In order to bypass those difficulties, a bayesian approach for adjustment of the growing curves is proposed. In this respect the bayesian proposed approach introduces restrictions on model parameters through choice of the prior density. Due to the nonlinearity, the posterior density of those parameters does not have a kernel that can be identified among the traditional distributions, and their moments can only be obtained using numerical techniques. In this work the MCMC simulation (Monte Carlo chain Markov) was implemented to obtain a summary of the posterior density. Besides, selection model criteria were used for the observed data, based on generated samples of the posterior density.The main purpose of this work is to show that the bayesian approach can be of practical use, and to compare the bayesian inference of the estimated parameters considering noninformative prior density (from Jeffreys), with the classical inference obtained by the Gauss-Newton method. Therefore it was possible to observe that the calculation of the confidence intervals based on the asymptotic theory fails, indicating non significance of certain parameters of some models, while in the bayesian approach the intervals of credibility do not present this problem. The programs in this work were implemented in R language,and to illustrate the utility of the proposed method, analysis of real data was performed, from an experiment of evaluation of system of crossing among cows from different herds, implemented by Embrapa Pecuária Sudeste. The data correspond to 12 measurements of weight of animals between 8 and 19 months old, from the genetic groups of the races Nelore and Canchim, belonging to the genotype AALLAB (Paz 2002). The results reveal excellent applicability of the bayesian method, where the model of Richard presented difficulties of convergence both in the classical and in the bayesian approach (with non informative prior). On the other hand the logistic model provided the best adjustment of the data for both methodologies when opting for non informative and informative prior density. / O ajuste de curva de crescimento peso-idade para animais tem um papel importante no planejamento da produção animal. No entanto, as curvas de crescimento ajustadas devem ser coerentes com as interpretações biológicas do crescimento do animal, o que exige muitas vezes que sejam impostas restrições aos parâmetros desse modelo.A inferência de parâmetros de modelos não lineares sujeito a restrições, utilizando técnicas clássicas apresenta diversas dificuldades. Para contornar estas dificuldades, foi proposta uma abordagem bayesiana para ajuste de curvas de crescimento. Neste sentido,a abordagem bayesiana proposta introduz as restrições nos parâmetros dos modelos através das densidades de probabilidade a priori adotadas. Devido à não linearidade, as densidades a posteriori destes parâmetros não têm um núcleo que possa ser identificado entre as distribuições tradicionalmente conhecidas e os seus momentos só podem ser obtidos numericamente. Neste trabalho, as técnicas de simulação de Monte Carlo Cadeia de Markov (MCMC) foram implementadas para obtenção de um sumário das densidades a posteriori. Além disso, foram utilizados critérios de seleção do melhor modelo para um determinado conjunto de dados baseados nas amostras geradas das densidades a posteriori.O objetivo principal deste trabalho é mostrar a viabilidade da abordagem bayesiana e comparar a inferência bayesiana dos parâmetros estimados, considerando-se densidades a priori não informativas (de Jeffreys), com a inferência clássica das estimativas obtidas pelo método de Gauss-Newton. Assim, observou-se que o cálculo de intervalos de confiança, baseado na teoria assintótica, falha, levando a não significância de certos parâmetros de alguns modelos. Enquanto na abordagem bayesiana os intervalos de credibilidade não apresentam este problema. Os programas utilizados foram implementados no R e para ilustração da aplicabilidade do método proposto, foram realizadas análises de dados reais oriundos de um experimento de avaliação de sistema de cruzamento entre raças bovinas de corte, executado na Embrapa Pecuária Sudeste. Os dados correspondem a 12 mensurações de peso dos 8 aos 19 meses de idade do grupo genético das raças Nelore e Canchim, pertencente ao grupo de genotípico AALLAB, ver (Paz 2002). Os resultados revelaram excelente aplicabilidade do método bayesiano, destacando que o modelo de Richard apresentou dificuldades de convergência tanto na abordagem clássica como bayesiana (com priori não informativa). Por outro lado o modelo Logístico foi quem melhor se ajustou aos dados em ambas metodologias quando se optou por densidades a priori não informativa e informativa.
|
28 |
Modelos não lineares truncados mistos para locação e escalaParaiba, Carolina Costa Mota 14 January 2015 (has links)
Made available in DSpace on 2016-06-02T20:04:53Z (GMT). No. of bitstreams: 1
6714.pdf: 1130315 bytes, checksum: 4ce881df9c6c0f6451cae6908855d277 (MD5)
Previous issue date: 2015-01-14 / Financiadora de Estudos e Projetos / We present a class of nonlinear truncated mixed-effects models where the truncation nature of the data is incorporated into the statistical model by assuming that the variable of interest, namely the truncated variable, follows a truncated distribution which, in turn, corresponds to a conditional distribution obtained by restricting the support of a given probability distribution function. The family of nonlinear truncated mixed-effects models for location and scale is constructed based on the perspective of nonlinear generalized mixed-effects models and by assuming that the distribution of response variable belongs to a truncated class of distributions indexed by a location and a scale parameter. The location parameter of the response variable is assumed to be associated with a continuous nonlinear function of covariates and unknown parameters and with unobserved random effects, and the scale parameter of the responses is assumed to be characterized by a continuous function of the covariates and unknown parameters. The proposed truncated nonlinear mixed-effects models are constructed assuming both random truncation limits; however, truncated nonlinear mixed-effects models with fixed known limits are readily obtained as particular cases of these models. For models constructed under the assumption of random truncation limits, the likelihood function of the observed data shall be a function both of the parameters of the truncated distribution of the truncated variable and of the parameters of the distribution of the truncation variables. For the particular case of fixed known truncation limits, the likelihood function of the observed data is a function only of the parameters of the truncated distribution assumed for the variable of interest. The likelihood equation resulting from the proposed truncated nonlinear regression models do not have analytical solutions and thus, under the frequentist inferential perspective, the model parameters are estimated by direct maximization of the log-likelihood using an iterative procedure. We also consider diagnostic analysis to check for model misspecification, outliers and influential observations using standardized residuals, and global and local influence metrics. Under the Bayesian perspective of statistical inference, parameter estimates are computed based on draws from the posterior distribution of parameters obtained using an Markov Chain Monte Carlo procedure. Posterior predictive checks, Bayesian standardized residuals and a Bayesian influence measures are considered to check for model adequacy, outliers and influential observations. As Bayesian model selection criteria, we consider the sum of log -CPO and a Bayesian model selection procedure using a Bayesian mixture model framework. To illustrate the proposed methodology, we analyze soil-water retention, which are used to construct soil-water characteristic curves and which are subject to truncation since soil-water content (the proportion of water in soil samples) is limited by the residual soil-water content and the saturated soil-water content. / Neste trabalho, apresentamos uma classe de modelos não lineares truncados mistos onde a característica de truncamento dos dados é incorporada ao modelo estatístico assumindo-se que a variável de interesse, isto é, a variável truncada, possui uma função de distribuição truncada que, por sua vez, corresponde a uma função de distribuição condicional obtida ao se restringir o suporte de alguma função de distribuição de probabilidade. A família de modelos não lineares truncados mistos para locação e escala é construída sob a perspectiva de modelos não lineares generalizados mistos e considerando uma classe de distribuições indexadas por parâmetros de locação e escala. Assumimos que o parâmetro de locação da variável resposta é associado a uma função não linear contínua de um conjunto de covariáveis e parâmetros desconhecidos e a efeitos aleatórios não observáveis, e que o parâmetro de escala das respostas pode ser caracterizado por uma função contínua das covariáveis e de parâmetros desconhecidos. Os modelos não lineares truncados mistos para locação e escala, aqui apresentados, são construídos supondo limites de truncamento aleatórios, porém, modelos não lineares truncados mistos com limites fixos e conhecidos são prontamente obtidos como casos particulares desses modelos. Nos modelos construídos sob a suposição de limites de truncamentos aleatórios, a função de verossimilhança é escrita em função dos parâmetros da distribuição da variável resposta truncada e dos parâmetros das distribuições das variáveis de truncamento. Para o caso particular de limites fixos e conhecidos, a função de verossimilhança será apenas uma função dos parâmetros da distribuição truncada assumida para a variável resposta de interesse. As equações de verossimilhança dos modelos, aqui propostos, não possuem soluções analíticas e, sob a perspectiva frequentista de inferência estatística, os parâmetros do modelo são estimados pela maximização direta da função de log-verossimilhança via um procedimento iterativo. Consideramos, também, uma análise de diagnóstico para verificar a adequação do modelo, observações discrepantes e/ou influentes, usando resíduos padronizados e medidas de influência global e influência local. Sob a perspectiva Bayesiana de inferência estatística, as estimativas dos parâmetros dos modelos propostos são definidas como as médias a posteriori de amostras obtidas via um algoritmo do tipo cadeia de Markov Monte Carlo das distribuições a posteriori dos parâmetros. Para a análise de diagnóstico Bayesiano do modelo, consideramos métricas de avaliação preditiva a posteriori, resíduos Bayesianos padronizados e a calibração de casos para diagnóstico de influência. Como critérios Bayesianos de seleção de modelos, consideramos a soma de log -CPO e um critério de seleção de modelos baseada na abordagem Bayesiana de mistura de modelos. Para ilustrar a metodologia proposta, analisamos dados de retenção de água em solo, que são usados para construir curvas de retenção de água em solo e que estão sujeitos a truncamento pois as medições de umidade de água (a proporção de água presente em amostras de solos) são limitadas pela umidade residual e pela umidade saturada do solo amostrado.
|
29 |
Modelos de regressão estáticos e dinâmicos para taxas ou proporções: uma abordagem bayesiana / Regression of static and dynamic models for proportions or rates: a Bayesian approachCorreia, Leandro Tavares 01 June 2015 (has links)
Este trabalho apresenta um estudo de dados com resposta em intervalos limitados, mais especificamente no intervalo [0,1], como no caso de taxas e proporções. Em diversos casos práticos esta estrutura de dados apresenta uma quantidade não negligenciável de valores extremos (0 e 1) e que modelos usuais não são adequados para sua análise. Para esta situação propomos, por meio de um enfoque Bayesiano, modelos de regressão beta inflacionado de zeros e uns (BIZU) e modelos de regressão Tobit duplamente censurado adaptados nesse intervalo. Técnicas de diagnóstico e qualidade do ajuste também são discutidas. Apresentamos a análise desta estrutura de dados no contexto de série de tempo por meio da abordagem Bayesiana de modelos dinâmicos. Estudos de comportamento e previsão de séries de tempo foram explorados utilizando técnicas de Monte Carlo sequencial, conhecidas como filtro de partículas. Particularidades e competitividade entre as duas classes de modelos também foram discutidas. / This paper presents a study focused on observations in a limited interval , more specifically in [0,1] , such as rate and proportion data. In many practical cases this data structure has a considerable amount of extreme values (0 and 1) and usual classical models are not suitable for this type of data set. We propose two class of regression models to deal with this context: beta inflated of zeros and ones (BIZU) models and Tobit doubly censored models adapted in this interval. Fit quality and diagnostic techniques are also discussed. Time series of proportions are also developed through Bayesian dynamic models. Forecasting and behavioral analysis were explored using sequential Monte Carlo techniques, known as particle filters. Particularities and competitiveness between the two classes of models were also discussed as well.
|
30 |
Modelos de regressão estáticos e dinâmicos para taxas ou proporções: uma abordagem bayesiana / Regression of static and dynamic models for proportions or rates: a Bayesian approachLeandro Tavares Correia 01 June 2015 (has links)
Este trabalho apresenta um estudo de dados com resposta em intervalos limitados, mais especificamente no intervalo [0,1], como no caso de taxas e proporções. Em diversos casos práticos esta estrutura de dados apresenta uma quantidade não negligenciável de valores extremos (0 e 1) e que modelos usuais não são adequados para sua análise. Para esta situação propomos, por meio de um enfoque Bayesiano, modelos de regressão beta inflacionado de zeros e uns (BIZU) e modelos de regressão Tobit duplamente censurado adaptados nesse intervalo. Técnicas de diagnóstico e qualidade do ajuste também são discutidas. Apresentamos a análise desta estrutura de dados no contexto de série de tempo por meio da abordagem Bayesiana de modelos dinâmicos. Estudos de comportamento e previsão de séries de tempo foram explorados utilizando técnicas de Monte Carlo sequencial, conhecidas como filtro de partículas. Particularidades e competitividade entre as duas classes de modelos também foram discutidas. / This paper presents a study focused on observations in a limited interval , more specifically in [0,1] , such as rate and proportion data. In many practical cases this data structure has a considerable amount of extreme values (0 and 1) and usual classical models are not suitable for this type of data set. We propose two class of regression models to deal with this context: beta inflated of zeros and ones (BIZU) models and Tobit doubly censored models adapted in this interval. Fit quality and diagnostic techniques are also discussed. Time series of proportions are also developed through Bayesian dynamic models. Forecasting and behavioral analysis were explored using sequential Monte Carlo techniques, known as particle filters. Particularities and competitiveness between the two classes of models were also discussed as well.
|
Page generated in 0.0548 seconds