• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 635
  • 79
  • 64
  • 59
  • 35
  • 28
  • 26
  • 21
  • 13
  • 10
  • 8
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 1213
  • 554
  • 243
  • 220
  • 207
  • 192
  • 190
  • 173
  • 157
  • 154
  • 148
  • 145
  • 132
  • 130
  • 129
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Explanatory visualization of multidimensional prejections / Visualização explanatória de projeções multidimensionais

Martins, Rafael Messias 11 March 2016 (has links)
Visual analytics tools play an important role in the scenario of big data solutions, combining data analysis and interactive visualization techniques in effective ways to support the incremental exploration of large data collections from a wide range of domains. One particular challenge for visual analytics is the analysis of multidimensional datasets, which consist of many observations, each being described by a large number of dimensions, or attributes. Finding and understanding data-related patterns present in such spaces, such as trends, correlations, groups of related observations, and outliers, is hard. Dimensionality reduction methods, or projections, can be used to construct low (two or three) dimensional representations of high-dimensional datasets. The resulting representation can then be used as a proxy for the visual interpretation of the high-dimensional space to efficiently and effectively support the above-mentioned data analysis tasks. Projections have important advantages over other visualization techniques for multidimensional data, such as visual scalability, high degree of robustness to noise and low computational complexity. However, a major obstacle to the effective practical usage of projections relates to their difficult interpretation. Two main types of interpretation challenges for projections are studied in this thesis. First, while projection techniques aim to preserve the so-called structure of the original dataset in the final produced layout, and effectively achieve the proxy effect mentioned earlier, they may introduce a certain amount of errors that influence the interpretation of their results. However, it is hard to convey to users where such errors occur in the projection, how large they are, and which specific data-interpretation aspects they affect. Secondly, interpreting the visual patterns that appear in the projection space is far from trivial, beyond the projections ability to show groups of similar observations. In particular, it is hard to explain these patterns in terms of the meaning of the original data dimensions. In this thesis we focus on the design and development of novel visual explanatory techniques to address the two interpretation challenges of multidimensional projections outlined above. We propose several methods to quantify, classify, and visually represent several types of projection errors, and how their explicit depiction helps interpreting data patterns. Next we show how projections can be visually explained in terms of the highdimensional data attributes, both in a global and a local way. Our proposals are designed to be easily added, and used with, any projection technique, and in any application context using such techniques. Their added value is demonstrated by presenting several exploration scenarios involving various types of multidimensional datasets, ranging from measurements, scientific simulations, software quality metrics, software system structure, and networks. / Ferramentas de análise visual desempenham um papel importante no cenário de soluções para grandes volumes de dados (big data), combinando análise de dados e técnicas interativas de visualização de forma eficaz para apoiar a exploração incremental de coleções de dados em diversos domínios. Um desafio importante em análise visual é a exploração de conjuntos de dados multidimensionais, que consistem em muitas observações, sendo cada uma descrita por um grande número de dimensões, ou atributos. Encontrar e compreender os padrões presentes em tais espaços, tais como tendências, correlações, grupos de observações relacionadas e valores extremos, é difícil. Técnicas de redução de dimensionalidade ou projeções são utilizadas para construir, a partir de conjuntos de dados multidimensionais, representações de duas ou três dimensões que podem então ser utilizadas com substitutas do espaço original para sua interpretação visual, apoiando de forma eficiente as tarefas de análise de dados acima mencionadas. Projeções apresentam vantagens importantes sobre outras técnicas de visualização para dados multidimensionais, tais como escalabilidade visual, resistência a ruídos e baixa complexidade computacional. No entanto, um grande obstáculo para o uso prático de projeções vem da sua difícil interpretação. Dois principais tipos de desafios de interpretação de projeções são estudados nesta tese. Em primeiro lugar, mesmo que as técnicas de projeção tenham como objetivo preservar, na representação final, a estrutura do conjunto de dados original, elas podem introduzir uma certa quantidade de erros que influenciam a interpretação dos seus resultados. No entanto, é difícil transmitir aos usuários onde tais erros ocorrem na projeção, quão severos eles são e que aspectos específicos da interpretação dos dados eles afetam. Em segundo lugar, interpretar os padrões visuais que aparecem em uma projeção, além da percepção de grupos de observações semelhantes, está longe de ser trivial. Em particular, é difícil explicar tais padrões em termos do significado das dimensões dos dados originais. O trabalho desenvolvido nesta tese concentra-se no projeto e desenvolvimento de novas técnicas visuais explicativas para lidar com os dois desafios de interpretação de projeções multidimensionais descritos acima. São propostos alguns métodos para quantificar, classificar e representar visualmente diversos tipos de erros de projeção, e é descrito como essas representações explícitas ajudam na interpretação dos padrões dos dados. Além disso, também são propostas técnicas visuais para explicar projeções em termos dos atributos dos dados multidimensionais, tanto de forma global quanto local. As propostas apresentadas foram concebidas para serem facilmente incorporadas e usadas com qualquer técnica de projeção e em qualquer contexto de aplicação. As contribuições são demonstradas pela apresentação de vários cenários de exploração, envolvendo vários tipos de conjuntos de dados multidimensionais, desde medições e simulações científicas até métricas de qualidade de software, estruturas de sistema de software e redes.
392

Visualisations pour la veille en épidémiologie animale / Visualizations for animal epidemiology surveillance

Fadloun, Samiha 15 November 2018 (has links)
De nombreux documents concernant l'émergence, la propagation ou le suivi de maladies humaines et animales sont quotidiennement publiés sur le Web. Afin de prévenir l'expansion des maladies, les épidémiologistes doivent constamment rechercher ces documents et les étudier afin de détecter les foyers de propagation le plus tôt possible. Dans cette thèse, nous nous intéressons aux deux activités liées à ce travail de veille afin de proposer des outils visuels permettant de faciliter/accélérer l'accès aux informations pertinentes. Nous nous focalisons sur les maladies animales, qui ont été moins étudiées et qui pourtant peuvent avoir de lourdes conséquences sur les activités humaines (maladies transmises d'animaux à humains, épidémies dans les élevages, ...).La première activité du veilleur consiste à collecter les documents issus du Web. Pour cela, nous proposons EpidVis, un outil visuel permettant aux épidémiologistes de regrouper et structurer les mots-clés nécessaires à leurs recherches, construire visuellement des requêtes complexes, les lancer sur différents moteurs de recherche et visualiser les résultats retournés. La seconde activité du veilleur consiste à explorer un grand nombre de documents concernant les maladies. Ces documents contiennent non seulement des informations telles que les noms des maladies, les symptômes associés, les espèces infectées, mais aussi des informations de type spatio-temporelles. Nous proposons EpidNews, un outil de visualisation analytique permettant d'explorer ces données en vue d'en extraire des informations. Les deux outils ont été réalisés dans le cadre d'une étroite collaboration avec des experts en épidémiologie. Ces derniers ont réalisé des études de cas pour montrer que les fonctionnalités des propositions étaient complètement adaptées et permettaient de pouvoir facilement extraire de la connaissance. / Many documents concerning emergence, spread or follow-up of human and animal diseases are published daily on the Web. In order to prevent the spread of disease, epidemiologists must frequently search for these documents and analyze them to detect outbreaks as early as possible. In this thesis, we are interested in the two activities related to this monitoring work in order to produce visual tools facilitating the access to relevant information. We focus on animal diseases, which have been less studied but can have serious consequences for human activities (diseases transmitted from animals to humans, epidemics in livestock ...).The first activity is to collect documents from the Web. For this, we propose EpidVis, a visual tool that allows epidemiologists to group and organize the keywords used for their research, visually build complex queries, launch them on different search engines and view the results returned. The second activity is to explore a large number of documents concerning diseases. These documents contain not only information such as disease names, associated symptoms, infected species, but also spatio-temporal information. We propose EpidNews, a visual analytics tool to explore this data for information extraction. Both tools were developed in close collaboration with experts in epidemiology. The latter carried out case studies to show that the functionalities of the proposals were completely adapted and made it possible to easily extract knowledge.
393

Visual analytics of topics in twitter in connection with political debates / Análise visual de tópicos no Twitter em conexão com debates políticos

Carvalho, Eder José de 04 May 2017 (has links)
Social media channels such as Twitter and Facebook often contribute to disseminate initiatives that seek to inform and empower citizens concerned with government actions. On the other hand, certain actions and statements by governmental institutions, or parliament members and political journalists that appear on the conventional media tend to reverberate on the social media. This scenario produces a lot of textual data that can reveal relevant information on governmental actions and policies. Nonetheless, the target audience still lacks appropriate tools capable of supporting the acquisition, correlation and interpretation of potentially useful information embedded in such text sources. In this scenario, this work presents two system for the analysis of government and social media data. One of the systems introduces a new visualization, based on the river metaphor, for the analysis of the temporal evolution of topics in Twitter in connection with political debates. For this purpose, the problem was initially modeled as a clustering problem and a domain-independent text segmentation method was adapted to associate (by clustering) Twitter content with parliamentary speeches. Moreover, a version of the MONIC framework for cluster transition detection was employed to track the temporal evolution of debates (or clusters) and to produce a set of time-stamped clusters. The other system, named ATR-Vis, combines visualization techniques with active retrieval strategies to involve the user in the retrieval of Twitters posts related to political debates and associate them to the specific debate they refer to. The framework proposed introduces four active retrieval strategies that make use of the Twitters structural information increasing retrieval accuracy while minimizing user involvement by keeping the number of labeling requests to a minimum. Evaluations through use cases and quantitative experiments, as well as qualitative analysis conducted with three domain experts, illustrates the effectiveness of ATR-Vis in the retrieval of relevant tweets. For the evaluation, two Twitter datasets were collected, related to parliamentary debates being held in Brazil and Canada, and a dataset comprising a set of top news stories that received great media attention at the time. / Mídias sociais como o Twitter e o Facebook atuam, em diversas situações, como canais de iniciativas que buscam ampliar as ações de cidadania. Por outro lado, certas ações e manifestações na mídia convencional por parte de instituições governamentais, ou de jornalistas e políticos como deputados e senadores, tendem a repercutir nas mídias sociais. Como resultado, gerase uma enorme quantidade de dados em formato textual que podem ser muito informativos sobre ações e políticas governamentais. No entanto, o público-alvo continua carente de boas ferramentas que ajudem a levantar, correlacionar e interpretar as informações potencialmente úteis associadas a esses textos. Neste contexto, este trabalho apresenta dois sistemas orientados à análise de dados governamentais e de mídias sociais. Um dos sistemas introduz uma nova visualização, baseada na metáfora do rio, para análise temporal da evolução de tópicos no Twitter em conexão com debates políticos. Para tanto, o problema foi inicialmente modelado como um problema de clusterização e um método de segmentação de texto independente de domínio foi adaptado para associar (por clusterização) tweets com discursos parlamentares. Uma versão do algorimo MONIC para detecção de transições entre agrupamentos foi empregada para rastrear a evolução temporal de debates (ou agrupamentos) e produzir um conjunto de agrupamentos com informação de tempo. O outro sistema, chamado ATR-Vis, combina técnicas de visualização com estratégias de recuperação ativa para envolver o usuário na recuperação de tweets relacionados a debates políticos e associa-os ao debate correspondente. O arcabouço proposto introduz quatro estratégias de recuperação ativa que utilizam informação estrutural do Twitter melhorando a acurácia do processo de recuperação e simultaneamente minimizando o número de pedidos de rotulação apresentados ao usuário. Avaliações por meio de casos de uso e experimentos quantitativos, assim como uma análise qualitativa conduzida com três especialistas ilustram a efetividade do ATR-Vis na recuperação de tweets relevantes. Para a avaliação, foram coletados dois conjuntos de tweets relacionados a debates parlamentares ocorridos no Brasil e no Canadá, e outro formado por um conjunto de notícias que receberam grande atenção da mídia no período da coleta.
394

Jornalismo mensurado : uma investiga??o sobre os impactos dos sistemas de medi??o de audi?ncia em sites de not?cias

Antunes, Antonio Paulo Serpa 29 March 2017 (has links)
Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-06-29T13:48:56Z No. of bitstreams: 1 DIS_ANTONIO_PAULO_SERPA_ANTUNES_COMPLETO.pdf: 636108 bytes, checksum: 79ed4c4f8b08b31e8a259e713d86c933 (MD5) / Made available in DSpace on 2017-06-29T13:48:56Z (GMT). No. of bitstreams: 1 DIS_ANTONIO_PAULO_SERPA_ANTUNES_COMPLETO.pdf: 636108 bytes, checksum: 79ed4c4f8b08b31e8a259e713d86c933 (MD5) Previous issue date: 2017-03-29 / This research aims to investigate how news companies use web analytics tools, the systems which collect, compile and generate their websites? audience reports. Through qualitative research conducted along the editorial offices of the Jornal NH (Novo Hamburgo/RS) and the Di?rio Ga?cho (Porto Alegre/RS) newspapers, the study observed the relationship between the adoption of audience measurement systems and the implementation of journalistic convergence processes in newsrooms, their incorporation to the editorial processes of the journalists and their influence in defining these organizations? business models. For the analysis, the Political Economy of Communication was approached with the intent of verifying whether such tools are used to maximize news companies? profits. The case studies showed that there is a balance between performing journalistic work and reaching more audience, as well as that the web analytics is a supporting tool for corporate decisions, influencing in the choices of business strategies to be adopted. / Esta pesquisa procura investigar como empresas jornal?sticas fazem uso das ferramentas de web analytics, os sistemas que coletam, compilam e geram relat?rios de audi?ncia de seus websites. Atrav?s da realiza??o de pesquisa qualitativa junto ?s reda??es dos jornais Jornal NH (Novo Hamburgo/RS) e Di?rio Ga?cho (Porto Alegre/RS) procurouse observar a rela??o entre a ado??o dos sistemas de medi??o de audi?ncia e a implanta??o de processos de converg?ncia jornal?stica nas reda??es, sua incorpora??o aos processos editoriais dos jornalistas e sua influ?ncia na defini??o do modelo de neg?cios dessas organiza??es. Para an?lise do tema, buscou-se uma aproxima??o com a Economia Pol?tica da Comunica??o, de modo a verificar se estas ferramentas s?o usadas como forma de maximizar os lucros das empresas jornal?sticas. Observou-se nos estudos de caso que existe um equil?brio entre fazer o trabalho jornal?stico e conquistar mais audi?ncia e ainda que o web analytics ? um instrumento de apoio para decis?es corporativas, influenciando na escolha das estrat?gias de neg?cios adotadas.
395

An Inductive Method of Measuring Students’ Cognitive and Affective Processes via Self-Reports in Digital Learning Environments

Wixon, Naomi 24 July 2018 (has links)
Student affect can play a profoundly important role in students' post-school lives. Understanding students' affective states within online learning environments in particular has become an important matter of research, as digital tutoring systems have the potential to intervene at the moment that students are struggling and becoming frustrated, bored or disengaged. However, despite the importance of assessing students' affective states, there is no clear consensus about what emotions are most important to assess, nor how these emotions can be best measured. This dissertation investigates students’ self-reports of their emotions and causal attributions of those emotions collected while they are solving math problems within a mathematics tutoring system. These self-reports are collected in two conditions: through limited choice Likert response and through open response text boxes. The conditions are combined with students’ cognitive attributions to describe epistemic (neither purely affective nor purely cognitive) emotions in order to explain the relationship between observable student behaviors in the MathSpring.org tutoring system and student affect. These factors include beliefs, expectations, motivations, and perceptions of ability and control. A special emphasis of this dissertation is on analyzing the role of causal attributions for the events and appraisals of the learning environment, as possible causes of student behaviors, performance, and affect.
396

Md-pread: um modelo para predição de reprovação de aprendizes na educação a distância usando árvore de decisão

Ferreira, João Luiz Cavalcante 25 February 2016 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-04-13T15:28:01Z No. of bitstreams: 1 João Luiz Cavalcante Ferreira_.pdf: 1672669 bytes, checksum: 80b5c6fbc873c9f858b230e78855dd55 (MD5) / Made available in DSpace on 2016-04-13T15:28:01Z (GMT). No. of bitstreams: 1 João Luiz Cavalcante Ferreira_.pdf: 1672669 bytes, checksum: 80b5c6fbc873c9f858b230e78855dd55 (MD5) Previous issue date: 2016-02-25 / Nenhuma / A Educação a Distância (EaD) no Brasil tem se consolidado com diversos estudantes optando por essa modalidade de ensino para ampliar suas formações e realização profissional, no entanto ela enfrenta alguns obstáculos, como a resistência de educandos e educadores, desafios organizacionais, custos de produção e a questão da reprovação ou retenção de alunos. Um dos principais diferenciais dos cursos EaD é a grande quantidade de dados gerados pelas interações no ambiente educacional, o que abre novas possibilidades para estudar e compreender estas interações. A Mineração de Dados educacionais (MDE) é uma área de pesquisa interdisciplinar que lida com o desenvolvimento de métodos para explorar dados originados no contexto educacional. A Learning Analytics (LA) é outra área de pesquisa emergente. Ela busca medir, coletar, analisar e relatar dados sobre estudantes. O desafio dos pesquisadores é desenvolver métodos capazes de prever o desempenho dos estudantes de modo a possibilitar a intervenção de professores e tutores visando resgatar o estudante antes que reprove. Esta dissertação propõe o MD-PREAD, um modelo para predição de grupos de risco de reprovação em um ambiente de Educação a Distância. A técnica de árvore de decisão foi utilizada para possibilitar um diferencial quanto à possibilidade de interpretação dos dados gerados pelo uso dos métodos de predição, pois outros métodos, tais como Redes Neurais Artificiais possuem como deficiência justamente a dificuldade de identificar as causas que levam aos resultados das predições. O modelo foi prototipado na ferramenta de mineração RapidMiner. Um experimento foi realizado no Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, no programa Universidade Aberta do Brasil, no Curso de Filosofia da educação. Foram feitas coletas de dados históricos de 10 disciplinas de um grupo de 30 aprendizes em dois semestres consecutivos, 2014/2 e 2015/1, o total de alunos matriculados foi de 125, o total de interações levantadas foi de 41070, o cálculo de predição considerou as médias das avaliações de 30 aprendizes, os desvios padrões das interações e suas respectivas situações. Estes dados serviram para compor o conjunto de treinamento necessário para a definição da regra de classificação que teve como predominante a acurácia de 55% e a confiabilidade Kappa de 0,22. Foi realizado um segundo processo de validação, após o experimento, considerou-se os 125 alunos e o melhor classificador encontrado foi o J48 com a acurácia de 84,05%, precisão de 77,08% e recall de 50,23%. Concluiu-se que o MD-PREAD é uma ferramenta de auxílio no prognóstico de grupos de risco de reprovação, uma vez que possibilitou a geração e disponibilização semanal destes grupos a um sistema de recomendação educacional externo. / E-learning in Brazil has been established with many students opting for this type of education to expand their training and professional achievement, however it faces some obstacles, such as resistance from students and educators, organizational challenges, production costs and the question of failure or retention of students. One of the main advantages of e-learning courses is the large amount of data generated by the interactions in the educational environment, which opens up new possibilities to study and understand these interactions. Educational Data Mining (EDM) is an area of interdisciplinary research that deals with the development of methods to explore data that originates in the educational context. Learning Analytics (LA) is another area of emerging research. It seeks to measure, collect, analyze and report data on students. The challenge for researchers is to develop methods to predict the performance of students in order to allow the intervention of teachers and tutors aiming to retrieve the student before failing. This thesis proposes the MD-PREAD, a model for predicting failure of risk groups in a e-learning environment. The decision tree technique was used to enable a difference as to whether the interpretation of the data generated by the use of prediction methods, since other methods such as Artificial Neural Networks that has as disability difficulty in identifying precisely the causes that lead to predictions results. The model was prototyped in RapidMiner mining tool. An experiment was conducted at the Federal Institute of Education, Science and Technology of Amazonas, the Open University of Brazil program in course Philosophy of education. Historical data collection of 10 disciplines from a group of 30 apprentices were made in two consecutive semesters, 2014/2 and 2015/1, the total number of enrolled students was 125, the total raised interactions were 41070, the prediction calculation considered average of 30 apprentices ratings, the standard deviations of the interactions and their situations. These data served to compose the training set required for classification rule defining which had as predominant accuracy of 55% and Kappa reliability 0.22. A second validation process was carried out after the experiment. It was considered the total amount of 125 apprentices and the best classifier found was the J48 with the accuracy of 84.05%, 77.08% of classification precision and recall of 50.23%. It was concluded that the MD-PREAD is a support tool in the prognosis of failure risk groups, since it enabled the generation and weekly availability of these groups to a recommendation system.
397

Perspectivas organizacional e tecnológica da aplicação de analytics nas organizações

Britto, Fernando Perez de 12 September 2016 (has links)
Submitted by Filipe dos Santos (fsantos@pucsp.br) on 2016-11-01T17:05:22Z No. of bitstreams: 1 Fernando Perez de Britto.pdf: 2289185 bytes, checksum: c32224fdc1bfd0e47372fe52c8927cff (MD5) / Made available in DSpace on 2016-11-01T17:05:22Z (GMT). No. of bitstreams: 1 Fernando Perez de Britto.pdf: 2289185 bytes, checksum: c32224fdc1bfd0e47372fe52c8927cff (MD5) Previous issue date: 2016-09-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The use of Analytics technologies is gaining prominence in organizations exposed to pressures for greater profitability and efficiency, and to a highly globalized and competitive environment in which cycles of economic growth and recession and cycles of liberalism and interventionism, short or long, are more frequents. However, the use of these technologies is complex and influenced by conceptual, human, organizational and technologicalaspects, the latter especially in relation to the manipulation and analysis of large volumes of data, Big Data. From a bibliographicresearch on the organizational and technological perspectives, this work initially deals with theconcepts and technologies relevant to the use of Analytics in organizations, and then explores issues related to the alignment between business processes and data and information, the assessment of the potential of theuseofAnalytics, the use of Analytics in performance management, in process optimization and as decision support, and the establishment of a continuousimprovement process. Enabling at the enda reflection on the directions, approaches, referrals, opportunities and challenges related to the use of Analytics in organizations / A utilização de tecnologias de Analyticsvem ganhando destaque nas organizações expostas a pressões por maior rentabilidade e eficiência, ea um ambiente altamente globalizado e competitivo no qual ciclos de crescimento econômico e recessão e ciclos de liberalismo e intervencionismo, curtos ou longos, estão mais frequentes. Entretanto, a utilização destas tecnologias é complexa e influenciada por aspectos conceituais, humanos, organizacionais e tecnológicos, este último principalmente com relação à manipulação e análise de grandes volumes de dados, Big Data. A partir de uma pesquisa bibliográfica sobre as perspectivas organizacional e tecnológica, este trabalho trata inicialmente de conceitos e tecnologias relevantes para a utilização de Analyticsnas organizações, eem seguida explora questões relacionadas ao alinhamento entre processos organizacionaise dados e informações, à avaliação de potencial de utilização de Analytics, à utilização de Analyticsem gestão de performance, otimização de processos e como suporte à decisão, e ao estabelecimento de um processo de melhoria contínua.Possibilitandoao finaluma reflexão sobre os direcionamentos, as abordagens, os encaminhamentos, as oportunidades e os desafios relacionados àutilização de Analyticsnas organizações
398

Text analytics in business environments: a managerial and methodological approach

Marcolin, Carla Bonato January 2018 (has links)
O processo de tomada de decisão, em diferentes ambientes gerenciais, enfrenta um momento de mudança no contexto organizacional. Nesse sentido, Business Analytics pode ser visto como uma área que permite alavancar o valor dos dados, contendo ferramentas importantes para o processo de tomada de decisão. No entanto, a presença de dados em diferentes formatos representa um desafio. Nesse contexto de variabilidade, os dados de texto têm atraído a atenção das organizações, já que milhares de pessoas se expressam diariamente neste formato, em muitas aplicações e ferramentas disponíveis. Embora diversas técnicas tenham sido desenvolvidas pela comunidade de ciência da computação, há amplo espaço para melhorar a utilização organizacional de tais dados de texto, especialmente quando se volta para o suporte à tomada de decisões. No entanto, apesar da importância e disponibilidade de dados em formato textual para apoiar decisões, seu uso não é comum devido à dificuldade de análise e interpretação que o volume e o formato de dados em texto apresentam. Assim, o objetivo desta tese é desenvolver e avaliar um framework voltado ao uso de dados de texto em processos decisórios, apoiando-se em diversas técnicas de processamento de linguagem natural (PNL). Os resultados apresentam a validade do framework, usando como instância de demonstração de sua aplicabilidade o setor de turismo através da plataforma TripAdvisor, bem como a validação interna de performance e a aceitação por parte dos gestores da área consultados. / The decision-making process, in different management environments, faces a moment of change in the organizational context. In this sense, Business Analytics can be seen as an area that leverages the value of data, containing important tools for the decision-making process. However, the presence of data in different formats poses a challenge. In this context of variability, text data has attracted the attention of organizations, as thousands of people express themselves daily in this format in many applications and tools available. Although several techniques have been developed by the computer science community, there is ample scope to improve the organizational use of such text data, especially when it comes to decision-making support. However, despite the importance and availability of textual data to support decisions, its use is not common because of the analysis and interpretation challenge that the volume and the unstructured format of text data presents. Thus, the aim of this dissertation is to develop and evaluate a framework to contribute with the expansion and development of text analytics in decision-making processes, based on several natural language processing (NLP) techniques. The results presents the validity of the framework, using as a demonstration of its applicability the tourism sector through the TripAdvisor platform, as well as the internal validation of performance and the acceptance by managers.
399

AGILE BUSINESS INTELLIGENCE DEVELOPMENT CORE PRACTICES

Devarapalli, Surendra January 2013 (has links)
Today we are in an age of Information. The systems that effectively use the vast amount of data available all over the world and provide meaningful insight (i.e. BI systems) for the people who need it are of critical importance. The development of such systems has always been a challenge as the development is outweighed by change. The methodologies that are devised for coping with the constant change during the system development are agile methodologies. So practitioners and researchers are showing keen interest to use agile strategies for the BI projects development.The research aims to find out how well the agile strategies suit for the development of BI projects. The research considers a case study in a very big organization as BI is organization centric. There by assessing the empirical results that are collected from interviews the author is trying to generalize the results. The results for the research will give an insight of the best practices that can be considered while considering agile strategies and also the practical problems that we may encounter on the journey. The findings have implications for both business and technical managers who want to consider agile strategies for the BI/DW development projects. / Program: Masterutbildning i Informatik
400

Chromosome 3D Structure Modeling and New Approaches For General Statistical Inference

Rongrong Zhang (5930474) 03 January 2019 (has links)
<div>This thesis consists of two separate topics, which include the use of piecewise helical models for the inference of 3D spatial organizations of chromosomes and new approaches for general statistical inference. The recently developed Hi-C technology enables a genome-wide view of chromosome</div><div>spatial organizations, and has shed deep insights into genome structure and genome function. However, multiple sources of uncertainties make downstream data analysis and interpretation challenging. Specically, statistical models for inferring three-dimensional (3D) chromosomal structure from Hi-C data are far from their maturity. Most existing methods are highly over-parameterized, lacking clear interpretations, and sensitive to outliers. We propose a parsimonious, easy to interpret, and robust piecewise helical curve model for the inference of 3D chromosomal structures</div><div>from Hi-C data, for both individual topologically associated domains and whole chromosomes. When applied to a real Hi-C dataset, the piecewise helical model not only achieves much better model tting than existing models, but also reveals that geometric properties of chromatin spatial organization are closely related to genome function.</div><div><br></div><div><div>For potential applications in big data analytics and machine learning, we propose to use deep neural networks to automate the Bayesian model selection and parameter estimation procedures. Two such frameworks are developed under different scenarios. First, we construct a deep neural network-based Bayes estimator for the parameters of a given model. The neural Bayes estimator mitigates the computational challenges faced by traditional approaches for computing Bayes estimators. When applied to the generalized linear mixed models, the neural Bayes estimator</div><div>outperforms existing methods implemented in R packages and SAS procedures. Second, we construct a deep convolutional neural networks-based framework to perform</div><div>simultaneous Bayesian model selection and parameter estimation. We refer to the neural networks for model selection and parameter estimation in the framework as the</div><div>neural model selector and parameter estimator, respectively, which can be properly trained using labeled data systematically generated from candidate models. Simulation</div><div>study shows that both the neural selector and estimator demonstrate excellent performances.</div></div><div><br></div><div><div>The theory of Conditional Inferential Models (CIMs) has been introduced to combine information for efficient inference in the Inferential Models framework for priorfree</div><div>and yet valid probabilistic inference. While the general theory is subject to further development, the so-called regular CIMs are simple. We establish and prove a</div><div>necessary and sucient condition for the existence and identication of regular CIMs. More specically, it is shown that for inference based on a sample from continuous</div><div>distributions with unknown parameters, the corresponding CIM is regular if and only if the unknown parameters are generalized location and scale parameters, indexing</div><div>the transformations of an affine group.</div></div>

Page generated in 0.1068 seconds