181 |
Stable Parameter Identification Evaluation of VolatilityRückert, Nadja, Anderssen, Robert S., Hofmann, Bernd January 2012 (has links)
Using the dual Black-Scholes partial differential equation, Dupire derived an explicit formula, involving the ratio of partial derivatives of the evolving fair value of a European call option (ECO), for recovering information about its variable volatility. Because the prices, as a function of maturity and strike, are only available as discrete noisy observations, the evaluation of Dupire’s formula reduces to being an ill-posed numerical differentiation problem, complicated by the need to take the ratio of derivatives. In order to illustrate the nature of ill-posedness, a simple finite difference scheme is first used to approximate the partial derivatives.
A new method is then proposed which reformulates the determination of the volatility, from the partial differential equation defining the fair value of the ECO, as a parameter identification activity. By using the weak formulation of this equation, the problem is localized to a subregion on which the volatility surface can be approximated by a constant or a constant multiplied by some known shape function which models the local shape of the volatility function. The essential regularization is achieved through the localization, the choice of the analytic weight function, and the application of integration-by-parts to the weak formulation to transfer the differentiation of the discrete data to the differentiation of the analytic weight function.
|
182 |
Numerical Methods for Mathematical Models on Warrant PricingLondani, Mukhethwa January 2010 (has links)
>Magister Scientiae - MSc / Warrant pricing has become very crucial in the present market scenario. See, for example, M. Hanke and K. Potzelberger, Consistent pricing of warrants and traded options, Review Financial Economics 11(1) (2002) 63-77 where the authors indicate that warrants issuance affects the stock price process of the issuing company. This change in the stock price process leads to subsequent changes in the prices of options written on the issuing company's stocks. Another notable work is W.G. Zhang, W.L. Xiao and C.X. He, Equity warrant pricing model under Fractional Brownian motion and an empirical study, Expert System with Applications 36(2) (2009) 3056-3065 where the authors
construct equity warrants pricing model under Fractional Brownian motion and deduce the European options pricing formula with a simple method. We study this paper in details in this mini-thesis. We also study some of the mathematical models on warrant pricing using the Black-Scholes framework. The relationship between the price of the warrants and the price of the call accounts for the dilution effect is also studied mathematically. Finally we do some numerical simulations to derive the value of warrants.
|
183 |
Numerical singular perturbation approaches based on spline approximation methods for solving problems in computational financeKabir, Mohmed Hassan Mohmed January 2011 (has links)
Philosophiae Doctor - PhD / Options are a special type of derivative securities because their values are derived from
the value of some underlying security. Most options can be grouped into either of
the two categories: European options which can be exercised only on the expiration
date, and American options which can be exercised on or before the expiration date.
American options are much harder to deal with than European ones. The reason being
the optimal exercise policy of these options which led to free boundary problems. Ever
since the seminal work of Black and Scholes [J. Pol. Bean. 81(3) (1973), 637-659],
the differential equation approach in pricing options has attracted many researchers.
Recently, numerical singular perturbation techniques have been used extensively for
solving many differential equation models of sciences and engineering. In this thesis,
we explore some of those methods which are based on spline approximations to solve
the option pricing problems. We show a systematic construction and analysis of these
methods to solve some European option problems and then extend the approach to
solve problems of pricing American options as well as some exotic options. Proposed
methods are analyzed for stability and convergence. Thorough numerical results are
presented and compared with those seen in the literature.
|
184 |
Exploring backward stochastic differential equations and deep learning for high-dimensional partial differential equations and European option pricingLeung, Jonathan January 2023 (has links)
Many phenomena in our world can be described as differential equations in high dimensions. However, they are notoriously challenging to solve numerically due to the exponential growth in computational cost with increasing dimensions. This thesis explores an algorithm, known as deep BSDE, for solving high-dimensional partial differential equations and applies it to finance, namely European option pricing. In addition, an implementation of the method is provided that seemingly shortens the runtime by a factor of two, compared with the results in previous studies. From the results, we can conclude that the deep BSDE method does handle high-dimensional problems well. Lastly, the thesis gives the relevant prerequisites required to be able to digest the theory from an undergraduate level.
|
185 |
Stochastic Runge–Kutta Lawson Schemes for European and Asian Call Options Under the Heston ModelKuiper, Nicolas, Westberg, Martin January 2023 (has links)
This thesis investigated Stochastic Runge–Kutta Lawson (SRKL) schemes and their application to the Heston model. Two distinct SRKL discretization methods were used to simulate a single asset’s dynamics under the Heston model, notably the Euler–Maruyama and Midpoint schemes. Additionally, standard Monte Carlo and variance reduction techniques were implemented. European and Asian option prices were estimated and compared with a benchmark value regarding accuracy, effectiveness, and computational complexity. Findings showed that the SRKL Euler–Maruyama schemes exhibited promise in enhancing the price for simple and path-dependent options. Consequently, integrating SRKL numerical methods into option valuation provides notable advantages by addressing challenges posed by the Heston model’s SDEs. Given the limited scope of this research topic, it is imperative to conduct further studies to understand the use of SRKL schemes within other models.
|
186 |
Estimating the Expected Pay-out of Earnout Contracts in Private Acquisitions / Estimering av utbetalning från tilläggsköpeskillingar vid förvärv av onoterade företagWuilmart, Adam, Harrysson, Erik January 2022 (has links)
The growth of private equity, as well as consolidation trends across other industries, have produced a strong and vibrant mergers and acquisitions market. A challenge during these acquisitions is information asymmetry, which makes agreeing on the transaction price a challenge. An increasingly popular instrument to get around this problem is to use earnout contracts, which puts the difference between what the buyer is willing to pay and what the seller is willing to accept as contingent on future performance of the company. This thesis focuses on testing four different models for estimating the expected pay-out of earnout contracts. The investigated models were geometric Brownian motion, autoregressive integrated moving average, artificial neural network and a hybrid model to forecast the underlying metrics which were used with Monte Carlo methods to compute the expected pay-out of the earnout contract. Furthermore, a bankruptcy adjusted and a model using implied market volatility were evaluated. The results were that the hybrid model showed the most promising predictions when estimating the expected pay-out. The bankruptcy adjustment was not successful since the model failed to reach sufficient accuracy. Using implied market volatility showed inconclusive results. / Tillväxten för riskkapital-industrin och konsolideringstrender inom andra industrier har resulterat i en aktiv marknad för bolagsförvärv. En tydlig utmaning under ett förvärv är informationsasymmetri, vilket gör det svårt att komma överens om bolagets värdering. En alltmer vanlig metod för att lösa detta problem är att använda en tilläggsköpeskilling. Ett sådant kontrakt placerar skillnaden mellan vad köparen är villig att betala och vad säljaren är villig att acceptera som en option baserad på bolagets framtida prestation. Detta examensarbete fokuserade på att testa fyra olika modeller för att skatta den framtida utbetalningen från tilläggsköpeskillingar. De utvärderade modellerna var baserade på geometrisk brownsk rörelse, autoregressive integrated moving average, artificiellt neuralt nätverk och en hybridmodell vilka användes för att generera prediktioner för optionernas underliggande mått. Dessa användes sedan för att med hjälp av Monte Carlo simulering skatta den förväntade utbetalningen från tilläggsköpeskillingen. Utöver detta testades en modell med justering av konkursrisk samt en modell baserad på implicerad volatilitet från börsnoterade optioner. Resultaten visade att hybridmodellen gav bäst prediktioner av den förväntade utbetalningen. Den konkursjusterade modellen påvisade inga signifikanta resultat då den ej nådde tillräckligt hög prediktionsförmåga. Användningen av implicerad marknadsvolatilitet gav ingen tydlig och statistiskt signifikant förbättring.
|
187 |
Capital market theories and pricing models : evaluation and consolidation of the available body of knowledgeLaubscher, Eugene Rudolph 05 1900 (has links)
The study investigates whether the main capital market theories and pricing models provide
a reasonably accurate description of the working and efficiency of capital markets,
of the pricing of shares and options and the effect the risk/return relationship has on investor
behaviour. The capital market theories and pricing models included in the study
are Portfolio Theory, the Efficient Market Hypothesis (EMH), the Capital Asset Pricing
Model (CAPM), the Arbitrage Pricing Theory (APT), Options Theory and the BlackScholes
(8-S) Option Pricing Model.
The main conclusion of the study is that the main capital market theories and pricing
models, as reviewed in the study, do provide a reasonably accurate description of
reality, but a number of anomalies and controversial issues still need to be resolved.
The main recommendation of the study is that research into these theories and models
should continue unabated, while the specific recommendations in a South African context
are the following: ( 1) the benefits of global diversification for South African investors
should continue to be investigated; (2) the level and degree of efficiency of the JSE Securities
Exchange SA (JSE) should continue to be monitored, and it should be established
whether alternative theories to the EMH provide complementary or better descriptions
of the efficiency of the South African market; (3) both the CAPM and the APT
should continue to be tested, both individually and jointly, in order to better understand
the pricing mechanism of, and risk/return relationship on the JSE; (4) much South
African research still needs to be conducted on the efficiency of the relatively new
options market and the application of the B-S Option Pricing Model under South African
conditions. / Financial Accounting / M. Com. (Accounting)
|
188 |
Modélisation financière avec des processus de Volterra et applications aux options, aux taux d'intérêt et aux risques de crédit / Financial modeling with Volterra Lévy processes and applications to options pricing, interest rates and credit risk modelingRahouli, Sami El 28 February 2014 (has links)
Ce travail étudie des modèles financiers pour les prix d'options, les taux d'intérêts et le risque de crédit, avec des processus stochastiques à mémoire et comportant des discontinuités. Ces modèles sont formulés en termes du mouvement Brownien fractionnaire, du processus de Lévy fractionnaire ou filtré (et doublement stochastique) et de leurs approximations par des semimartingales. Leur calcul stochastique est traité au sens de Malliavin, et des formules d'Itô sont déduites. Nous caractérisons les probabilités risque neutre en termes de ces processus pour des modèles d'évaluation d'options de type de Black-Scholes avec sauts. Nous étudions également des modèles de taux d'intérêts, en particulier les modèles de Vasicek, de Cox-Ingersoll-Ross et de Heath-Jarrow-Morton. Finalement nous étudions la modélisation du risque de crédit / This work investigates financial models for option pricing, interest rates and credit risk with stochastic processes that have memory and discontinuities. These models are formulated in terms of the fractional Brownian motion, the fractional or filtered Lévy process (also doubly stochastic) and their approximations by semimartingales. Their stochastic calculus is treated in the sense of Malliavin and Itô formulas are derived. We characterize the risk-neutral probability measures in terms of these processes for options pricing models of Black-Scholes type with jumps. We also study models of interest rates, in particular the models of Vasicek, Cox-Ingersoll-Ross and Heath-Jarrow-Morton. Finally we study credit risk models
|
189 |
Hedge de opção utilizando estratégias dinâmicas multiperiódicas autofinanciáveis em tempo discreto em mercado incompleto / Option hedging with dynamic multi-period self-financing strategies in discrete time in incomplete marketsLazier, Iuri 04 August 2009 (has links)
Este trabalho analisa três estratégias de hedge de opção, buscando identificar a importância da escolha da estratégia para a obtenção de um bom desempenho do hedge. O conceito de hedge é analisado de forma retrospectiva e uma teoria geral de hedge é apresentada. Em seguida são descritos alguns estudos comparativos de desempenho de estratégias de hedge de opção e suas metodologias de implementação. Para esta análise comparativa são selecionadas três estratégias de hedge de opção de compra do tipo européia: a primeira utiliza o modelo Black-Scholes-Merton de precificação de opções, a segunda utiliza uma solução de programação dinâmica para hedge dinâmico multiperiódico e a terceira utiliza um modelo GARCH para precificação de opções. As estratégias são comentadas e comparadas do ponto de vista de suas premissas teóricas e por meio de testes comparativos de desempenho. O desempenho das estratégias é comparado sob uma perspectiva dinâmicamente ajustada, multiperiódica e autofinanciável. Os dados para comparação de desempenho são gerados por simulação e o desempenho é avaliado pelos erros absolutos médios e erros quadráticos médios, resultantes na carteira de hedge. São feitas ainda considerações a respeito de alternativas de estimação e suas implicações no desempenho das estratégias. / This work analyzes three option hedging strategies, to identify the importance of choosing a strategy in order to achieve a good hedging performance. A retrospective analysis of the concept of hedging is conducted and a general hedging theory is presented. Following, some comparative papers of hedging performance and their implementation methodologies are described. For the present comparative analysis, three hedging strategies for European options have been selected: the first one based on the Black-Scholes-Merton model for option pricing, the second one based on a dynamic programming solution for dynamic multiperiod hedging and the third one based on a GARCH model for option pricing. The strategies are compared under their theoric premisses and through comparative performance testes. The performances of the strategies are compared under a dynamically adjusted multiperiodic and self-financing perspective. Data for performance comparison are generated by simulation and performance is evaluated by mean absolute errors and mean squared errors resulting on the hedging portfolio. An analysis is also done regarding estimation approaches and their implications over the performance of the strategies.
|
190 |
權益連結壽險之動態避險:風險極小化策略與應用 / Dynamic Hedging for Unit-linked Life Insurance Policies: Risk Minimization Strategy and Applications陳奕求, Chen, Yi-Chiu Unknown Date (has links)
傳統人壽保險契約之分析利用等價原則(principal of equivalience) 來對商品評價。即保險人所收保費之現值等於保險人未來責任(保險金額給付)之現值。然而對於權益連結壽險商品而言,其結合傳統商品之風險(如利率風險、死亡率風險等)與財務風險,故更增加其評價困難性。過去研究中在假設預定利率為常數與死亡率為給定的情況下,利用Black-Scholes (1973)評價公式推導出公式解。然而Black-Scholes評價公式是建構在完全市場上,對於權益連結壽險商品而言其已不符合完全市場之假設,因此本文放寬完全市場之假設來對此商品重新評價與避險。
在財務市場上,對於不完全市場(incomplete markets)下請求權(contingent claims)之評價與避險,已發展出數個不同評價方法。本文利用均數變異避險(mean-variance hedging)方法(Follmer&Sondermann ,1986)所衍生之風險極小化(risk-minimization)觀念來對此保險衍生性金融商品評價與避險,並找到一風險衡量測度(Moller , 1996、1998a、2000)來評估發行此商品保險人需承受多少風險。 / In this study, actuarial equivalent principle and no-arbitrage pricing theory are used in pricing and valuation for unit-linked life insurance policies. Since their market values cannot be replicated through the self-finance strategies due to market incompleteness, the theoretical setup in Black and Scholes (1973) and Follmer and Sondermann (1986) are adopted to develop the pricing and hedging strategies. Counting process is employed to characterize the transition pattern of the policyholder and the linked assets are modeled through the geometric Brownian motions. Equivalent martingale measures are adapted to derive the pricing formulas. Since the benefit payments depend on the performance of the underlying portfolios and the health status of the policyholder, mean-variance minimization criterion is employed to evaluate the financial risk. Finally pricing and hedging issues are examined through the numerical illustrations. Monte Carlo method is implemented to approximate the market premiums according to the payoff structures of the policies. In this paper, we show that the risk-minimization criterion can be used to determine the hedging strategies and access the minimal intrinsic risks for the insurers.
|
Page generated in 0.0722 seconds