• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 50
  • 45
  • 40
  • 20
  • 16
  • 13
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 518
  • 101
  • 99
  • 98
  • 58
  • 56
  • 55
  • 53
  • 48
  • 46
  • 45
  • 42
  • 35
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Three-dimensional effects and surface breakdown addressing efficiency and reliability problems in avalanche bipolar junction transistors

Duan, G. (Guoyong) 19 February 2013 (has links)
Abstract Although avalanche switching has been known since the 1950s, a trustworthy one-dimensional physical interpretation of the practically interesting high-current mode ("secondary breakdown") in a Si avalanche transistor has appeared only within the last decade and thanks to numerical one-dimensional and two-dimensional physics-based device modelling. A good fit with experimental waveforms has been achieved only for high-current, long-duration pulses (~100 A/7 ns), however, and modelling fails in the case of shorter pulses in a range that is of greater practical importance. One significant finding in this thesis is that reliable modelling of a Si avalanche transistor is in general impossible without taking account of three-dimensional effects. The task is a challenging one, as it is being put forward for the first time and state-of-the-art simulators are unable to model three-dimensional avalanche dynamics with an external circuit included (i.e. in “MixedMode”). Thus a smart approach was adopted which allowed the main features of the three-dimensional transient to be explained using a two-dimensional simulator and compared with the experimental data. The focus was on a trade-off of between high switching efficiency in an avalanche transistor (high-speed switching with a lower residual voltage as occurs at extremely high current densities) and device reliability as determined by local overheating during a single pulse, similarly resulting from high current density. This denotes the practical importance of the work performed here, as the current density is directly affected by three-dimensional dynamic processes. The second task performed in this thesis concerns the reliability of the GaAs avalanche transistors developed recently in the Electronics Laboratory and demonstrated of unique (superfast) switching and high-power-density sub-THz emission for mm-wave imaging and radars. Critically important for this new device is the limitation originating from premature breakdown at the surface of the GaAs p-n junction with a high density of surface states. Two of the results of this work are also fairly challenging: (i) the mechanism of "soft" surface breakdown intrinsic to all GaAs transistor mesas was interpreted in terms of the surface trapping of avalanche-generated electrons as suggested here, and (ii) passivation of the surface with a chalcogenide glass was suggested, as this allows the premature surface breakdown to be suppressed completely, an effect that has proved to be caused by a large negative surface charge formed on the “U centres” intrinsic to a chalcogenide glass. / Tiivistelmä Vaikka avalanche läpilyönti pii-transistoreissa on tunnettu jo 1950-luvulta lähtien, luotettava 1-dimensionaalinen fysikaalinen tulkinta ilmiöstä käytännön sovellusten kannalta kiinnostavilla suurilla virtatasoilla (ns. “secondary breakdown”) on esitetty vasta viime vuosikymmenen aikana 1- ja 2-dimensionaalisiin numeerisiin simulointeihin ja fysikaaliseen mallinnukseen perustuen. Kokeellisten mittausten ja simulointien välille on saatu hyvä sovitus kuitenkin vain sellaisessa ohjaustilanteessa, jossa transistori toimii suurella virtatasolla ja tuottaa leveitä virtapulsseja (~100  A / 7 ns); mallinnus ei vastaa mittaustuloksia lyhyillä virtapulsseilla, jotka kuitenkin ovat tärkeitä käytännön sovellusten kannalta. Yksi tämän työn keskeisiä havaintoja on se, että piipohjaisen avalanche transistorin luotettava mallintaminen ei ole käytännössä yleisesti mahdollista ottamatta huomioon 3-dimensionaalisia (3D) efektejä. Tällainen mallinnus, jota tässä työssä on kehitetty ensimmäistä kertaa, on vaikeaa, koska kaupalliset simulointiohjelmistot eivät kykene käsittelemään avalanche ilmiön dynamiikka 3-dimensionaalisesti tilanteessa, jossa transistoriin on kytketty ulkoinen piiri (ns. mixed-mode -simulointitilanne). Tähän kehitettiin tekniikka, joka mahdollistaa 3-dimensionaalisen kytkentätransientin tärkeimpien piirteiden selittämisen ja mittaustuloksiin vertaamisen 2-dimensionaalisten simulointien perusteella. Erityisesti pyrittiin selvittämään avalanche transistorin korkean kytkentähyötysuhteen (kollektori-emitterin ns. residual-jännitteen käyttäytyminen virrantiheystason mukaan) ja komponentin luotettavuuden välistä riippuvuutta. Luotettavuuteen vaikuttaa olennaisesti komponentin sisäinen, lokalisoitunut lämpötilamaksimi, joka myös riippuu keskeisesti komponentin virrantiheystasosta kytkentäpulssin aikana. Toisaalta virrantiheyteen vaikuttavat juuri komponentin 3-dimensionaaliset dynaamiset prosessit, joten työn käytännöllinen merkitys on suuri. Työn toisen osa käsittelee elektroniikan laboratoriossa äskettäin kehitetyn GaAs-avalanche transistorin luotettavuutta. Tällaisella transistorilla on demonstroitu olevan erityislaatuinen supernopea kytkeytymisefekti, ja se emittoi korkealla tehotasolla sähkömagneettista säteilyä n. 0,1–1 THz taajuusalueella. GaAs-avalanche transistoria voidaan täten potentiaalisesti hyödyntää mm-alueen kuvantamisessa ja tutkissa. Tämän uuden transistorin luotettavuuteen vaikuttaa ratkaisevasti rajoitus, joka aiheutuu ennenaikaisen, GaAs-pn-liitoksen pinnassa vaikuttavasta suuresta pintatilatiheydestä johtuvan läpilyönnin mahdollisuudesta. Työn kaksi keskeistä tulosta ovat: (i) kaikilla GaAs-transistoreilla ilmenevä ns. ”pehmeä”-läpilyönti aiheutuu avalanche ilmiön synnyttämien elektronien loukkuuntumisesta pinta-tiloihin, ja (ii) pinnan passivointi kalkopyriittilasilla estää läpilyönnin kokonaan, koska kalkopyriittilasille luonteenomaiset ”U-tilat” aiheuttavat liitoksen pintaan korkean negatiivisen pintavarauksen.
122

Mechanisms of Electrical Ageing of Oilimpregnated Paper due to Partial Discharges

Ghaffarian Niasar, Mohamad January 2015 (has links)
In this thesis, partial discharge (PD) phenomenon in oil-impregnated paper (OIP) is investigated under accelerated electrical stress. The thesis is mainly focused on the characteristic of PD activity and the influence it has on the insulation properties of OIP. PD source was created by introducing an air filled cavity embedded between layers of OIP. PD activity is investigated from the initiation up to final puncture breakdown of the OIP. The time-evolution of number, maximum magnitude and average magnitude of PD is investigated for cavities with different diameter and height. It was found that time to breakdown is shorter if the cavity diameter is larger and cavities with higher depth produce larger PDs. Comparison between PD activity in three cases, i.e. unaged OIP, thermally aged OIP and OIP samples with higher moisture content is performed. In general, it is found that for all cases the number and the maximum magnitude of PD follows a similar trend versus ageing time. During the very beginning of the experiment large discharges occur and they disappear after a short ageing time. Number and maximum magnitude of PD increase with time until reaching a peak value. Finally both parameters decrease with time and puncture breakdown occurs in the sample. Even though PD activity in thermally aged OIP is higher compared to the unaged OIP samples, the time to breakdown for new and thermally aged OIP samples is similar while it is shorter for OIP samples with higher moisture content. In this thesis, partial discharge (PD) phenomenon in oil-impregnated paper (OIP) is investigated under accelerated electrical stress. The thesis is mainly focused on the characteristic of PD activity and the influence it has on the insulation properties of OIP. PD source was created by introducing an air filled cavity embedded between layers of OIP. PD activity is investigated from the initiation up to final puncture breakdown of the OIP. The time-evolution of number, maximum magnitude and average magnitude of PD is investigated for cavities with different diameter and height. It was found that time to breakdown is shorter if the cavity diameter is larger and cavities with higher depth produce larger PDs. Comparison between PD activity in three cases, i.e. unaged OIP, thermally aged OIP and OIP samples with higher moisture content is performed. In general, it is found that for all cases the number and the maximum magnitude of PD follows a similar trend versus ageing time. During the very beginning of the experiment large discharges occur and they disappear after a short ageing time. Number and maximum magnitude of PD increase with time until reaching a peak value. Finally both parameters decrease with time and puncture breakdown occurs in the sample. Even though PD activity in thermally aged OIP is higher compared to the unaged OIP samples, the time to breakdown for new and thermally aged OIP samples is similar while it is shorter for OIP samples with higher moisture content. Breakdown strength of OIP samples is measured before and after ageing with PDs. It is found that the breakdown strength of OIP samples decreases by around 40% after the sample is exposed to accelerated electrical ageing. Furthermore a thermal model was developed to investigate the possible transition of breakdown mechanism from erosion to thermal breakdown in OIP dielectrics. It was found that PD activity can lower the thermal breakdown voltage of OIP up to four times. / <p>QC 20150206</p>
123

Caractérisarion physique par imagerie électronique de défauts dans les technologies mémoires avancées / Physical defect characterization by electron microscopy in advanced memories

Petit-Faivre, Emilie 18 December 2013 (has links)
De nos jours, l'essor des produits électroniques nomades requièrent une capacité de stockage de données croissante et imposent la fabrication de composants mémoire performants, denses et fiables. Cela implique une grande robustesse des cellules mémoires élémentaires dont les dimensions caractéristiques sont régulièrement réduites. L'objectif principal de la thèse est d'appréhender les mécanismes de claquage d'oxydes minces voire ultraminces intégrés dans des empilements métal/oxyde/semiconducteur. Un intérêt particulier a été porté à la croissance d'îlots cristallins épitaxiés se formant lors de certaines sollicitations électriques et associée aux mécanismes de DBIE (Dielectric Breakdown Induced Epitaxy). L'étude des différents dispositifs (cellules mémoires à grille continue ou discrète, transistors, condensateur) a permis de proposer des corrélations entre la défaillance électrique de ces dispositifs et les défauts microstructuraux générés. Ce travail a été réalisé selon une méthodologie intégrant (i) la sollicitation électrique ; (ii) une préparation d'échantillons adaptée ; (iii) l'identification, l'observation et la caractérisation des défauts par microscopie électronique en transmission (TEM). L'ensemble des études menées a permis d'isoler deux paramètres électriques principaux ayant un rôle prépondérant sur la formation d'îlots de silicium épitaxiés, en lien avec le mécanisme de DBIE : la charge injectée et le courant de compliance. Ces deux paramètres apparaissent comme des facteurs limitant l'emballement thermique qui conduit, en général, à un claquage diélectrique franc de l'oxyde et semblent, par conséquent, retarder la défaillance irréversible d'un dispositif. / Nowadays, the microelectronic industry had to take up ambitious challenges to satisfy the strong economic demand because of the mobile electronic products booming like smartphones, tablets, or more recently "phablets". These high added value products requires the growth of data storage capacity and, subsequently, to produce high-performance, dense and reliable components. That implies a great cell memories robustness whose critical dimensions are regularly reduced. In this context, the thesis issue is to better understand the breakdown mechanisms of the thin and ultra-thin oxides embedded in metal/oxide/semiconductor stacks. Actually, epitaxial growth of crystalline silicon hillocks was pinpointed. These hillocks grown under electrical stresses and were associated to DBIE mechanisms (Dielectric Breakdown Induced Epitaxy). Device studies allowed to correlate electrical stress conditions and microstructural defects thanks to a 3-steps methodology : (i) electrical stresses leading to microstructural defects ; (ii) sample preparation including defect localization and extraction ; (iii) identification, observation and characterization of defects by transmission electron microscopy (TEM). Two main electrical parameters were identified with factors responsible for hillocks growth linked to DBIE : the injected charge and the compliance current. These parameters seem to limit the thermal runaway inducing hard breakdown. Consequently, it is possible that delays the irreversible device degradation. In addition, hillocks seem to grow preferentially under polysilicon grain boundaries over the SiO2/Si stacks.
124

Time Resolved Spectroscopy Of Laser Induced Air Plasma

Kurt, Mustafa 01 September 2007 (has links) (PDF)
The laser beam interaction with matter and the plasma generation have been studied for many years. In some applications what is really important is to understand the composition and the temporal evolution of the species in the interested medium. In this thesis, time resolved optical spectroscopy was employed to understand the evolution of the plasma which is produced by interaction of Infrared (1.064 &micro / m) laser beam with air. In this thesis, a new technique is suggested to analyze the time evolution of laser induced breakdown spectroscopy. The suggested method and the instrumentation of the setup are tested with a single gas (He). After the tests, we analyzed time sequence spectra of Laser Induced Air Breakdown. The suggested method is based on triggering the laser and the spectrometer at different time and applying the spectrometer trigger time by adding the time delay (&amp / #916 / t) between them by using the pulse generator. The results show that the decay rates are slowing down microseconds after the excitation of the plasma. The results of the time-resolved measurements of the line spectra show that different component of the air has different decay rate, and lifetime. The lifetime of helium is 20 &micro / s, and the decay start 5 &micro / s after the initiation of plasma. Air has 12 &micro / s lifetime, and the decay start 3 &micro / s after the initiation of the plasma. Also, the decay rate and the lifetime depend on the state. We also calculate Doppler velocity for different component and different emission states. Doppler velocities show that the component which has great mass has small velocity, the component which has small mass has high velocity.
125

Electrical Insulating Properties of Poly(Ethylene-co-Butyl Acrylate) Filled with Alumina Nanoparticles

Jäverberg, Nadejda January 2013 (has links)
In this work the electrical insulating properties of the nanocomposite materials based on poly(ethylene-co-butyl acrylate) filled with alumina nanoparticles are studied. The dielectric properties chosen for the evaluation are the dielectric permittivity and loss as well as the breakdown strength and the pre-breakdown currents. The reason for choosing these particular properties is partly due to the importance of these for the general electrical applications and partly due to the uncertainties involved for these particular properties of the nanocomposite materials. The importance of moisture absorption for the dielectric properties is outlined in this work. All measurements were performed in both dry conditions and after conditioning of the materials in humid environment until saturation. The data for moisture absorption was taken from the water absorption study performed at the Department of Fibre and Polymer Technology, KTH. The dielectric spectroscopy in frequency domain was employed for measuring dielectric permittivity and loss. Havriliak-Negami approximation was used for characterization of the measurement data and at the same time ensuring the fulfillment of the Kramers-Kronig relations. Results from the dielectric spectroscopy study in dry conditions suggest that dielectric spectroscopy can be used for evaluating nanoparticle dispersion in the host matrix, based on correlation between the morphology data obtained from SEM investigation and the scatter in the dielectric loss. The dielectric spectroscopy study performed on the nanocomposites after conditioning in humid environment showed that absorbed moisture has a distinct impact on the dielectric loss. Especially pronounced is its’ influence on the frequency behavior, when the dielectric loss peaks are shifted towards higher frequencies with increased moisture content. The nanocomposite materials characterized by higher specific surface area generally exhibit higher dielectric losses. Surface functionalization of the nanoparticles does not seem to have much influence on the dielectric loss in dry conditions. After conditioning in humid environment, however, the surface modification was shown to have a significant impact. Temperature is another significant factor for the frequency behavior of the dielectric loss: it was found that the studied nanocomposites can be characterized by Arrhenius activation. The breakdown strength and pre-breakdown currents study outlined the influence of moisture as well. The study indicated that surface treatment of the nanoparticles can enhance properties of the nanocomposite materials, namely aminopropyltriethoxy silane was an especially successful choice: • The highest breakdown strength was determined by the study for NDA6 material formulation in dry conditions. • After conditioning in humid environment the NDA6 material continued showing the best breakdown strength among the nanocomposite mate rials, as well as this value was close to the breakdown strength of the reference unfilled material. This study confirms the existence of the optimal nanofiller content or rather optimal specific surface area of the dispersed nanoparticles in the host matrix. The latter is supported by the comparison between the nanocomposites based on nanoparticles with two different specific surface areas, which shows that the dielectric properties worsen, i.e. the dielectric losses increase and the influence of absorbed moisture on the breakdown strength becomes more pronounced, for nanomaterials with larger specific surface area. The pre-breakdown currents were found to follow space-charge limited conduction mechanism reasonably well. The following conduction regimes were identified: constant region (likely due to measurement difficulties at low field strengths), Ohm’s regime, trap-filled-limit regime and trapfree dielectric regime. The breakdown usually occurred either during the trap-filled-limit regime, when the current increased dramatically for the small change in electric field, or during the trapfree dielectric regime. The threshold values between different conduction regimes seem to correlate well with the oxidation induction times (OIT), which in turn depend on the total specific surface area. The pre-breakdown currents tend to be highest for the materials filled with the untreated nanoparticles. Increased absorbed moisture content causes higher pre-breakdown currents for the nanocomposite materials, while for the reference unfilled material the pre-breakdown currents do not show such tendency. Generally it can be said that the repeatability in the measured data is higher for the nanocomposite materials in comparison to the unfilled host material, as was demonstrated by both dielectric spectroscopy and breakdown studies. / <p>QC 20130207</p>
126

Application of GEANT4 toolkit for simulations of high gradient phenomena

Persson, Daniel January 2018 (has links)
To study electron emissions and dark currents in the accelerating structures in particle colliders, a test facility with a spectrometer has been constructed at CERN. This spectrometer has been simulated in the C++ toolkit GEANT4 and in this project the simulation has been improved to handle new realistic input data of the emitted electrons. The goal was to find relations between where the electrons are emitted inside the accelerating structure and the energy or position of the particles measured by the spectrometer. The result was that there is a linear relation between the initial position of the electrons and the width in the positions of the particles measured by the spectrometer. It also appears to be a relations between energy the emitted electrons get in the accelerating structure, which is related to the position, and the energy they deposit in the spectrometer. Further studies where the simulations are compared with real measurement data are required to determine whether these relations are true or not, find better reliability in the relations and get a better understanding of the phenomena.
127

Variable Speed Limit Strategies to Reduce the Impacts of Traffic Flow Breakdown at Recurrent Freeway Bottlenecks

Darroudi, Ali 04 November 2014 (has links)
Variable Speed Limit (VSL) strategies identify and disseminate dynamic speed limits that are determined to be appropriate based on prevailing traffic conditions, road surface conditions, and weather conditions. This dissertation develops and evaluates a shockwave-based VSL system that uses a heuristic switching logic-based controller with specified thresholds of prevailing traffic flow conditions. The system aims to improve operations and mobility at critical bottlenecks. Before traffic breakdown occurrence, the proposed VSL’s goal is to prevent or postpone breakdown by decreasing the inflow and achieving uniform distribution in speed and flow. After breakdown occurrence, the VSL system aims to dampen traffic congestion by reducing the inflow traffic to the congested area and increasing the bottleneck capacity by deactivating the VSL at the head of the congested area. The shockwave-based VSL system pushes the VSL location upstream as the congested area propagates upstream. In addition to testing the system using infrastructure detector-based data, this dissertation investigates the use of Connected Vehicle trajectory data as input to the shockwave-based VSL system performance. Since the field Connected Vehicle data are not available, as part of this research, Vehicle-to-Infrastructure communication is modeled in the microscopic simulation to obtain individual vehicle trajectories. In this system, wavelet transform is used to analyze aggregated individual vehicles’ speed data to determine the locations of congestion. The currently recommended calibration procedures of simulation models are generally based on the capacity, volume and system-performance values and do not specifically examine traffic breakdown characteristics. However, since the proposed VSL strategies are countermeasures to the impacts of breakdown conditions, considering breakdown characteristics in the calibration procedure is important to have a reliable assessment. Several enhancements were proposed in this study to account for the breakdown characteristics at bottleneck locations in the calibration process. In this dissertation, performance of shockwave-based VSL is compared to VSL systems with different fixed VSL message sign locations utilizing the calibrated microscopic model. The results show that shockwave-based VSL outperforms fixed-location VSL systems, and it can considerably decrease the maximum back of queue and duration of breakdown while increasing the average speed during breakdown.
128

Elektrické charakteristiky diafragmového výboje v roztocích elektrolytů / Electric characteristics of the diaphragm discharge in electrolyte solutions

Dřímalková, Lucie January 2011 (has links)
The main object of this thesis is the diagnostics of the diaphragm discharge generated in water solutions containing supporting electrolytes (mostly NaCl), and description of particular processes before and after discharge breakdown by DC non-pulsed voltage up to 2 kV. Although many applications of electric discharge in liquids have been developed during the last years, the exact mechanism of the discharge ignition is not sufficiently known up to now. Based on this reason, this work is focused on the investigation of processes before the discharge ignition, breakdown parameters and the discharge itself both in the irregular and stable regime. The theoretical part of the work presents proposed mechanisms of the discharge generation in water solutions including the description of particular kinds of known discharges. Diaphragm discharge is one of many possible configurations of electrical discharges in liquids. In fact, electrical discharge in water forms non-thermal plasma, which is generated by high voltage, and many physical and chemical processes are started in plasma channels (so-called streamers). Among physical processes, high electrical field, shock waves and last but not least emission of electromagnetic radiation in visible and ultra-violet radiation belongs. The most important chemical processes are generation of various active species as hydrogen peroxide, and OH radical. Three batch plasma reactors using a diaphragm configuration with different total volume (4 l, 100 ml and 50 ml) are employed in the presented work. The discharge is created in an orifice (a pin-hole) in the dielectric barrier separating two electrode parts of the reactor. DC non-pulsed high voltage up to 4 kV is used for the discharge generation. Electrodes are made of stainless steel or platinum, and they are installed in parallel to the diaphragm in a variable distance from the dielectric barrier in each reactor part. The dielectric barrier is made of PET or Shapal-MTM ceramics with the variable thickness (0.2?2 mm). One pin hole st the diaphragm center with diameter of 0.2?1.5 mm are used in contemporary experiments. Time resolved characteristics of current and voltage are recorded using four-channel oscilloscope which detected their output values. Parameters are measured by the constantly increasing DC voltage with a step of 100 V. The solutions containing sodium chloride electrolyte are used at five different conductivities. Recorded time resolved characteristics determine breakdown moment, and describe current and voltage in particular parts within the static current-voltage curve. The breakdown appeared at lower applied voltage when the electrode distance is enhanced. However, the electrode distances higher than 4 cm does not induce any significant change of the breakdown voltage. The influence of pin-hole diameter is less obvious in the studied range, but a slight enhancement of breakdown voltage is observed with the increasing pin-hole diameter. Current-voltage characteristic curve moves towards lower voltage with the diaphragm thickness enhancement. The work compares the influence of conductivity change on current-voltage characteristics as well as the effect of inorganic salt kind. By the conductivity enhancement, the measured current-voltage curve moves towards lower voltage which means that the breakdown voltage is decreased. Sizes of the reactors do not have any effect on the processes before and after discharge breakdown.
129

Class-e Cascode Power Amplifier Analysis And Design For Long Term Reliability

Kutty, Karan 01 January 2010 (has links)
This study investigated the Class-E power amplifier operating at 5.2 GHz. Since the operation of this amplifier applies a lot of stress on the switching transistor, a cascode topology was applied in order to reduce the drain-source voltage stress. Such an amplifier was designed and optimized in order to improve stability, power added efficiency, and matching. A layout for the said design was then created to be fabrication-ready using the TSMC 0.18 um technology. Post-layout simulations were performed in order to realize a more realistic circuit performance with the layout design in mind. Long-term stress effects, such as oxide breakdown, on the key transistors were modeled and simulated in order to achieve an understanding of how leakage currents affect the overall circuit performance. Simulated results were compared and contrasted against theoretical understanding using derived equations. Recommendations for future advancements were made for modification and optimization of the circuit by the application of other stress reduction strategies, variation in the class-E topology, and improvement of the driver stage.
130

The development and practical implementation of a project management model for enhancing new venture creation success

Coleman, William. James. January 2014 (has links)
Thesis (M. Tech. (Business Admin.)) - Central University of Technology, Free State, 2014 / Research by the Global Entrepreneurship Monitor (GEM) continuously indicate that new venture creation success rate in South Africa is disturbingly low. This situation arises despite numerous support mechanisms in place to encourage citizens to establish their own businesses. This is an indication that current approaches to encourage new venture creation are not working. New approaches must therefore be found. The goal of this study was to combine the processes of project management and entrepreneurship, two seemingly diametrically opposed management philosophies into an integrated process model that will contribute to enhancing the new venture creation process. So, at the heart of this study is the wish to assist prospective entrepreneurs in their new venture creation journey. To achieve this objective, action research design, an emerging approach to qualitative research was adopted. Specifically, the canonical action research was used. Holistically, the study can be described as applied, cross-sectional, descriptive and exploratory in nature. Through a series of iterative canonical action research cycles, a model was developed. The results suggest that despite their seemingly diametrically opposed management philosophies, an integrated project management model for new venture creation is achievable.

Page generated in 0.0492 seconds