• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 133
  • 94
  • 27
  • 26
  • 10
  • 8
  • 6
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 702
  • 192
  • 116
  • 110
  • 102
  • 99
  • 97
  • 59
  • 59
  • 57
  • 54
  • 53
  • 52
  • 51
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Molecular analysis of vesicle biogenesis during autophagy / Molecular analysis of vesicle biogenesis during autophagy

Bremer, Sebastian 29 May 2009 (has links)
No description available.
232

On the molecular bases of dictyostelium cell death

Song, Yu 13 October 2015 (has links)
Des conditions de carence entrainent une mort cellulaire développementale chez le protiste Dictyostelium discoideum. Dans un système in vitro, des cellules de Dictyostelium sont mises en conditions de carence, puis l'addition des inducteurs DIF-1 ou c-di-GMP conduit à une mort cellulaire vacuolaire. DIF-1 est un polyketide produit par Dictyostelium et induisant la différenciation des cellules pré-tiges. Le dinucléotide cyclique c-di-GMP était connu comme un second messager chez les procaryotes, et comme un déclencheur de l'immunité innée dans des cellules de mammifères. Il a été montré par d'autres que des cellules de Dictyostelium peurent produire et détecter c-di-GMP.Pour analyser la signalisation par c-di-GMP chez Dictyostelium, nous avons utilisé la mutagénèse aléatoire et la mutagénèse ciblée. En utilisant des mutants inactivant stlB ou dmtA, nous avons démontré que DIF-1 endogène ou exogène est nécessaire pour la signalisation par c-di-GMP dans Dictyostelium. En conséquence, nous avons amélioré l'étape de sélection dans une mutagenèse aléatoire en utilisant c-di-GMP et un peu de DIF-1 comme inducteurs, ce qui a produit plusieurs mutants. Par ailleurs j’ai testé par mutagenèse ciblée des hypothèses basées sur les informations connues dans Dictyostelium ou d'autres types de mort cellulaire. Trois molécules ont été essayées, DDX41 comme récepteur putatif de c-di-GMP, l' uniport mitochondrial pour le Ca2+(MCU) et la Na+/K+ATPase (IonA).En résumé, au cours de ma thèse, nous avons démontré une relation entre la signalisation c-di-GMP et a signalisation DIF-1 dans Dictyostelium et identifié plusieurs nouvelles molécules de la mort cellulaire par mutagenèse aléatoire. / The protist Dictyostelium discoideum undergoes development cell death when under starvation. To investigate the molecular mechanism of Dictyostelium cell death, an in vitro system has been used. Dictyostelium cells were starved and then cell death was induced by DIF-1 or c-di-GMP. About 40h after induction, cells underwent vacuolar cell death. DIF-1 is a polyketide, produced by Dictyostelium prespore cells, which induces prestalk cell differentiation. c-di-GMP was well known not only as a second messenger produced and sensed by bacteria but also as a trigger of innate immunity in mammalian cells. Dictyostelium was recently found by another laboratory to produce and sense c-di-GMP. To analyze c-di-GMP signaling in Dictyostelium cell death, we used random mutagenesis and targeted mutagenesis. By using the knockout mutants stlB- and dmtA-, we demonstrated that endogenous or exogenous DIF-1 is required for c-di-GMP signaling in Dictyostelium. In contrast, endogenous c-di-GMP is not necessary for exogenous DIF-1 signaling. As a consequence, we improved the selection step in random mutagenesis by using c-di-GMP and a little DIF-1 as inducers, which produced several mutants. Another part of my project was to test by targeted mutagenesis some hypotheses, based on known information in Dictyostelium or other similar cell death types. Three molecules have been tested, the c-di-GMP putative receptor DDX41, the mitochondrial Ca2+ uniporter (MCU) and the Na+/K+-ATPase (IonA).In summary, during my thesis, we have demonstrated a relation between c-di-GMP signaling and DIF-1 signaling in Dictyostelium and identified several new cell death molecules by random mutagenesis.
233

Rôle des récepteurs autophagiques dans la maturation des autophagosomes / A role for autophagic receptors in autophagosome maturation

Verlhac, Pauline 20 September 2016 (has links)
La xénophagie est une forme d'autophagie sélective permettant de capture des pathogènes dans les autophagosomes et de les dégrader dans les autolysosomes. Cette sélectivité est assurée par une famille de protéines ; les récepteurs autophagiques qui reconnaissent des substrats cytosoliques d'un côté et les membres de la famille LC3 ancrés dans la membrane de l'autophagosome de l'autre. Parmi ces récepteurs, NDP52 cible la bactérie Salmonella Typhimurium vers l'autophagie.Nous décrivons un rôle nouveau et inattendu pour NDP52 ; assurer la maturation d'autophagosomes durant l'infection par Salmonella mais aussi durant l'autophagie basale. De manière intéressante, ce rôle de NDP52 dans la maturation est indépendant de son rôle dans le ciblage de la bactérie puisque ces fonctions nécessitent des domaines et des partenaires moléculaires de NDP52 distincts. Nous montrons aussi que d'autres récepteurs peuvent participer à la maturation comme Optineurine. Ce travail montre donc que NDP52 assure deux rôles durant la xénophagie en ciblant les bactéries vers les autophagosomes en formation puis en promouvant la maturation de l'autophagosome. De plus, nous proposons aussi un possible mécanisme de régulation de ces deux fonctions par des modifications post-traductionnelles des récepteurs autophagiques.Ce travail démontre que les récepteurs autophagiques jouent des rôles au-delà du ciblage des pathogènes qui sont aussi cruciaux pour une xénophagie efficace. De plus, les récepteurs autophagiques sont aussi nécessaires pour le déroulement de l'autophagie basale. Ces travaux offrent une nouvelle compréhension de la régulation moléculaire de l'autophagie et de la xénophagie / Xenophagy relies on the ability of the autophagy process to selectively entrap intracellular pathogens within autophagosomes to degrade them into autolysosomes. The selectivity of the process relies on proteins named autophagy receptors that share the ability to recognise cytosolic cargos on one hand and autophagosome-bound members of the ATG8 family on the other. Among autophagy receptors NDP52 has been described to target Salmonella Typhimurium to the growing autophagosome. We describe a new unexpected role for NDP52, as this receptor also regulates the maturation of Salmonella-containing autophagosomes and during ongoing autophagy. Interestingly, the role of NDP52 in maturation is independent from its role in targeting as they rely on different binding domains and protein partners. We also show that other autophagy receptors also mediate autophagosome maturation such as Optineurin. Therefore, our work shows that NDP52 plays a dual function during xenophagy first by targeting bacteria to growing autophagosomes and then by assuring autophagosome maturation. Moreover, we also provide insights as to how these dual roles are regulated by post-translational modifications of autophagy receptors.This work demonstrates that autophagy receptors have other roles beyond pathogen targeting that are also crucial for an efficient xenophagy. Moreover, autophagy receptors are also necessary for autophagy completion in uninfected cells. These results strengthen our understanding of both ongoing autophagy and xenophagy molecular mechanisms
234

STAT3 Enhances Sensitivity of Glioblastoma to Drug-Induced Autophagy-Dependent Cell Death

Remy, Janina, Linder, Benedikt, Weirauch, Ulrike, Day, Bryan W., Stringer, Brett W., Herold-Mende, Christel, Aigner, Achim, Krohn, Knut, Kögel, Donat 02 June 2023 (has links)
Simple Summary Glioblastoma is the most common primary brain cancer in adults. One reason for the development and malignancy of this tumor is the misregulation of certain cellular proteins. The oncoprotein STAT3 that is frequently overactive in glioblastoma cells is associated with more aggressive disease and decreased patient survival. Autophagy is a form of cellular self digestion that normally maintains cell integrity and provides nutrients and basic building blocks required for growth. While glioblastoma is known to be particularly resistant to conventional therapies, recent research has suggested that these tumors are more sensitive to excessive overactivation of autophagy, leading to autophagy-dependent tumor cell death. Here, we show a hitherto unknown role of STAT3 in sensitizing glioblastoma cells to excessive autophagy induced with the repurposed drug pimozide. These findings provide the basis for future research aimed at determining whether STAT3 can serve as a predictor for autophagy-proficient tumors and further support the notion of overactivating autophagy for cancer therapy. Abstract Glioblastoma (GBM) is a devastating disease and the most common primary brain malignancy of adults with a median survival barely exceeding one year. Recent findings suggest that the antipsychotic drug pimozide triggers an autophagy-dependent, lysosomal type of cell death in GBM cells with possible implications for GBM therapy. One oncoprotein that is often overactivated in these tumors and associated with a particularly dismal prognosis is Signal Transducer and Activator of Transcription 3 (STAT3). Here, we used isogenic human and murine GBM knockout cell lines, advanced fluorescence microscopy, transcriptomic analysis and FACS-based assessment of cell viability to show that STAT3 has an underappreciated, context-dependent role in drug-induced cell death. Specifically, we demonstrate that depletion of STAT3 significantly enhances cell survival after treatment with Pimozide, suggesting that STAT3 confers a particular vulnerability to GBM. Furthermore, we show that active STAT3 has no major influence on the early steps of the autophagy pathway, but exacerbates drug-induced lysosomal membrane permeabilization (LMP) and release of cathepsins into the cytosol. Collectively, our findings support the concept of exploiting the pro-death functions of autophagy and LMP for GBM therapy and to further determine whether STAT3 can be employed as a treatment predictor for highly apoptosis-resistant, but autophagy-proficient cancers.
235

Unraveling the Causative Defects in X-linked Myopathy with Excessive Autophagy

Oprea, Iulia 19 February 2010 (has links)
X-linked myopathy with excessive autophagy (XMEA) is a skeletal muscle disorder inherited in recessive fashion, affecting boys and sparing carrier females. Onset is in childhood with weakness of the proximal muscles of the lower extremities, progressing slowly to involve other muscle groups. Pathological analysis of skeletal muscle biopsies shows no inflammation, necrosis or apoptosis. Instead, forty to 80% of fibers exhibit giant autophagic vacuoles with heterogeneous degradative content. Numerous critical functions of all cells are compartmentalized in particular pH environments established by the intracellular transmembrane V-ATPase proton pump complex. Assembly of this complex, directed by the Vma21p chaperone, is well-studied in yeast but completely unknown in other organisms. The aim of my project was a better understanding of XMEA pathogenesis, with a focus on finding the disease-causing gene. In this thesis, I identify mutations in XMEA patients in a novel, previously uncharacterized gene, which we name VMA21. Most of the mutations are located in splicing-relevant positions and decrease splicing efficiency. After establishing that XMEA is caused by hypomorphic alleles of the VMA21 gene, I show that VMA21 is the diverged human orthologue of the yeast Vma21p protein, and that like Vma21p, it is an essential assembly chaperone of the V-ATPase. Decreased VMA21 reduces V-ATPase activity, resulting in altered lysosomal pH and a blockage at the degradative step of autophagy. Towards understanding disease pathogenesis, I show evidence of compensatory autophagy upregulation consecutive to the impaired clearance. Accumulated autolysosomes due to increased autophagy continue to face the degradative block and are slow to disappear. Instead, they merge to each other and form the characteristic giant XMEA vacuoles. These results uncover a novel mechanism of disease, namely macroautophagic overcompensation leading to cell vacuolation and tissue atrophy. This work describes the clinical outcome at the cusp of tolerable reduction in V-ATPase, with implications on common diseases like osteoporosis and cancer metastasis, where increased V-ATPase activity is an important component. Our XMEA patients show that the safety margin of reducing V-ATPase activity in humans is wide, increasing the potential to utilize chemical or biological V-ATPase inhibitors as possible therapies.
236

Análise da via autofágica no músculo distrófico / Analysis of the autophagic pathway in the dystrophic muscle

Fernandes, Stephanie de Alcântara 04 August 2017 (has links)
O músculo esquelético é um tecido que tem a capacidade de se regenerar após lesão, seja ela patológica ou induzida. Para tanto, células musculares progenitoras, presentes no músculo adulto, atuam fundindo-se entre si, ou com as fibras musculares danificadas, para formar novas fibras. A via da macroautofagia, implicada na degradação e reciclagem de proteínas e organelas danificadas via lisossomo, é essencial para a manutenção da massa muscular, mas já foi também implicada na diferenciação e funcionamento de células progenitoras do músculo. Além disso, essa via está desregulada em diversas doenças neuromusculares, o que destaca seu papel nesse tecido. Nesse estudo, a regulação da autofagia foi investigada em diferentes situações de formação e degradação do músculo. Para estudar o processo de diferenciação muscular in vitro utilizamos um modelo de células musculares imortalizadas normais, e de paciente com miopatia ligada ao X com autofagia excessiva (XMEA). A análise dos genes e proteínas p62, BNIP3, BECLIN1, VPS34, ATG12 e LC3, além de alvos de mTOR, mostrou um padrão similar de expressão em mioblastos indiferenciados e miotubos diferenciados a partir de células controle e nas derivadas de paciente XMEA. Estes resultados sugerem que a desregulação da via autofágica relacionada à doença provavelmente surge em estágios mais avançados, como se observa em doenças de acúmulo lisossomal. A investigação da diferenciação muscular nessas células mostrou um aumento na capacidade de fusão de mioblastos XMEA, que não foi relacionado a mudanças na expressão de genes envolvidos na miogênese. Isso indica que o defeito primário relacionado a XMEA, como a deficiência da ATPase vacuolar, pode interferir no processo de diferenciação muscular. Para estudar o músculo em condições patológicas, utilizamos modelos animais para distrofias musculares que possuem distintos graus de afecção do músculo, como o DMDmdx, modelo para distrofia muscular de Duchenne, o SJL/J, modelo para distrofia muscular de cinturas tipo 2B e o Largemyd, modelo para distrofia muscular congênita 1D. Observamos que não há alterações globais na expressão de genes e proteínas da autofagia. Adicionalmente, cada modelo murino teve alterações pontuais, destacando a ausência de correlação entre o grau de degeneração do músculo e as alterações observadas na via autofágica. Por outro lado, quando uma lesão muscular é induzida em músculo normal, houve uma diminuição da expressão de todos os genes estudados, Bnip3, Beclin1, Vps34, Atg12, Lc3 e Gabarapl1, com possível acúmulo das proteínas autofágicas p62 e Beclin1. Com a recuperação do músculo, após cinco dias da lesão, a maior parte dos genes estudados teve sua expressão normalizada. Tais resultados indicam que a lesão aguda se relaciona a uma resposta drástica e recuperação rápida na via da autofagia. Em conjunto, nossos resultados mostram que a via da autofagia é diferencialmente afetada a depender do estímulo dado ao músculo, seja ele de regeneração e formação de novas células musculares ou de degeneração. Dessa forma, este estudo pode ter implicações para o desenvolvimento de terapias que tenham como alvo a via autofágica, já que indica que o momento da intervenção terapêutica pode ser importante, assim como o estímulo que levou a alterações no tecido muscular / The skeletal muscle is a tissue that has the ability to regenerate upon lesion, whether it occurs pathologically or induced. Therefore, progenitor muscle cells, present in the adult muscle, act by fusing with each other or with damaged fibers in order to recover the tissue. The macroautophagy pathway, related to degradation and recycling of proteins and damaged organelles via lysosome, is essential for the maintenance of muscle mass, and it was also implicated in the differentiation and functioning of muscle progenitor cells. Besides that, this pathway is deregulated in several neuromuscular disorders, highlighting its important role in this tissue. In this study, the autophagic regulation was investigated in distinct contexts of muscle formation and degradation. To study the muscle differentiation process in vitro, we used a model of immortalized muscle cells from both a normal control and a patient with X-linked myopathy with excessive autophagy (XMEA). The genes and proteins p62, BNIP3, BECLIN1, VPS34, ATG12, LC3 and mTOR targets showed a similar pattern of expression in both undifferentiated myoblasts and differentiated myotubes, from both control cells and XMEA patient-derived cells. This fact suggests that autophagic deregulation might arise in later stages of the disease, in a pattern observed in disorders with protein accumulation. The investigation of muscle differentiation in the studied cells showed an enhancement of the myoblast fusion capacity in XMEA cells, which was not related to changes in the expression of myogenic genes. This observation indicates that the primary defect related to the XMEA pathology, as the deficiency of the vacuolar ATPase, might interfere in the process of muscle differentiation. In order to evaluate muscle in pathological conditions, we studied animal models for muscular dystrophies that have distinct patterns of muscle affection, such as the DMDmdx, model for the Duchenne muscular dystrophy, the SJL/J, model for the limb-girdle muscle dystrophy type 2B and the Largemyd, model for the congenital muscular dystrophy type 1D. We did not find any global alterations in the expression of autophagic genes and proteins. Additionally, each animal model had discrete changes, highlighting the absence of correlation between the pattern of muscle degeneration and alterations in the autophagy pathway. On the other hand, when a lesion is induced in normal muscle, there is a decrease in the expression of all studied genes, such as Bnip3, Beclin1, Vps34, Atg12, Lc3 and Gabarapl1, with a possible accumulation of the autophagic proteins p62 and Beclin1. With muscle recovery, five days after lesion, most of the studied genes had their expression returning to normal levels. These results indicate that the acute lesion is related to a drastic response and rapid recovery of the autophagic pathway. Together, our results show that autophagy is differentially affected depending on the stimulus given to the muscle, either of regeneration and formation of new muscle cells or degeneration. In that sense, this study may have implications for the development of therapies that target autophagy, since it indicates that the time point of therapeutic interventions may be important, as well as the stimulus that led to alterations in the skeletal muscle tissue
237

Unraveling the Causative Defects in X-linked Myopathy with Excessive Autophagy

Oprea, Iulia 19 February 2010 (has links)
X-linked myopathy with excessive autophagy (XMEA) is a skeletal muscle disorder inherited in recessive fashion, affecting boys and sparing carrier females. Onset is in childhood with weakness of the proximal muscles of the lower extremities, progressing slowly to involve other muscle groups. Pathological analysis of skeletal muscle biopsies shows no inflammation, necrosis or apoptosis. Instead, forty to 80% of fibers exhibit giant autophagic vacuoles with heterogeneous degradative content. Numerous critical functions of all cells are compartmentalized in particular pH environments established by the intracellular transmembrane V-ATPase proton pump complex. Assembly of this complex, directed by the Vma21p chaperone, is well-studied in yeast but completely unknown in other organisms. The aim of my project was a better understanding of XMEA pathogenesis, with a focus on finding the disease-causing gene. In this thesis, I identify mutations in XMEA patients in a novel, previously uncharacterized gene, which we name VMA21. Most of the mutations are located in splicing-relevant positions and decrease splicing efficiency. After establishing that XMEA is caused by hypomorphic alleles of the VMA21 gene, I show that VMA21 is the diverged human orthologue of the yeast Vma21p protein, and that like Vma21p, it is an essential assembly chaperone of the V-ATPase. Decreased VMA21 reduces V-ATPase activity, resulting in altered lysosomal pH and a blockage at the degradative step of autophagy. Towards understanding disease pathogenesis, I show evidence of compensatory autophagy upregulation consecutive to the impaired clearance. Accumulated autolysosomes due to increased autophagy continue to face the degradative block and are slow to disappear. Instead, they merge to each other and form the characteristic giant XMEA vacuoles. These results uncover a novel mechanism of disease, namely macroautophagic overcompensation leading to cell vacuolation and tissue atrophy. This work describes the clinical outcome at the cusp of tolerable reduction in V-ATPase, with implications on common diseases like osteoporosis and cancer metastasis, where increased V-ATPase activity is an important component. Our XMEA patients show that the safety margin of reducing V-ATPase activity in humans is wide, increasing the potential to utilize chemical or biological V-ATPase inhibitors as possible therapies.
238

Évaluation des inducteurs de l’autophagie comme cible thérapeutique contre le virus respiratoire syncytial

Bourbia, Amel 12 1900 (has links)
Introduction : Le virus respiratoire syncytial (RSV) est associé à des taux élevés de morbidité et de mortalité non seulement chez les jeunes enfants, en particulier les nourrissons et ceux atteints de cardiomyopathie congénitale, mais aussi chez les personnes de tous âges immunodéprimées et chez les personnes âgées. Les options thérapeutiques actuelles se limitent à une prophylaxie par anticorps monoclonaux réservée aux nourrissons à haut risque de maladie grave associée au RSV. Le développement de nouveaux antiviraux est donc urgent. Les antiviraux ciblant les protéines de l'hôte constituent une alternative émergente aux antiviraux classiques ciblant les protéines virales qui présentent des risques de développement de résistances. L'autophagie est un mécanisme cellulaire qui peut favoriser ou limiter la réplication virale. Nos travaux en cours suggèrent que l'autophagie dans les cellules épithéliales des voies respiratoires humaines (AECs) offre une protection antivirale contre RSV. Objectif : L'objectif de cette étude est d'évaluer la capacité de divers molécules induisant l'autophagie (AID) approuvés par la FDA à inhiber la réplication du RSV dans les AECs. Méthodes : Afin de quantifier l'induction de l'autophagie, la réplication du RSV et la viabilité cellulaire à l'aide d'un système d'imagerie à haut-débit, nous avons développé un essai utilisant des cellules A549, une lignée cellulaire modèle de cellules épithéliales respiratoires, la protéine LC3-RFP comme marqueur d’autophagie, un virus RSV recombinant exprimant la protéine GFP, et un marquage avec le SYTOX-Orange et le DAPI pour évaluer la viabilité cellulaire. Résultats et discussion : En utilisant la Torin-1, un AID caractérisé qui agit de manière mTOR -dépendante, nous avons confirmé que notre essai permet de mesurer l’induction de l’autophagie. De plus, nous avons constaté que la Torin-1 diminue significativement la réplication du RSV-GFP de manière dose-dépendante. Conclusion : En résumé, notre étude a permis de mettre en place un système expérimental à haut débit pour la caractérisation de l’effet des AIDs sur l’autophagie et leur impact sur la réplication du RSV. Nos résultats permettent de montrer que l’induction de l’autophagie corrèle avec la diminution de la réplication de RSV. Ces données devront être complétées par l’utilisation d’autres AIDs pour identifier des molécules approuvées par la FDA qui présentent une activité anti-RSV in vitro. / Introduction: Respiratory syncytial virus (RSV) is associated with high rates of morbidity and mortality not only in young children, particularly infants and those with congenital cardiomyopathy, but also in immunocompromised people of all ages and in the elderly. Current treatment options are limited to monoclonal antibody prophylaxis reserved for infants at high risk of serious illness associated with RSV. The development of new antivirals is therefore urgent. Antivirals targeting host proteins are an emerging alternative to conventional antivirals targeting viral proteins that pose risks of resistance development. Autophagy is a cellular mechanism that can promote or limit viral replication. Our ongoing work suggests that autophagy in human airway epithelial cells (AECs) provides antiviral protection against RSV. Objective: The objective of this study is to evaluate the ability of various FDA-approved autophagy-inducing molecules (AIDs) to inhibit RSV replication in AECs. Methods: In order to quantify autophagy induction, RSV replication and cell viability using a high-throughput imaging system, we developed an assay using A549 cells, a cell line model of respiratory epithelial cells, the LC3-RFP protein as an autophagy marker, a recombinant RSV virus expressing the GFP protein, and labeling with SYTOX-Orange and DAPI to assess cell viability. Results and discussion: Using Torin-1, a characterized AID that acts in an mTOR-dependent manner, we confirmed that our assay can measure the induction of autophagy. Furthermore, we found that Torin-1 significantly decreases RSV-GFP replication in a dose-dependent manner. Conclusion: In summary, our study allowed to set up a high-throughput experimental system for the characterization of the effect of AIDs on autophagy and their impact on RSV replication. Our results show that the induction of autophagy correlates with the decrease in RSV replication. These data should be supplemented by the use of other AIDs to identify FDA-approved molecules that exhibit anti-RSV activity in vitro.
239

Autophagy is indispensable for normal maturation and function of macrophages and neutrophils

Stranks, Amanda Jane January 2013 (has links)
Macrophages and neutrophils are vital cells of the immune system, performing crucial innate functions and bridging innate and adaptive immunity. However, inappropriate activation or poor resolution of responses results in chronic inflammatory and autoimmune conditions due to accumulation of myeloid cells and uncontrolled cytokine production, as is commonly seen in the aging immune system. It is not clear what is required to maintain healthy myeloid cells throughout life or what links inflammation and myeloid dysfunction during the aging process. We have shown that autophagy, a vital intracellular degradation mechanism, is required for normal macrophage innate and adaptive immune functions such as phagocytosis and antigen presentation, as well as being an important regulator of the inflammatory response. Loss of autophagy also results in reduced surface antigen expression and increased glycolysis. We found that autophagy-deficient macrophages have a similar phenotype to aged macrophages. Furthermore, aged macrophages exhibit reduced autophagy compared with young macrophages, suggesting a link between reduced autophagy and acquisition of the aging macrophage phenotype. Finally, we show that autophagy plays a vital role in normal neutrophil differentiation, with autophagy-deficient neutrophils exhibiting altered nuclear morphology and aberrant granule formation. These data show that autophagy plays a critical role in the maintenance of essential macrophage homeostasis and functions by regulating inflammation and metabolism, thereby preventing immunosenescence. We postulate that autophagy modulation in macrophages and neutrophils may be used to prevent excess inflammation, such as in inflammatory and autoimmune diseases. Moreover, inflammation due to aging may potentially be delayed by induction or preservation of autophagy, which could improve immune responses and reduce the morbidity and mortality associated with “inflamm-aging”.
240

HR23B, a biomarker for HDAC inhibitors

Khan, Omar Ali January 2013 (has links)
As our understanding of cancer biology increases and novel therapies are developed, an increasing number of predictive biomarkers are becoming clinically available. Aberrant acetylation has been strongly linked to tumourigenesis and the modulation of acetylation through targeting histone deacetylase (HDAC) has led to the introduction of many HDAC inhibitors. To date, two have had regulatory approval for the treatment of cutaneous T cell lymphoma (CTCL). Modifications in chromatin control underpin the mechanism of action of HDAC inhibitors. A genome wide loss-of-function screen identified HR23B as a gene that governs sensitivity to HDAC inhibitors. HR23B shuttles ubiquitinated cargo proteins to the proteasome and elevated levels may contribute to cell death mediated by this pathway. It also governs cell sensitivity to drugs that act directly on the proteasome. HDAC inhibitors influence proteasome activity and there may be a synergistic interaction with proteasome inhibitors. HR23B and HDAC6 interact and HDAC6 may be a negative regulator of apoptosis and a positive regulator of autophagy and through its ability to down-regulate HR23B, may impact on the cellular outcome of HDAC inhibitor treatment. Expression of HR23B has been correlated with clinical response to HDAC inhibitors in a retrospective analysis of CTCL patients. The tissue expression of HR23B and the autophagy marker LC3 has been investigated and there may be a reciprocal relationship in their expression in some tumours which may provide prognostic information and patients with low HR23B expression but high levels of autophagy appear to have a particularly poor prognosis. Well designed, biomarker-driven prospective clinical trials are needed to clarify the predictive and prognostic roles of HR23B.

Page generated in 0.0425 seconds