Spelling suggestions: "subject:"análise discriminante"" "subject:"análise discriminantes""
51 |
Avaliação da gravidade da malária utilizando técnicas de extração de características e redes neurais artificiaisAlmeida, Larissa Medeiros de 17 April 2015 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-06-15T21:53:52Z
No. of bitstreams: 1
Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-16T15:05:39Z (GMT) No. of bitstreams: 1
Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-16T15:07:25Z (GMT) No. of bitstreams: 1
Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5) / Made available in DSpace on 2015-06-16T15:07:25Z (GMT). No. of bitstreams: 1
Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5)
Previous issue date: 2015-04-17 / Não Informada / About half the world's population lives in malaria risk areas. Moreover, given the
globalization of travel, these diseases that were once considered exotic and mostly tropical are
increasingly found in hospital emergency rooms around the world. And often when it comes
to experience in tropical diseases, expert opinion most of the time is not available or not
accessible in a timely manner. The task of an accurate and efficient diagnosis of malaria,
essential in medical practice, can become complex. And the complexity of this process
increases as patients have non-specific symptoms with a large amount of data and inaccurate
information involved. In this approach, Uzoka and colleagues (2011a), from clinical
information of 30 Nigerian patients with confirmed malaria, used the Analytic Hierarchy
Process method (AHP) and Fuzzy methodology to conduct the evaluation of the severity of
malaria. The results obtained were compared with the diagnosis of medical experts. This
paper develops a new methodology to evaluate the severity of malaria and compare with the
techniques used by Uzoka and colleagues (2011a). For this purpose the data set used is the
same of that study. The technique used is the Artificial Neural Networks (ANN). Are
evaluated three architectures with different numbers of neurons in the hidden layer, two
training methodologies (leave-one-out and 10-fold cross-validation) and three stopping
criteria, namely: the root mean square error, early stop and regularization. In the first phase,
we use the full database. Subsequently, the feature extraction methods are used: in the second
stage, the Principal Component Analysis (PCA) and in the third stage, the Linear
Discriminant Analysis (LDA). The best result obtained in the three phases, it was with the full
database, using the criterion of regularization associated with the leave-one-out method, of
83.3%. And the best result obtained in (Uzoka, Osuji and Obot, 2011) was with the fuzzy
network which revealed 80% accuracy / Cerca de metade da população mundial vive em áreas de risco da malária. Além disso, dada a
globalização das viagens, essas doenças que antes eram consideradas exóticas e
principalmente tropicais são cada vez mais encontradas em salas de emergência de hospitais
no mundo todo. E frequentemente quando se trata de experiência em doenças tropicais, a
opinião de especialistas na maioria das vezes está indisponível ou não acessível em tempo
hábil. A tarefa de chegar a um diagnóstico da malária preciso e eficaz, fundamental na prática
médica, pode tornar-se complexa. E a complexidade desse processo aumenta à medida que os
pacientes apresentam sintomas não específicos com uma grande quantidade de dados e
informação imprecisa envolvida. Nesse sentido, Uzoka e colaboradores (2011a), a partir de
informações clínicas de 30 pacientes nigerianos com diagnóstico confirmado de malária,
utilizaram a metodologia Analytic Hierarchy Process (AHP) e metodologia Fuzzy para
realizar a avaliação da gravidade da malária. Os resultados obtidos foram comparados com o
diagnóstico de médicos especialistas. Esta dissertação desenvolve uma nova metodologia para
avaliação da gravidade da malária e a compara com as técnicas utilizadas por Uzoka e
colaboradores (2011a). Para tal o conjunto de dados utilizados é o mesmo do referido estudo.
A técnica utilizada é a de Redes Neurais Artificiais (RNA). São avaliadas três arquiteturas
com diferentes números de neurônios na camada escondida, duas metodologias de
treinamento (leave-one-out e 10-fold cross-validation) e três critérios de parada, a saber: o
erro médio quadrático, parada antecipada e regularização. Na primeira fase, é utilizado o
banco de dados completo. Posteriormente, são utilizados os métodos de extração de
características: na segunda fase, a Análise dos Componentes Principais (do inglês, Principal
Component Analysis - PCA) e na terceira fase, a Análise Discriminante Linear (do inglês,
Linear Discriminant Analysis – LDA). O melhor resultado obtido nas três fases, foi com o
banco de dados completo, utilizando o critério de regularização, associado ao leave-one-out,
de 83.3%. Já o melhor resultado obtido em (Uzoka, Osuji e Obot, 2011) foi com a rede fuzzy
onde obteve 80% de acurácia.
|
52 |
Misturas finitas de normais assimétricas e de t assimétricas aplicadas em análise discriminanteCoelho, Carina Figueiredo 28 June 2013 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-06-18T20:16:38Z
No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-06T15:29:34Z (GMT) No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-06T15:27:26Z (GMT) No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-06T15:33:36Z (GMT) No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5) / Made available in DSpace on 2015-07-06T15:33:36Z (GMT). No. of bitstreams: 1
Dissertação-Carina Figueiredo Coelho.pdf: 3096964 bytes, checksum: 57c06ccd1fdc732a7cf9a50381d3806b (MD5)
Previous issue date: 2013-06-28 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / We investigated use of finite mixture models with skew normal independent distributions
to model the conditional distributions in discriminat analysis, particularly the skew
normal and skew t. To evaluate this model, we developed a simulation study and applications
with real data sets, analyzing error rates associated with the classifiers obtained with
these mixture models. Problems were simulated with different structures and separations
for the classes distributions employing different training set sizes. The results of the study
suggest that the models evaluated are able to adjust to different problems studied, from
the simplest to the most complex in terms of modeling the observations for classification
purposes. With real data, where then shapes distributions of the class is unknown, the
models showed reasonable error rates when compared to other classifiers. As a limitation
for the analized sets of data was observed that modeling by finite mixtures requires large
samples per class when the dimension of the feature vector is relatively high. / Investigamos o emprego de misturas finitas de densidades na família normal assimétrica
independente, em particular a normal assimétrica e a t assimétrica, para modelar as
distribuições condicionais do vetor de características em Análise Discriminante (AD). O
objetivo é obter modelos capazes de modelar dados com estruturas mais complexas onde,
por exemplo, temos assimetria e multimodalidade, o quemuitas vezes ocorrem em problemas
reais de AD. Para avaliar esta modelagem, desenvolvemos um estudo de simulação
e aplicações em dados reais, analisando a taxa de erro (TE) associadas aos classificadores
obtidos com estes modelos de misturas. Foram simulados problemas com diferentes
estruturas, relativas à separação e distribuição das classes e o tamanho do conjunto de
treinamento. Os resultados do estudo sugerem que os modelos avaliados são capazes de
se ajustar aos diferentes problemas estudados, desde os mais simples aos mais complexos,
em termos de modelagem das observações para fins de classificação. Com os dados
reais, situações onde desconhecemos as formas das distribuições nas classes, os modelos
apresentaram TE’s razoáveis quando comparados a outros classificadores. Como uma
limitação, para os conjuntos de dados analisados, foi observado que a modelagem por
misturas finitas necessita de amostras grandes por classe em situações onde a dimensão
do vetor de características é relativamente alta.
|
53 |
Modelos de classificação de risco de crédito para financiamentos imobiliários: regressão logística, análise discriminante, árvores de decisão, bagging e boostingLopes, Neilson Soares 08 August 2011 (has links)
Made available in DSpace on 2016-03-15T19:25:35Z (GMT). No. of bitstreams: 1
Neilson Soares Lopes.pdf: 983372 bytes, checksum: 2233d489295cd76cb2d8dcbd78e1e5de (MD5)
Previous issue date: 2011-08-08 / Fundo Mackenzie de Pesquisa / This study applied the techniques of traditional parametric discriminant analysis and logistic regression analysis of credit real estate financing transactions where borrowers may or may not have a payroll loan transaction. It was the hit rate compared these methods with the non-parametric techniques based on classification trees, and the methods of meta-learning bagging and boosting that combine classifiers for improved accuracy in the algorithms.In a context of high housing deficit, especially in Brazil, the financing of real estate can still be very encouraged. The impacts of sustainable growth in the mortgage not only bring economic benefits and social. The house is, for most individuals, the largest source of expenditure and the most valuable asset that will have during her lifetime.At the end of the study concluded that the computational techniques of decision trees are more effective for the prediction of payers (94.2% correct), followed by bagging (80.7%) and boosting (or arcing , 75.2%). For the prediction of bad debtors in mortgages, the techniques of logistic regression and discriminant analysis showed the worst results (74.6% and 70.7%, respectively). For the good payers, the decision tree also showed the best predictive power (75.8%), followed by discriminant analysis (75.3%) and boosting (72.9%). For the good paying mortgages, bagging and logistic regression showed the worst results (72.1% and 71.7%, respectively).
Logistic regression shows that for a borrower with payroll loans, the chance to be a bad credit is 2.19 higher than if the borrower does not have such type of loan.The presence of credit between the payroll operations of mortgage borrowers also has relevance in the discriminant analysis. / Neste estudo foram aplicadas as técnicas paramétricas tradicionais de análise discriminante e regressão logística para análise de crédito de operações de financiamento imobiliário. Foi comparada a taxa de acertos destes métodos com as técnicas não-paramétricas baseadas em árvores de classificação, além dos métodos de meta-aprendizagem BAGGING e BOOSTING, que combinam classificadores para obter uma melhor precisão nos algoritmos.Em um contexto de alto déficit de moradias, em especial no caso brasileiro, o financiamento de imóveis ainda pode ser bastante fomentado. Os impactos de um crescimento sustentável no crédito imobiliário trazem benefícios não só econômicos como sociais. A moradia é, para grande parte dos indivíduos, a maior fonte de despesas e o ativo mais valioso que terão durante sua vida.
Ao final do estudo, concluiu-se que as técnicas computacionais de árvores de decisão se mostram mais efetivas para a predição de maus pagadores (94,2% de acerto), seguida do BAGGING (80,7%) e do BOOSTING (ou ARCING, 75,2%). Para a predição de maus pagadores em financiamentos imobiliários, as técnicas de regressão logística e análise discriminante apresentaram os piores resultados (74,6% e 70,7%, respectivamente). Para os bons pagadores, a árvore de decisão também apresentou o melhor poder preditivo (75,8%), seguida da análise discriminante (75,3%) e do BOOSTING (72,9%). Para os bons pagadores de financiamentos imobiliários, BAGGING e regressão logística apresentaram os piores resultados (72,1% e 71,7%, respectivamente).A regressão logística mostra que, para um tomador com crédito consignado, a chance se ser um mau pagador é 2,19 maior do que se este tomador não tivesse tal modalidade de empréstimo. A presença de crédito consignado entre as operações dos tomadores de financiamento imobiliário também apresenta relevância na análise discriminante.
|
54 |
Análise discriminante como instrumento para a concessão de créditoMantovanini, João Carlos Labate 12 December 1990 (has links)
Made available in DSpace on 2010-04-20T20:14:52Z (GMT). No. of bitstreams: 0
Previous issue date: 1990-12-12T00:00:00Z / Trata da apresentação da técnica estatística conhecida como Análise Discriminante e sua aplicação na classificação de empresas, quanto à condição de solvência, para fins de concessão de crédito. Aborda aspectos conceituais e teóricos dessa técnica estatística e os recentes estudos sobre sua aplicação e limitações em finanças.
|
55 |
Aplicativo computacional da função discriminante quadrática para utilização em ciências experimentaisSimeão, Sandra Fiorelli de Almeida Penteado [UNESP] 19 December 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:35Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-12-19Bitstream added on 2014-06-13T21:02:54Z : No. of bitstreams: 1
simeao_sfap_dr_botfca.pdf: 899191 bytes, checksum: da6ed77a45734c278c56395d23c51cd0 (MD5) / Universidade Estadual Paulista (UNESP) / Aspectos teóricos relacionados à Análise Discriminante Multivariada - Linear e Quadrática - foram discutidos, por meio de um extenso levantamento histórico da função discriminante, com seus primórdios no trabalho de Fisher e sua posterior evolução, enfocando o intenso desenvolvimento das técnicas classificatórias discriminantes com o advento dos computadores. Foi dada ênfase aos softwares estatísticos desenvolvidos para PC, que realizam a análise discriminante, e que representam uma grande contribuição para pesquisadores e usuários desta técnica. Considerando a dificuldade existente quanto a aplicativos computacionais acessíveis a pesquisadores da área de ciências agrárias, elaborou-se um programa que realiza a análise discriminante quadrática com as respectivas freqüências de classificação correta, bem como o manual explicativo do usuário. Verificou-se que a função discriminante quadrática trata de um procedimento bastante útil nas ciências agrárias, como, por exemplo, em estudos nas áreas de solos, cultivos diversos (soja, milho, cana de açúcar, pupunha, braquiária, frutas), criação de animais e classificação e seleção de madeiras; porém, subutilizada frente à dificuldade de programas computacionais de fácil manuseio e acesso a pesquisadores das áreas aplicadas. Os procedimentos estudados e discutidos foram ilustrados com exemplos de aplicação, utilizando dados experimentais agronômicos de espécies de Girassóis e Eucalyptus, submetidos ao aplicativo desenvolvido. / A large historical study of the discriminant function has allowed a discussion on theoretical aspects related to the Multivaried Discriminant Analysis - Linear and Quadratic, showing its past in the work of Fisher and its later evolution, emphasizing the wide development of classificatory discriminant techniques with the happening of the computers, and specific statistic softwares which practice the discriminant analysis, representing a big contribution to researches and users of this technique. Considering the difficulty in relation to accessible softwares to researches of the agrarian area, a software which performs a linear and quadratic discriminant analysis was built with its frequencies of correct classification, as well as an explicative manual to users. The quadratic discriminant was studied as being a very useful process in agrarian sciences. Some examples of this usefulness is in studies of the ground, diversified cultivation (soybean, corn, sugarcane, pejibaye, brachiaria decumbens fruits), animal creation and wood selection, and classification; however, misused in relation to the difficulties of easy handing and access to researchers of applied areas. The studied and discussed procedures were illustrated with applications, using agronomic experimental data of Sunflower and Eucalyptus, submitted to developed software.
|
56 |
Redes neurais artificiais na discriminação de populações de retrocruzamento com diferentes graus de similaridade / Artificial neural networks to discriminate backcross populations with different degrees of similaritySant'anna, Isabela de Castro 26 February 2014 (has links)
Made available in DSpace on 2015-03-26T13:42:32Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1270776 bytes, checksum: 45ceec810d57392774ec214a30c1e3a3 (MD5)
Previous issue date: 2014-02-26 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The correct classification of individuals has a top importance for the genetic variability preservation as well as to maximize gains. The multivariate statistical techniques commonly used in these situations are the Fisher and Anderson discriminant functions, allowing to allocate an initially unknown individual in a probably g population or predefined groups. However, for higher levels of similarity such as backcross populations these methods has proved to be inefficient. Currently, much has been Said about a new paradigm of computing, artificial neural networks, which can be used to solve many statistical problems as similar subjects grouping, time-series forecasting and in particular, the classification problems. The aim of this study was to conduct a comparative study between the Fisher and Anderson discriminant functions and artificial neural networks through the number of incorrect classifications of individuals known to belong to different simulated backcross with increasing levels of populations similarity. The dissimilarity, measured by Mahalanobis distance, was a concept of fundamental importance in the use of discrimination techniques, due the quantification of how much populations were divergent. Data collection was done through simulation using the software Genes. Each population generated was characterized by a set of elements measured by characteristics of a continuous distribution. The relations of relatives and hierarchical structuring were established considering genetically divergent populations, F1 hybrid and five generations of backcrossing in relation to each of the relatives, establishing measures of effectiveness of the tested methodologies. The phenotypic data of populations were used to establish the Fisher and Anderson discriminant function and the calculation of the apparent error rate (AER), which measures the number of incorrect classifications. The ERA Estimations were compared with those obtained by means of neural networks. The artificial neural network is shown as a promising technique to solve classification problems, once it had a number of incorrect individuals classifications smaller than the data obtained by the discriminant functions. / A correta classificação de indivíduos é de extrema importância para fins de preservação da variabilidade genética existente bem como para a maximização dos ganhos. As técnicas de estatística multivariada comumente utilizada nessas situações são as funções discriminantes de Fisher e de Anderson, que permitem alocar um indivíduo inicialmente desconhecido em uma das g populações prováveis ou grupos pré-definidos. Entretanto, para altos níveis de similaridade como é o caso de populações de retrocruzamentos esses métodos tem se mostrado pouco eficientes. Atualmente, muito se fala de um novo paradigma de computação, as redes neurais artificiais, que podem ser utilizadas para resolver diversos problemas da Estatística, como agrupamento de indivíduos similares, previsão de séries temporais e em especial, os problemas de classificação. O objetivo desse trabalho foi realizar um estudo comparativo entre as funções discriminantes de Fisher e de Anderson e as redes neurais artificiais quanto ao número de classificações incorretas de indivíduos sabidamente pertencentes a diferentes populações simuladas de retrocruzamento, com crescentes níveis de similaridade. A dissimilaridade, medida pela distância de Mahalanobis, foi um conceito de fundamental importância na utilização das técnicas de discriminação, pois quantificou o quanto as populações eram divergentes. A obtenção dos dados foi feita através de simulação utilizando o programa computacional Genes. Cada população, gerada por simulação, foi caracterizada por um conjunto de elementos mensurados por características de natureza contínua. Foram geradas considerados 50 locos independentes, cada qual com dois alelos. As relações de parentescos e a estruturação hierárquica foram estabelecidas considerando populações genitoras geneticamente divergentes, híbrido F1 e cinco gerações de retrocruzamento em relação a cada um dos genitores, permitindo estabelecer parâmetros de eficácia das metodologias testadas. Os dados fenotípicos das populações foram utilizados para estabelecimento da função discriminante de Fisher e Anderson e para o cálculo da taxa de erro aparente (TEA), que mede o xi número de classificações incorretas. As estimativas de TEA foram comparadas com as obtida por meio das Redes Neurais Artificiais. As redes neurais artificiais mostraram-se uma técnica promissora no que diz respeito a problemas de classificação, uma vez que apresentaram um número de classificações incorretas de indivíduos menor que os dados obtidos pelas funções discriminantes.
|
57 |
Classificação de alfaces e barras de cereais a partir da espectroscopia NIR e análise discriminante linear / Classification of lettuce and cereal bars as from the NIR spectroscopy and Linear Discriminate AnalysisBrito, Anna Luiza Bizerra de 03 February 2014 (has links)
Made available in DSpace on 2015-05-14T13:21:32Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 15006665 bytes, checksum: 541b3c9095c1006563486163e559d5fd (MD5)
Previous issue date: 2014-02-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The search for a better quality of life has led to increased consumption of
foods with fewer calories, high in fiber and vitamins, and obtained from
different forms of cultivation.
Amid these foods, there are cereal bars and lettuce, foods that are easily
accessible, widely consumed and have high nutritional values. Like any
other food, require efficient methods that can ensure its quality. Thus, the
need for rapid, accurate analytical methods and low cost, which can help
to identify and classify these foods safely arises. Within this perspective,
this paper makes use of Near Infrared Spectroscopy (NIR) combined with
Linear Discriminant Analysis (LDA) to classify samples of cereal bars and
lettuce. A total of 121 samples of cereal bars, three distinct types
(conventional, diet and light) and 104 samples of three different types of
lettuce cultivation (conventional, organic and hydroponic) was used. The
acquisition of the spectra was made on equipment Spectrum 400 (Perkin
Elmer) with accessory NIRA (Near Infrared Reflectance Acessory) in the
range 10000 - 4000 cm-1. Classification models were constructed by
combining the LDA algorithms and variable selection: Stepwise (SW),
Successive Projections Algorithm (SPA) and Genetic Algorithm (GA).
Strategies for pre - processing data were evaluated and the efficiency of
the models was determined from the of correct classification rate (CCR)
for the full set of samples and the test set. For both matrices the model
that generated a better CCR was the GA-LDA valued 95% to matrix of the
cereal bars and 97.1 % for array of lettuces, both based on the total set of
samples (training, validation and testing). Regarding the set of test
models presented results of CCR with performance of 90.3 % and 95.4 %
for matrices of cereal bars and lettuce respectively. / A busca por uma melhor qualidade de vida tem levado ao aumento do
consumo de alimentos com menos calorias, ricos em fibras e vitaminas, e
obtidos de formas de cultivo diferenciadas. Em meio a esses alimentos,
encontram-se as barras de cereais e as alfaces, que são alimentos de fácil
acesso, muito consumidos e que possuem altos valores nutricionais. Como
qualquer outro alimento, necessitam de métodos eficientes que possam
assegurar sua qualidade. Assim, surge a necessidade de métodos
analíticos rápidos, precisos e de baixo custo, que possam ajudar a
identificar e classificar com segurança a esses alimentos. Dentro desta
perspectiva, este trabalho faz uso da Espectroscopia no Infravermelho
Próximo (NIR) aliada a Análise Discriminante Linear (LDA) para classificar
amostras de barras de cereais e alfaces. Um total de 121 amostras de
barras de cereais, de três tipos distintos (convencional, diet e light) e 104
amostras de alface de três diferentes tipos de cultivo (convencional,
orgânico e hidropônico) foi utilizado. A aquisição dos espectros foi feita no
equipamento Spectrum 400 (Perkin Elmer) com acessório NIRA (Near
Infrared Reflectance Acessory) na faixa de 10.000 a 4.000 cm-1. Modelos
de classificação foram construídos através da associação da LDA e
algoritmos de seleção de variáveis: Stepwise (SW), Algoritmo das
Projeções Sucessivas (SPA) e Algoritmo Genético (GA). Estratégias de
pré-processamento de dados foram avaliadas e a eficiência dos modelos
foi determinada em relação à taxa de classificação correta (TCC), para o
conjunto total das amostras e para o conjunto de teste. Para as duas
matrizes o modelo que gerou um melhor TCC foi o GA-LDA com valor de
95% para matriz das barras de cereais e 97,1% para matriz das alfaces,
ambos baseados no conjunto total das amostras (treinamento, validação e
teste). Em relação ao conjunto de teste os modelos apresentaram
resultados de TCC com desempenho de 90,3% e 95,4% para as matrizes
das barras de cereais e alfaces respectivamente.
|
58 |
Classificação de óleos vegetais comestíveis usando imagens digitais e técnicas de reconhecimento de padrões / Classification of edible vegetable oil using digital image data and pattern recognition techniquesMilanez, Karla Danielle Tavares de Melo 26 August 2013 (has links)
Made available in DSpace on 2015-05-14T13:21:42Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 3270377 bytes, checksum: f7faeeb5a1fdf2284d994edc54a6a265 (MD5)
Previous issue date: 2013-08-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work presents a simple and non-expensive based on digital image and pattern recognition techniques for the classification of edible vegetable oils with respect to the type (soybean, canola, sunflower and corn) and the conservation state (expired and non-expired period of validity). For this, images of the sample oils were obtained from a webcam, and then, they were decomposed into histograms containing the distribution of color levels allowed for a pixel. Three representations for the color of a pixel were used: red-green-blue (RGB), hue-saturation-intensity (HSI) and grayscale. Linear discriminant analysis (LDA) was employed in order to build classification models on the basis of a reduced subset of variables. For the purpose of variable selection, two techniques were utilized, namely the successive projections algorithm (SPA) and stepwise (SW) formulation. Models based on partial least squares-discriminant analysis and (PLS-DA) applied to full histograms (without variable selection) were also employed for the purpose of comparison. For the study evolving the classification with respect to oil type, LDA/SPA, LDA /SW and PLS-DA models achieved a correct classification rate (CCR) of 95%, 90% and 95%, respectively. For the identification of expired non-expired samples, LDA / SPA models were found to the best method for classifying sunflower, soybean and canola oils, achieving a TCC of 97%, 94% and 93%, respectively, while the model LDA/SW correctly classified 100% of corn oil samples. These results suggest that the proposed method is a promising alternative for inspection of authenticity and the conservation state of edible vegetable oils. As advantages, the method does not use reagents to carry out the analysis and laborious procedures for chemical characterization of the samples are not required / Este trabalho apresenta um método simples e de baixo custo, baseado na utilização de imagens digitais e técnicas de reconhecimento de padrões, para a classificação de óleos vegetais comestíveis com relação ao tipo (soja, canola, girassol e milho) e ao estado de conservação (prazo de validade expirado e não expirado). Para isso, imagens das amostras de óleos vegetais foram obtidas a partir de uma webcam e, em seguida, as mesmas foram decompostas em histogramas contendo as distribuições dos níveis de cores permitidos a um pixel. Três modelos para a cor de um pixel foram utilizados: vermelho-verde-azul (RGB), matiz-saturação-intensidade (HSI) e tons de cinza. A análise discriminante linear (LDA) foi utilizada para o desenvolvimento de modelos de classificação com base em um subconjunto reduzido de variáveis. Para fins de seleção de variáveis, duas técnicas foram utilizadas: o algoritmo das projeções sucessivas (SPA) e o stepwise (SW). Modelos baseados na análise discriminante por mínimos quadrados parciais (PLS-DA) aplicados aos histogramas completos (sem seleção de variáveis) também foram utilizados com o propósito de comparação. No estudo envolvendo a classificação com respeito ao tipo, modelos LDA/SPA, LDA/SW e PLS-DA atingiram uma taxa de classificação correta (TCC) de 95%, 90% e 95%, respectivamente. Na identificação de amostras expiradas e não expiradas, o modelo LDA/SPA foi considerado o melhor método para a classificação das amostras de óleos de girassol, soja e canola, atingindo uma TCC de 97%, 94% e 93%, respectivamente, enquanto que o modelo LDA/SW classificou corretamente 100% das amostras de milho. Estes resultados sugerem que o método proposto é uma alternativa promissora para a inspeção de autenticidade e estado de conservação de óleos vegetais comestíveis. Como vantagem, a metodologia não utiliza reagentes, a análise é rápida e procedimentos laboriosos para a caracterização química das amostras não são necessários
|
59 |
Técnicas multivariadas aplicadas na determinação dos fatores sociais que concorrem a depressão de mulheresSILVA, Gilberto Pereira da 22 July 2004 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-07-05T20:35:43Z
No. of bitstreams: 1
Gilberto Pereira da Silva.pdf: 302040 bytes, checksum: 1febdb9b7d8623f0bbe1564c7b381ddd (MD5) / Made available in DSpace on 2016-07-05T20:35:43Z (GMT). No. of bitstreams: 1
Gilberto Pereira da Silva.pdf: 302040 bytes, checksum: 1febdb9b7d8623f0bbe1564c7b381ddd (MD5)
Previous issue date: 2004-07-22 / In this work we investigate which social factors contribute more to induce a depressive state in women. We sample 1000 patients from the public health system of the metropolitan area of Recife. Among then 57% were diagnostic as depressive and the others as suffering some humor disturbance. The social factors that we took in account were age, professional activity, condition civil, son, education level and sanitary area. The data we analyzed through multivariate analysis, i.e. , principal component analysis and discriminate analysis. We found out that, among the considered social factors, age, civil, and professional activity are the most important factors as longs depression is concerned. Further, the discriminate analysis shown that there exists a statistical significant difference between the group of women which are probable diagnostic as depressive and the other group in our sample. / Neste trabalho investigamos os fatores sociais que mais concorrem para a depressão em mulheres. Consideramos uma amostra de 1000 pacientes atendidas na Rede de Saúde Pública Municipal do Grande Recife das quais 57% foram diagnosticadas como depressivas e o restante com algum distúrbio de humor. Os fatores sociais que consideramos foram: idade, atividade profissional, estado civil, prole, grau de instrução e distrito sanitário. Os dados foram analisados através das técnicas multivariadas Análise de Componentes Principais e Análise Discriminante. Verificamos que, dos fatores analisados, os que mais contribuem para o estado depressivo em mulheres são a idade, a atividade profissional e o estado civil. Além disso, a análise discriminante mostrou que existe diferença significativa entre o grupo de mulheres com diagnóstico positivo e o grupo de mulheres diagnosticadas com possíveis diagnóstico de depressão.
|
60 |
Influência do tipo de crescimento, época e densidade de semeadura em caracteres morfoagronômicos de cultivares de soja / Influence of stem termination, sowing date and plant density on soybeans morphological traitsVaz Bisneta, Mariana 20 February 2015 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-03-31T20:17:42Z
No. of bitstreams: 2
Dissertação - Mariana Vaz Bisneta - 2015.pdf: 6629201 bytes, checksum: b7081f288e6426640f564925ba69b856 (MD5)
license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-04-04T14:26:36Z (GMT) No. of bitstreams: 2
Dissertação - Mariana Vaz Bisneta - 2015.pdf: 6629201 bytes, checksum: b7081f288e6426640f564925ba69b856 (MD5)
license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) / Made available in DSpace on 2016-04-04T14:26:36Z (GMT). No. of bitstreams: 2
Dissertação - Mariana Vaz Bisneta - 2015.pdf: 6629201 bytes, checksum: b7081f288e6426640f564925ba69b856 (MD5)
license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5)
Previous issue date: 2015-02-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In Brazil determinate stem termination soybean plants with long juvenile
period are traditionally grown. In the last five years, indeterminate and semideterminate
soybean plants, especially early maturity varieties in early sowing dates, were adopted in
different latitudes, aiming to cultivate a second crop. When grown on different densities,
soybean plants have compensation mechanisms on stem height, number of branches and
pods per plant. The objectives of this study were: i) evaluate the effect of sowing date and
plant density on soybean morphoagronomic traits of soybean cultivars with different stem
termination; ii) correlate grain yield with morphoagronomic traits in each type of growth
and sowing date, and yield components with each other in each type of growth and density;
iii) perform discrimination among types of growth in soybean cultivars, identifying sowing
conditions that cause changes in the response of morphological traits with ambiguity in the
phenotypic expression of growth types. Three experiments were: early October (10.02.13),
mid November (11.18.13) and early January (08.01.14) in the experimental area of
Embrapa Arroz e Feijão in Santo Antonio de Goiás, Brazil (16°29’S, 49°17’W), at
2013/2014 season. Trials were performed in a randomized complete block design with
three replications. Treatments included two factors, stem termination and plant population
density. Four cultivars were used for each stem termination; determined, semideterminate
and indeterminate. The plant densities corresponded to 50%, 100% and 150% of
commercial recommendation to each variety. The traits assessed were number of days to
flowering, number of days to maturity, plant height at flowering, height of first pod, plant
height at maturity, growth percentage after flowering, number of nodes on main stem,
number of branches on main stem, number of pods per node, number of pods per plant,
number of grains per pod, number of grains per plant, one hundred grain weight and yield.
For most assessed traits, soybean plants of each type of growth respond differently to
changes on sowing date and plant density. Only in November sowing, the determinate type
of growth showed lower yield comparing to the others types. The increase in plant density
causes higher plants on flowering and maturity, less number of nodes and branches in the
main stem, and lower average on yield components. Regardless of the type of growth, in
the first sowing date yield showed greater correlation, positive, with number of seeds per
pod; however, in other sowing dates this correlation occurred with one hundred grain
weight. Plant density has more influence on the associations among yield components in
the determinate and indeterminate growth types, than in the semideterminate type. The
greatest variation in morphoagronomic traits was observed between determinate stem
termination and the other types of growth. Most change on classification of type of growth
(ambiguity) occurs in late sowing and high plant density. The percentages of growth after
flowering and main stem node and branches numbers are the most important traits on type of growth discrimination. / No Brasil tradicionalmente são cultivadas plantas de soja com tipo de
crescimento determinado e portadoras de período juvenil longo. Nos últimos cinco anos,
plantas de soja com tipo de crescimento indeterminado e semideterminado, sobretudo de
ciclo precoce, nas várias faixas de latitude, passaram a ser adotadas no início da época de
semeadura, visando o cultivo da segunda safra (safrinha). Quando cultivada em diferentes
densidades populacionais, as plantas de soja apresentam mecanismos de compensação, por
exemplo, na altura, no número de ramificações e de vagens por planta. Assim, os objetivos
deste trabalho foram: i) avaliar o efeito da época e densidade de semeadura em caracteres
morfoagronômicos de plantas de soja com diferentes tipos de crescimento; ii) correlacionar
a produtividade de grãos com caracteres morfoagronômicos, em cada tipo de crescimento e
época de semeadura, assim como os componentes de produção entre si, em cada tipo de
crescimento e densidade de plantas, buscando-se identificar mudanças nas associações,
decorrentes do efeito da densidade de plantas; iii) discriminar os tipos de crescimento em
cultivares de soja, identificando condições de semeadura que provoquem mudanças na
resposta de caracteres morfoagronômicos, implicando em ambiguidade na expressão
fenotípica dos tipos de crescimento. Foram instalados três experimentos em diferentes
épocas de semeadura: início de outubro (02/10/13), meados de novembro (18/11/13) e
início de janeiro (08/01/14), em área experimental da Embrapa Arroz e Feijão, em Santo
Antônio de Goiás (16°29’S, 49°17’W), na safra 2013/2014. Os ensaios foram realizados
em delineamento de blocos completos casualizados, com três repetições. Os tratamentos
incluíram dois fatores, tipos de crescimento e densidades de semeadura. Foram utilizadas
quatro cultivares para cada tipo de crescimento; determinado, semideterminado e
indeterminado. As densidades de plantas corresponderam a 50%, 100% e 150% da
população recomendada comercialmente para cada cultivar. Foram avaliados 14
caracteres; número de dias para florescimento, número de dias para maturação, altura da
planta na floração, altura de inserção da primeira vagem, altura de planta na maturação,
porcentagem de crescimento após a floração, número de nós na haste principal, número de
ramificações na haste principal, número de vagens por nó, número de vagens por planta,
número de grãos por vagem, número de grãos por planta, massa de cem grãos e
produtividade. Para a maioria dos caracteres estudados, as plantas de cada tipo de
crescimento responderam diferentemente às variações de época e densidade de semeadura.
Apenas na semeadura de novembro o tipo de crescimento determinado resultou em menor
produtividade que os outros tipos. O aumento da densidade de plantas provocou maior
altura de plantas, tanto na floração como na maturação; assim como menor número de nós
e de ramificações na haste principal e menor média dos componentes de produção.
Independentemente do tipo de crescimento, na primeira época de semeadura a
produtividade mostrou-se correlacionada positivamente e em maior magnitude com o
número de grãos por vagem; já nas outras épocas, a correlação foi maior com a massa de
cem grãos. A densidade influencia mais a associação entre os componentes de produção
nos tipos de crescimento determinado e indeterminado do que no tipo semideterminado. A maior variação nos caracteres morfoagrônomicos ocorreu entre o tipo determinado e os
outros tipos. A plasticidade de tipos de crescimento (ambiguidade) ocorre, principalmente,
na semeadura tardia e sob alta densidade de plantas. A porcentagem de crescimento após a
floração, número de ramificações e de nós na haste principal são as variáveis mais
importantes na discriminação dos tipos de crescimento.
|
Page generated in 0.0799 seconds