• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 2
  • Tagged with
  • 44
  • 25
  • 22
  • 19
  • 13
  • 12
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Optimal uppvärmningsmetod för villor i Stockholmsförort / Best heating system for houses in a Stockholm suburb

Östman, Albin, Eriksson, Rickard January 2014 (has links)
Vid val utav uppvärmningssystem för ett småhus är det viktigt att väga in för ochnackdelar, eftersom alla system är bra på olika sätt. Vilket system kommer är mestlämpligt utifrån husets egenskaper och behov?I detta exmenserbete jämförs fjärrvärme, bergvärmepump och frånluftsvärmepump påett utvalt nyproducerat småhus. Resultatet ska baseras på systemets kostnad, livslängd,underhåll och miljöpåverkan.Resultatet har visat att för detta specifika småhus, har frånluftsvärmepumpen varitdominerande i de utförda kalkylerna. / When choosing a heating system for a house it is important to weigh in the different prosand cons, because every system is good in its own way. Which heating system may be ofinterest, depending on the conditions of the house and its requirements?This thesis will compare district heating, geothermal heating and exhaust air heating on aspecific brand new house. The result will base on the heating systems costs, lifetime,maintenance and environmental impact.The result has proven that for this particular house, the exhaust air heating pump hasbeen dominant in the calculations performed.
32

Jämförelse av central och lokal uppvärmning av mindre bostadsrättsförening / Comparison between central heating of small housing society with geothermal heating

Wernqvist, Jonas, Cedervall, Kalle January 2017 (has links)
Idag när bostadsmarknaden växer snabbare än på länge blir samtidigt energihushållning viktigare och viktigare. Ekonomiska och miljömässiga intressen från bostadsägare angående stigande elpriser och energihushållning leder båda till ett mer medvetet byggande vad gäller klimatskalets täthet, energismarta installationer såsom styrda FTX-system och andra besparingsåtgärder.Examensarbetet har skrivits åt Bjerking för att undersöka möjligheten till att centralisera uppvärmningen istället för att värma upp bostäderna med varsin frånluftsvärmepump i en bostadsrättsförening bestående av parhus.Rapporten innehåller en del beräkningar i form av energiförluster och kostnadsberäkningar för de olika värmesystemen samt statistik för uppvärmning i Sverige.Examensarbetet har resulterat i kostnadsberäkningar som kan användas vid inledande investeringsberäkning för centraliserad uppvärmning i liknande projekt. / Today, when the housing industry is growing faster than in a long time energy house holding is becoming more important for every day. Economic and environmental interests from house owners, when it comes to increasing energy prices and energy house holding, both leads to a more conscious house building. This includes the buildings U-value, energy smart installations and other energy saving arrangements.This examination paper has been written for Bjerking to investigate the possibility to centralize the heating in a housing society of several semi-detached houses instead of heating them locally with the standard solution, an exhaust air heat pump per apartment.This examination paper includes a few calculations of energy losses and life cycle costs for the different heating systems. It also includes a bit of statistic for different types of heating in Sweden.It has ended in cost calculations that can be used when thinking about and planning to build semi-detached houses with central heating.
33

Värmeöverföring i bergvärmesystem : En numerisk analys av den ringformade koaxiala borrhålsvärmeväxlaren / Heat transfer in ground source heat pump systems : A numerical analysis of the annular coaxial borehole heat exchanger

Westin, Rasmus January 2012 (has links)
The borehole heat exchangers of today suffer from poor thermal and hydrodynamic performance. The purpose of this thesis is to improve the performance of ground source heat pump systems and thermal energy storages by increasing the energy efficiency of the borehole heat exchangers. For this reason, the annular coaxial borehole heat exchanger (CBHE) has been analyzed. This type of heat exchanger is interesting in terms of both thermal and hydrodynamic performance. A model has been set up in the program Comsol Multiphysics in order to investigate the heat transfer characteristics along the borehole. A literature survey that summarizes the analytical calculation methods developed in earlier Swedish research is presented in the report. Different geometries with or without insulation of the central pipe have been analyzed and the effective borehole resistance for each geometry has been calculated based on the simulation results. The model has been validated against a recently performed thermal response test, and shows very good correlation with reality. The results from the simulations show that by using the annular CBHE an increase of 2-3 °C in the evaporator of the heat pump can be achieved. Calculations show that the pump work (head loss) can be reduced to 1/6 of the corresponding case with a single U-pipe. There arises a vertical temperature gradient in the bedrock when recharging and extracting heat with the annular CBHE. This means that the annular CBHE acts like a counter-flow heat exchanger which is thermally optimal. In total, the simulation result shows that the annular CBHE geometry in this thesis can increase a system's seasonal performance factor (SPF) with 10-19 % in comparison with a U-pipe BHE. This is equivalent to 10-19 % lower electrical power consumption every year.
34

Energikartläggning av ett bostadshus från 2016 / Energy mapping of a dwelling house from 2016

El-Homsi, Patric, Fredrik, Bramstedt January 2018 (has links)
Byggnaden i undersökningen stod färdig i oktober 2016 och är belägen på Kvarnvägen 31 i Gemla. Syftet är att kartlägga energianvändningen och fastställa huruvida installation av solfångare är gynnsam. Målet är att kartlägga energiåtgången, redovisa förbättringsåtgärder och analysera de tekniska installationerna. Undersökningens metoder bestod av studiebesök, platsbesök, ritningsstudie och en okulärbesiktning med värmekamera. För att kartlägga och identifiera energiåtgången har modulering av klimatskal och installationer gjorts i VIP-Energy. Resultatet av energikartläggningen blev samma som den projekterade. Framtagen energideklaration gav byggnaden energiklass B. Att ha solfångare installerad visade sig vara teoretiskt energi- och kostnadseffektiv om de är kopplade enligt förslag. Det befintliga ventilationssystemet i byggnaden är teoretiskt fördelaktig för både avrostning och föruppvärmning. Förbättringsförslagen är att justera solfångarvinklen samt att koppla om värmetillförseln som erhålls av solfångarna. / The building in this survey was completed in October 2016 and is located at Kvarnvägen 31 in Gemla. The purpose of the study is to map the energy consumption and determine whether the installation of solar collectors is beneficial or not. The goal is to map the energy use in the building, report improvement measures and analyse the technical installations. The qualitative methods consisted of a study visit, site visits, review of drawings and an ocular survey of the building with a thermal camera. In order to calculate and analyse the building´s energy use, modelling of the building envelope components and technical installations were performed in VIP-Energy. The results of the energy survey shows that the calculated energy use for the building is similar to the projected energy use and the energy declaration places the building in energy class B. Many factors are of significant importance in optimizing solar collectors such as inclination angle, orientation and installation type. Having solar collectors installed proved to be beneficial both in terms of energy and cost if they are connected as proposed. HSB FTX is theoretically advantageous for both preheating of supply air and defrosting of the building's ventilation system. The enhancement proposals are to adjust the inclination angle of the solar collectors and to reconnect the heat input obtained from the solar collectors.
35

Life Cycle Cost : Studie om LCC som verktyg att utvärdera geoenergianläggningar

Fransson, Jimmy, Sahlsten, Minna January 2015 (has links)
Life Cycle Cost, often abbreviated as LCC, is a common tool for comparing the total cost of different alternatives, such as heating and cooling methods. Common heating and cooling methods in Sweden are geothermal energy, district heating and district cooling. This report aims to evaluate how different heating and cooling methods differ from each other while being applied on three different types of buildings, using selected LCC-models. Information about the selected LCC-models wasretrieved from each separate model and its website. Reports and agencies were used as sources for information about the heating and cooling methods. Tendersby established energy companies in Sweden were used as input data to form different alternatives for each building. From the comparison between the selected LCC-models, both similarities and differences were identified. The differences vary both in scale and how they affect the result. Nonetheless two of the models show the same results for some of the alternatives. In order to approximate the environmental effects for each heating and cooling method, carbon dioxide emissions were compared. The conclusion of this report is that while there are significant differences between the different LCC-models, the results only differ marginally for most models. / Life Cycle Cost, ofta förkortadsom LCC, är ett vanligt använt verktyg vid jämförelse av olika alternativs, exempelvis olika uppvärmnings- och kylmetoder, totala livscykelkostnad. I Sverige är vanliga uppvärmnings- och kylmetoder bergvärme, fjärrvärme och fjärrkyla. Denna rapport syftar till att med hjälp av utvalda LCC-modeller utvärdera hur dessa olika metoder skiljer sig för olika typfall, samt att redogöra för vilka skillnader det finns mellan de utvalda LCC-modellerna. De typfall som undersöktes var tre olika fastigheter med varierande storlek och alternativ. Information om de valda LCC-modellerna hämtades från respektive modell samt vid behov från tillhörande hemsida. Olika rapporter och myndigheter ligger till grund för information för hur de olika uppvärmnings- och kylmetoderna fungerar. Indata för LCC-beräkningarna inhämtades från offerter givna av etablerade energiföretag i Sverige. Genom rena jämförelser mellan de valda LCC-modellerna hittades både likheter och skillnader. Skillnadernas inverkan varierar i både grad och vilken effekt de har på resultaten. Däremot får två av modellerna samma resultat för vissa typfall. För att uppskatta miljöpåverkan jämfördes även typfallens koldioxidutsläpp för de olika uppvärmnings- och kylmetoderna. Slutsatser som kan dras från studien är att det finns klara skillnader mellan olika LCC- modeller, men resultaten skiljer sig ofta endast marginellt.
36

Val av värmesystem vid nybyggnation av ett flerbostadshus i mellersta Sverige : En simuleringsstudie

Olmats, Oscar January 2023 (has links)
The choice of heating system in new residential buildings has a significant effect onthe total life cycle-cost. Rising energy prices and tougher energy demands for newbuildings creates incentive for energy- and cost-efficient solutions. The purpose ofthis project is therefore to investigate how the choice and sizing of a heating systemin a building can be performed with focus on cost-efficiency. The project is conducted as a case study on a residential building during the buildingphase on behalf of INTEC Dalarna AB, a technical engineering company. The project aim is to answer the following questions: – What heating system of district heating, ground source heat pumps or air towater heat pumps is the most cost-effective for a new residential building inthe middle of Sweden? – Is there a specific combination of a heat pump of arbitrary size and peak heating system that is particularly advantageous for the building? – Is IDA ICE suitable for simulation of energy use in buildings with heatpumps? – Does high energy-efficiency also mean high cost-efficiency for the building? The questions will be answered with building simulation software IDA Indoor Climate and Energy along with capital budgeting. The capital budgeting will be performed with net present value and payoff period for the heat pumps over choosingdistrict heating. The results of the project show that a system with ground source heat pumps with acapacity of 50 percent of the annual peak heat demand and electricity for peak loadsis the most cost-efficient option for the building. However, the most energy efficient option is a ground source heat pump with a capacity of 50 percent of the annual peak heat demand with district heating for peak loads. The project also shows that IDA ICE is suitable for simulating the performance of heat pumps in buildings.The conclusion is that a smaller system of ground source is more cost-efficient forthe building, and that the most energy efficient option is not always equal to themost cost-efficient over time.
37

Energikartläggning av förskola : Underlag för energieffektiviseringsåtgärder av byggnaden Metreven samt fördjupning avseende potential för uppfyllande av Boverkets krav gällande nära- nollenergibyggnad

Lehtonen, Joakim January 2020 (has links)
The Swedish residential sector consumes almost 39 % of Sweden’s final energy consumption. The European Union framework ”Clean Energy for all Europeans package” strives to promote a 32,5 % reduction as a result of energy efficiency measures. The Swedish legislation BBR regulates rules regarding new buildings, extensions and reconstruction of existing buildings. Excerpt 9 regards how energy is being used and determines the demands e.g. for a buildings primary energy use to be classified as a near zero energy building (NZEB). The energy use of a building, located in Västerås, Sweden, is being decided. Various energy efficiency packages are applied to a model in the simulation software IDA ICE. The results are compared with each other deciding the potential benefits of the energy efficiency measures. A substantial decrease of the energy consumption is detected, especially for the energy efficiency packages containing a geothermal heat pump (66 – 78 %). A life cycle cost analysis shows that the package containing a ventilation heat recovery system (FTX) combined with a geothermal heat pump is the optimal solution through an economical point a view. The solution yields a profit after 14 years. The analysis shows that all geothermal solutions, except a system consisting of a geothermal heat pump, FTX, energy efficient windows, rooftop insulation and a photovoltaic system, yields a profit during a 30-year investment period. None of the packages containing a district heat exchanger yield a profit. The simulation results show that by implementing any of the geothermal heat pump packages, the demands for classifying the building according to an NZE building are fulfilled. Regarding the district heating packages, only the package containing all the energy efficiency measures (energy efficient windows, rooftop insulation and PV) meets the demands to be classified as an NZE building. Regarding the environmental impact due to implementing the energy efficiency measures, the results show a reduced impact from applying the geothermal heat pump packages is equivalent to the energy consumption reductions. The results show that by implementing a district heating system, more than one additional energy efficiency measure must be applied to avoid an increased environmental impact. This thesis shows that implementing energy efficiency measures can decrease energy consumption and yield an economical profit to the existing building stock.
38

Energibesparing med bergvärmepump och värmeväxlare : Månadsvisa beräkningar för ett nytt och ett äldre småhus i Västerås samt en jämförelse mot kraven för nära-nollenergibyggnader

Hilbert Wiman, Sara January 2021 (has links)
Purpose: This degree project aims to see how the energy demand from active heating of detached houses can be improved to meet the energy performance requirements set for nearly zero-energy buildings by Boverket (The Swedish National Board of Housing, Building and Planning). Method: To accomplish this, the benefits from two different energy-saving installations are studied: bedrock heat pumps and heat exchangers in Heat Recovery Ventilation Systems (HRV-systems). These are then compared in a new and an older detached house with very different heat losses. There are several reports of energy-saving systems in detached houses. What distinguishes this work is that it compares the specific results from the added energy-saving system depending on whether it was added first or last. The older detached house is an important part of this work as it represents a possible impact on parts of the existing housing stock with a similar technical standard. The energy balance for the buildings is calculated monthly with all contributions from passive heat considered, and with the energy demand for active heating as the main result. Results: It is very difficult to meet the energy performance requirements for an older detached house without extensive measures or renovations. The HRV-system had a low to very low impact. Both types of detached houses have a lot to gain from an investment in bedrock heating, especially the older one that has high energy demands. However, the new detached house with a higher technical standard in the building envelope, was the only one to meet the energy requirements with the bedrock heat pump on its own. Conclusion: Bedrock heating can be a very profitable investment as it provides heat both for the active heating of the building as well as for the domestic hot water. In order to meet tougher energy requirements, the bedrock heat pump may need to be accompanied by an improved and more energy-efficient building envelope and the supply of self-produced electricity, such as solar cells. HRV-systems require a good air tightness and an energy-efficient building envelope to be profitable. In older detached houses, it is not a profitable investment, as it does not have sufficiently large proportions of controlled ventilation to work with. In newer houses the proportion of controlled ventilation is bigger, but the amount of heat loss that can be affected is still not as big as the energy savings a bedrock heat pump can bring.
39

Ekonomisk driftoptimering av det termiska energisystemet på Karlstad centralsjukhus : Framtida driftrekommendationer baserat på linjärprogrammering / Economic operational optimization of the thermal energy system at Karlstad central hospital : Future operation recommendations based on linear programming

Mellander, Petter January 2022 (has links)
Studien använder linjärprogrammering för att optimera driften av det termiska energisystemet på Karlstad centralsjukhus ur ett ekonomiskt perspektiv. Bakgrunden till studien är de höga elpriser som rådde under slutet av 2021 samt att det i dagsläget finns kunskapsluckor angående hur systemet bör köras optimalt. Studien baseras på driftdata från 2021. Energisystemet som optimeras är uppbyggt av kylvärmepumpar, bergvärmepumpar, kylmaskiner, frikyla, fjärrvärme och marklager. Ett förhållande för hur många kWh termisk energi som produceras per tillförd kWh el tas fram för samtliga komponenter, vilket sedan används för att modellera energisystemet. Optimering av systemet ger vilka komponenter som skall användas vid olika tidpunkter för att uppfylla ett bestämt värmebehov och kylbehov. Resultatet i form av optimal drift under 2021 analyseras och används för att ta fram driftrekommendationer för energisystemet i framtiden. En metod för att teoretiskt begränsa marklagrets kapacitet vid optimering presenteras. Metodenanvänder nettoenergi till marklagret över en specifik tidsperiod för att approximera temperaturen på brinevätskan ut ur marklagret. Genom att sätta temperaturbegränsningar på brinevätskan kan därigenom nettoenergin till marklagret begränsas. Baserat på data från 2021 tillåts nettoenergin till marklagretvariera mellan -14 700 kWh och 12 500 kWh per 24 timmar. Resultaten visar att det under vintern är fördelaktigt att primärt använda bergvärmepumparna A-D i kombination med frikyla. Sekundärt används kylvärmepumparna E-F. Skillnaden mellan primär och sekundär systemlösning är liten och de båda kan ses som relativt likvärdiga. Fjärrvärme används enbart som sista alternativ under vintern. Energikällan för bergvärmepumparna bör variera mellan Klarälven och marklager med avsikt att utnyttja marklagrets kapacitet optimalt. Vår och höst fallet är till stora delar likvärdigt med vinterfallet med undantaget att det innehåller fler variationer till följd av förändringar i omgivande förutsättningar. Under sommaren bör enbart fjärrvärme användas för att tillgodose värmebehovet. Frikyla och kylmaskinerna 2-3 används för att tillgodose kylbehovet. Frikyla reserveras till att användas under de tidpunkter då kylbehovet är som högst. Effektavgiften för fjärrvärme står för 25,7 % av total driftkostnad i optimalt driftfall. För att minska kostnaderna anses det därför viktigt att kapa effekttopparna för fjärrvärme. Studien undersöker eventuella fördelar med att koppla frikyle-värmeväxlaren mot Klarälven med avsikt att kunna utnyttja den mer än vad som görs i dagsläget. Systemlösningen ger ingen signifikant minskning av driftkostnader vid simulering av ett års drift. Det kan dock vara fördelaktigt att koppla frikyla mot Klarälven ur perspektivet att kunna justera nettoenergin till marklagret för att förhindra långsiktiga temperaturförändringar i berggrunden. Årlig driftkostnad kan minskas genom att öka maxkapaciteten för värmepumparna. En ökning avbergvärmepumparnas kapacitet motsvarande en komponent minskar total årlig kostnad med 4,6 %. En ökning av kylvärmepumparnas kapacitet motsvarande en komponent minskar total årlig kostnad med 1,5 %. Att öka maxkapaciteten för övriga komponenter ger ingen signifikant förändring av årlig driftkostnad. Förbättring av studien innebär att basera modellen på bättre indata samt ta hänsyn till fler detaljer i systemet. Vidare studier bör fokusera på att tillämpa resultaten för att verifiera dem i verkligheten samt göra investeringskalkyler över att utöka kapaciteten för värmepumparna. / The study uses linear programming to optimize the operation of the thermal energy system at Karlstad Central Hospital from an economic perspective. The background to the study is the high electricity prices that occurred at the end of 2021 and the fact that there are currently knowledge gaps regarding how the system should be run optimally. The study is based on operational data from 2021. The energy system that is optimized is made up of cooling heat pumps, ground source heat pumps, cooling machines, free cooling, district heating and ground storage. A ratio for how many kWh of thermal energy that is produced per kWh of supplied electricity was produced for all components, which was then used to model the energy system. Optimization of the system provides which components are to be used at different times to meet a specific heating and cooling demand. The result in the form of optimal operation during 2021 is analyzed and used to produce operating recommendations for the energy system in the future. A method for theoretically limiting the capacity of the ground storage during optimization is presented. The method uses net energy to the ground storage over a specific period of time to approximate the temperature of the brine liquid out of the ground storage. By setting temperature limits on the brine liquid, the net energy to the ground storage can thereby be limited. Based on data from 2021, the net energy to the ground storage is allowed to vary between -14 700 kWh and 12 500 kWh per 24 hours. The results show that during the winter it is advantageous to primarily use the ground source heat pumps A-D in combination with free cooling. Secondary, the cooling heat pumps E-F are used. The difference between primary and secondary system solution is small and the two can be seen as relatively equivalent. District heating is only used as a last resort during the winter. The energy source for the ground source heat pumps should vary between the Klarälven river and the ground storage with the intention of utilizing the capacity of the ground storage optimally. The spring and autumn case is largely equivalent to the winter case, with the exception that it contains more variations as a result of changes in surrounding conditions. During the summer, only district heating should be used to meet the heat demand. Free cooling and cooling machines 2-3 are used to meet the cooling needs. Free cooling is reserved for use during the times when the cooling demand is at its highest.The power fee for district heating accounts for 25.7% of the total operating cost in the optimal operating case. To reduce costs, it is therefore considered important to cut the power peaks for district heating. The study examines the possible benefits of connecting the free cooling heat exchanger to the Klarälven river with the intention of being able to use it more than what is currently the case. The system solution does not provide a significant reduction in operating costs when simulating one year of operation. It might however be advantageous to connect free cooling to the Klarälven river from the perspective of being able to adjust the net energy to the ground storage to prevent long-term temperature changes in the bedrock. Annual operating costs can be reduced by increasing the maximum capacity of the heat pumps. An increase in the capacity of the ground source heat pumps equivalent to one component reduces the total annual cost by 4.6%. An increase in the capacity of the cooling heat pumps equivalent to one component reduces the total annual cost by 1.5%. Increasing the maximum capacity for the other components does not result in a significant change in annual operating costs. Improvements of the study means basing the model on better input data and taking into account more details in the system. Further studies should focus on applying the results to verify them in reality andmake investment calculations regarding expansion of the capacity of the heat pumps
40

Performance Evaluation of a Photovoltaic/Thermal (PVT) Collector with Numerical Modelling

Ebrahim, Mila January 2021 (has links)
In Photovoltaic/Thermal (PVT) technology, both PV and solar thermal technology are integrated in the same module for simultaneous electricity and heat production. Research has shown that there are multiple benefits from integrating PVT collectors with a ground source heat pump (GSHP) system, since it allows for seasonal storage of thermal energy over the year. Furthermore, it leads to reduced operating temperatures for the PVT collectors which can increase efficiency and lifetime. The aim of this study is to present the electric and thermal performance of a PVT collector developed by Solhybrid i Småland AB, for different environmental and fluid inlet conditions that can occur when PVT collectors are connected to a GSHP system. Furthermore, the performance of this PVT design is evaluated with ASHRAE (Standard 93-2003), to allow for comparison with other PVT collector designs, with values on the overall heat loss coefficient (UL) and heat removal factor (FR). The modelling tool used for the study is the software COMSOL Multiphysics, which uses the finite element method to solve the partial differential equations in heat transfer and fluid flow problems. Based on the performance curves, the thermal and electrical efficiency of the collector is approximately 48.0-53.4% and 19.0-19.2% respectively at a reduced temperature of zero and irradiance levels of 800-1000 W/m2 for the mass flow rate of 0.026 kg/sm2 which was determined as most suitable to increase thermal performance. Furthermore, these results resulted in a heat removal factor (FR) and overall heat loss coefficient (UL) of 0.56-0.62 and 53.4-53.5 W/m2 K respectively. The results on the performance of the PVT collector in different weather conditions shows that the inlet water temperature can significantly affect operating time and the amount of thermal energy that can be extracted during the year, especially if the collector operates in a colder climate like Sweden. To assess the accuracy of the created model, future work includes experimental testing of the studied PVT collector. / En panel med kombinerad teknik av både solceller och termisk solfångare (PVT) kan producera både elektricitet och värme samtidigt. Forskning har visat att det kan finnas flera fördelar med att integrera PVT-paneler med ett bergvärmesystem, eftersom det mjliggör lagring av termisk energi över året. Dessutom leder ett sådant system till lägre drifttemperaturer som kan öka PVT-panelens effektivitet och livslängd. Syftet med studien är att presentera den elektriska och termiska prestandan av en PVT-panel utvecklat av Solhybrid i Småland AB för olika driftförhållanden som kan uppstå på grund av olika väderförhållanden och inlopps-temperaturer när panelerna är kopplade till ett bergvärmesystem. Vidare utvärderas prestandan för denna panel med ASHRAEmetoden (standard 93-2003), för att möjliggöra jämförelse med andra PVT-paneler. Modelleringsverktyget som använts i studien är mjukvaran COMSOL Multiphysics, som använder finita elementmetoden för att lösa partiella differentialekvationer i värmeöverförings-och flödesproblem. Baserat på prestandakurvorna som presenteras i resultatet, är den termiska och elektriska verkningsgraden approximativt 48.0-53.4% respektive 19.0-19.2% för en reducerad temperatur med värdet noll, en solstrålning mellan 800-1000 W/m2, för en massflödeshastighet på 0.026 kg/sm2 som beslutades som den mest lämpliga för att öka den termiska prestandan. Resultaten resulterade i en värmeavledningsfaktor (FR) och total värmeförlustkoefficient (UL) på 0.56-0.62 respektive 53.4-53.5 W/m2 K. Resultaten på PVT-panelens prestanda under olika väderförhållanden visar att vattnets inloppstemperatur kan påverka drifttiden och mängden termisk energi som kan extraheras under året avsevärt, speciellt i nordiskt klimat. För att bedöma korrektheten i resultaten och den skapade modellen rekommenderas experimentell testning av den studerade PVT-panelen.

Page generated in 0.0233 seconds