Spelling suggestions: "subject:"automotive engineering"" "subject:"automotive ingineering""
281 |
Tribology Of Aluminium Alloys Against Steel Under Boundary Lubricated ConditionDas, Sarmistha 04 1900 (has links)
Aluminium silicon alloy has been found to be advantageous in many automobile components like pistons, cylinders, brakes and clutches. The main objective in using these alloys is to obtain lightweight and low friction at a reasonable cost without sacrificing reliability and durability. Out of all the tribological components piston skirts, piston rings and cylinder liners, have to face the most hostile of environments in an internal combustion engine. Wear mechanism of these components have been identified as abrasion, scuffing and corrosion. Narrowing down the line of interest, cylinder wear is more important than ring wear to both the engine manufacturer and the user, as cylinders are more expensive to replace than piston rings.
Wear of piston ring and cylinder combination have been studied using a wide range of techniques. It is difficult to predict the tribological performance of these parts in an engine, even with the most well designed laboratory tests, due to chemical, thermal and mechanical complexities in the operating environment. Therefore, a good correlation is sought from the wear behaviour of test bed engines and laboratory tests. This should form the basis of further development particularly in terms of efficiency, weight eduction and wear life improvement of the components.
Many ASTM bench-wear tests are used to study wear, some of the common tests being ball-on-disc and pin-on-disc testing. From these tests, a large database of wear information can be achieved and they offer rapid and low cost means of comparison. The only drawback is that the real components are not tested. However, since the bench tests can never simulate the engine environment completely, engine tests are always required for final verification.
This thesis work reports preliminary studies of machining damage and wear in actual engine bore to set a bench mark, followed by a set of unidirectional sliding bench tests to study the wear of aluminium alloy under lubricated conditions, to classify the different wear regimes in boundary lubrication zone under different pressure conditions, and to study the effect of a surface modification technique, etching, which improves wear properties.
The investigation is divided into four parts.
1. Study of subsurface damage in an actual cylinder surface as introduced by prior machining and actual worn case:
A study of the microstructure of bores, processed through a range of machining variables; feed and speed, are investigated in this part of the thesis. This work suggests that the first step of rough machining may be responsible for the microstructure of the finished bore even though subsequent processing steps are intended to remove all prior damages. This also includes some observations of worn surface of an actually run engine, locating the various worn spots and studying the cause of this damage
2. Bench wear test in pin-on-disc under dry and lubricated condition with varying load and lubricant:
After setting a benchmark on wear in engine using actual worn cylinder bore, a set of bench tests were carried out on aluminium alloy. Here, steel pins are slid on aluminium silicon alloy discs in the boundary lubrication regime in the presence of one drop of oil. The effect of pure hexadecane and engine oil containing additives on friction and wear are analysed and the data are discussed in terms of the formation of a mechanically mixed layer at the interface.
3. Ultra-mild Wear in Lubricated Tribology of an Aluminium Alloy:
To study the different wear regimes in boundary lubrication zone, flat faces of cylindrical steel pins were slid on an eutectic aluminium silicon alloy under lubricated condition in the 1-100 MPa mean contact pressure range and 0.2 m/s sliding speed. Two transitions in wear rate were observed, at 10 MPa and 70 MPa. The wear rate in the 1-10 MPa regime was found to be very small and within the measuring instrument resolution and also insensitive to contact pressure. The regime is designated ultra-mild wear. Lack of plastic flow, minimal fragmentation of silicon particles and the presence of undistorted voids on the fractured and unfractured silicon particles in the subsurface suggest that the state of stress in the near surface region is elastic. Contact mechanical calculations demonstrate that at contact pressures less that 13.7 MPa the system is likely to shakedown to an elastic state.
4.Ball-on-disc wear tests for etched and unetched samples:
In the fourth part of the thesis, comparative studies have been done between the as polished and chemically treated samples. Formation of grooves in a ball-on-disc experiment is observed on etched and unetched flats as a function of normal load and sliding distance. The groove is initially formed by plastic flow, and then expanded by micro-abrasion as the ball continues to slide on the groove. However etching causes surface hardening of the alloy, but, more importantly, creates a surface topology that reduces the peak contact pressure, which inhibits further plastic flow in the subsurface.
|
282 |
Importiertes Know-howHerrmann, Hans-Christian 17 April 2014 (has links) (PDF)
No description available.
|
283 |
Design and Analysis of an adaptive λ-Tracking Controller for powered Gearshifts in automatic TransmissionsLoepelmann, Peter 30 March 2015 (has links) (PDF)
To meet the continuously increasing goals in vehicle fuel efficiency, a number of measures are taken in automotive powertrain engineering, such as the combination of electric drives and conventional combustion engines in hybrid vehicles or the increase in gear ratios. This development leads to more complex powertrain systems, such as automatic transmissions. At the same time, the need for complex control systems is increased to achieve this desired functionality.
Automatic transmissions are controlled by an electro-hydraulic control unit that governs all operations such as gear shifting and starting. Since most of the control software is designed in the form of open-loop control, most of the operations have to be calibrated manually. Thus, there exists a large number of calibration parameters in the control software that have to be tuned individually for each combination of engine, transmission and vehicle model. This process is therefore time-consuming and costly. Hence, it would be advantageous to reduce the need for calibration and in the end shorten the development process for automatic transmissions by reducing software complexity while maintaining functionality and performance.
The goal of this thesis is to replace parts of the control software responsible for conducting the gearshifts that require extensive tuning by implementing control systems that have no need for calibration: adaptive high-gain λ-tracking controllers. In order to obtain the control parameters, i.e., the feedback gains, without calibration, an adaption law is implemented that continuously computes these parameters during operation of the controller. Thus, calibration is no longer needed. Since the system has to be high-gain-stabilizable, an extensive system analysis is conducted to determine whether an adaptive λ-tracking controller can be implemented. A nonlinear model of the clutch system dynamics is formulated and investigated.
As a result, high-gain stability is proven for the system class and validated in simulation. Following the stability analysis, the devised adaptive controller is implemented into the control software running on the series production transmission control unit. Extensive simulations with a comprehensive vehicle model running the extended transmission software are conducted to design and to test the adaptive controllers and their underlying parameters during transmission operation in order to evaluate the control performance. The control software containing the adaptive controller is then implemented in two distinct vehicles with different automatic transmissions equipped with series production control hardware for the purpose of hardware experiments and validation. The resulting reduction of calibration efforts is discussed.
|
284 |
Importiertes Know-how: Wege zur Modernisierung des DDR-Fahrzeugbaus in den 1970er und 1980er JahrenHerrmann, Hans-Christian January 2005 (has links)
No description available.
|
285 |
Design and Analysis of an adaptive λ-Tracking Controller for powered Gearshifts in automatic TransmissionsLoepelmann, Peter 14 November 2014 (has links)
To meet the continuously increasing goals in vehicle fuel efficiency, a number of measures are taken in automotive powertrain engineering, such as the combination of electric drives and conventional combustion engines in hybrid vehicles or the increase in gear ratios. This development leads to more complex powertrain systems, such as automatic transmissions. At the same time, the need for complex control systems is increased to achieve this desired functionality.
Automatic transmissions are controlled by an electro-hydraulic control unit that governs all operations such as gear shifting and starting. Since most of the control software is designed in the form of open-loop control, most of the operations have to be calibrated manually. Thus, there exists a large number of calibration parameters in the control software that have to be tuned individually for each combination of engine, transmission and vehicle model. This process is therefore time-consuming and costly. Hence, it would be advantageous to reduce the need for calibration and in the end shorten the development process for automatic transmissions by reducing software complexity while maintaining functionality and performance.
The goal of this thesis is to replace parts of the control software responsible for conducting the gearshifts that require extensive tuning by implementing control systems that have no need for calibration: adaptive high-gain λ-tracking controllers. In order to obtain the control parameters, i.e., the feedback gains, without calibration, an adaption law is implemented that continuously computes these parameters during operation of the controller. Thus, calibration is no longer needed. Since the system has to be high-gain-stabilizable, an extensive system analysis is conducted to determine whether an adaptive λ-tracking controller can be implemented. A nonlinear model of the clutch system dynamics is formulated and investigated.
As a result, high-gain stability is proven for the system class and validated in simulation. Following the stability analysis, the devised adaptive controller is implemented into the control software running on the series production transmission control unit. Extensive simulations with a comprehensive vehicle model running the extended transmission software are conducted to design and to test the adaptive controllers and their underlying parameters during transmission operation in order to evaluate the control performance. The control software containing the adaptive controller is then implemented in two distinct vehicles with different automatic transmissions equipped with series production control hardware for the purpose of hardware experiments and validation. The resulting reduction of calibration efforts is discussed.
|
286 |
Intrinsic Self-Sensing of Pulsed Laser Ablation in Carbon Nanofiber-Modified Glass Fiber/Epoxy LaminatesRajan Nitish Jain (10725372) 29 April 2021 (has links)
<div>Laser-to-composite interactions are becoming increasingly common in diverse applications such as diagnostics, fabrication and machining, and weapons systems. Lasers are capable of not only performing non-contact diagnostics, but also inducing seemingly imperceptible structural damage to materials. In safety-critical venues like aerospace, automotive, and civil infrastructure where composites are playing an increasingly prominent role, it is desirable to have means of sensing laser exposure on a composite material. Self-sensing materials may be a powerful method of addressing this need. Herein, we present an exploratory study on the potential of using changes in electrical measurements as a way of detecting laser exposure to a carbon nanofiber (CNF)-modified glass fiber/epoxy laminate. CNFs were dispersed in liquid epoxy resin prior to laminate fabrication via hand layup. The dispersed CNFs form a three-dimensional conductive network which allows for electrical measurements to be taken from the traditionally insulating glass fiber/epoxy material system. It is expected that damage to the network will disrupt the electrical pathways, thereby causing the material to exhibit slightly higher resistance. To test laser sensing capabilities, a resistance baseline of the CNF-modified glass fiber/epoxy specimens was first established before laser exposure. These specimens were then exposed to an infra-red laser operating at 1064 nm, 35 kHz, and pulse duration of 8 ns. The specimens were irradiated for a total of 20 seconds (4 exposures each at 5 seconds). The resistances of the specimens were then measured again post-ablation. In this study, it was found that for 1.0 wt.% CNF by weight the average resistance increased by about 18 percent. However, this values varied for specimens with different weight fractions. This established that the laser was indeed causing damage to the specimen sufficient to evoke a change in electrical properties. In order to expand on this result, electrical impedance tomography (EIT) was employed for localization of laser exposures of 1, 3, and 5 seconds on a larger specimen, a 3.25” square plate. EIT was used to measure the changes in conductivity after each exposure. EIT was not only successful in detecting damage that was virtually imperceptible to the human-eye, but it also accurately localized the exposure sites. The post-ablation conductivity of the exposure sites decreased in a manner that was comparable to the resistance increase obtained during prior testing. Based on this preliminary study, this research could lead to the development of a real-time exposure detection and tracking system for the measurement, fabrication, and defense industries.</div>
|
287 |
Large-scale Numerical Optimization for Comprehensive HEV Energy Management - A Three-step ApproachVishwanath, Aashrith 17 February 2022 (has links)
No description available.
|
288 |
Mission-based Design Space Exploration and Traffic-in-the-Loop Simulation for a Range-Extended Plug-in Hybrid Delivery VehicleAnil, Vijay Sankar January 2020 (has links)
No description available.
|
289 |
Research, Design, and Implementation of Virtual and Experimental Environment for CAV System Design, Calibration, Validation and VerificationGoel, Shlok January 2020 (has links)
No description available.
|
290 |
Line-of-Sight Guidance for Wheeled Ground VehiclesLin, Letian 23 September 2020 (has links)
No description available.
|
Page generated in 0.154 seconds