• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 11
  • 11
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 96
  • 96
  • 19
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Biomimetic Studies On Anti-Thyroid Drugs And Thyroid Hormone Synthesis

Roy, Gouriprasanna 05 1900 (has links)
Thyroxine (T4), the main secretory hormone of the thyroid gland, is produced on thyroglobulin by thyroid peroxidase (TPO)/hydrogen peroxide/iodide system. The synthesis of T4 by TPO involves two independent steps: iodination of tyrosine and phenolic coupling of the resulting iodotyrosine residues. The prohormone T4 is then converted to its biologically active form T3 by a selenocysteine-containing iodothyronine deiodinase (ID-I), which is present in highest amounts in liver, kidney, thyroid and pituitary. The 5'-deiodination catalyzed by ID-I is a ping-pong, bisubstrate reaction in which the selenol (or selenolate) group of the enzyme (E-SeH or E-Se-) first reacts with thyroxine (T4) to form a selenenyl iodide (E-SeI) intermediate. Subsequent reaction of the selenenyl iodide with an as yet unidentified intracellular cofactor completes the catalytic cycle and regenerates the selenol. Although the deiodination reactions are essential for the function of thyroid gland, the activation of thyroid stimulating hormone (TSH) receptor by auto-antibodies leads to an overproduction of thyroid hormones. In addition, these antibodies stimulate ID-I and probably other deiodinases to produce relatively more amount of T3. Figure 1. Synthesis of thyroid hormones by heme-containing Thyroid Peroxidase(TPO)(Refer PDF File) As these antibodies are not under pituitary feedback control system, there is no negative influence on the thyroid activity and, therefore, the uncontrolled production of thyroid hormones leads to a condition called “hyperthyroidism”. Under these conditions, the overproduction of T4 and T3 can be controlled by specific inhibitors, which either block the thyroid hormone biosynthesis or reduce the conversion of T4 to T3. A unique class of such inhibitors is the thiourea drugs, methimazole (1, MMI), 6-n-propyl-2-thiouracil (3, PTU), and 6-methyl-2-thiouracil (5, MTU). Although these compounds are the most commonly employed drugs in the treatment of hyperthyroidism, the detailed mechanism of their action is still not clear. According to the initially proposed mechanism, these drugs may divert oxidized iodides away from thyroglobulin by forming stable electron donor-acceptor complexes with diiodine, which can effectively reduce the thyroid hormone biosynthesis. It has also been proposed that these drugs may block the thyroid hormone synthesis by coordinating to the metal center of thyroid peroxidase (TPO). After the discovery that the ID-I is responsible for the activation of thyroxine, it has been reported that PTU, but not MMI, reacts with the selenenyl iodide intermediate (E-SeI) of ID-I to form a selenenyl sulfide as a dead end product, thereby blocking the conversion of T4 to T3 during the monodeiodination reaction. The mechanism of anti-thyroid activity is further complicated by the fact that the gold-containing drugs such as gold thioglucose (GTG) inhibit the deiodinase activity by reacting with the selenol group of the native enzyme. Recently, the selenium analogues 2 (MSeI), 4 (PSeU) and 6 (MSeU) attracted considerable attention because these compounds are expected to be more nucleophilic than their sulfur analogues and the formation of an –Se–Se– bond may occur more readily than the formation of an –Se–S– bond with the ID-I enzyme. However, the data derived from the inhibition of TPO by selenium compounds show that these compounds may inhibit the TPO activity by a different mechanism. Therefore, further studies are required to understand the mechanism by which the selenium compounds exert their inhibitory action. Our initial attempts to isolate 2 were unsuccessful and the final stable compound in the synthesis was characterized to be the diselenide (8). In view of the current interest in anti-thyroid drugs and their mechanism, we extended our approach to the synthesis and biological activities of a number of sulfur and selenium derivatives bearing the methimazole pharmacophore. The thesis consists of five chapters. The first chapter gives a general introduction to thyroid hormone synthesis and anti-thyroid drugs. In this chapter, the biosynthesis of thyroid hormones, structure and function of heme peroxidases, activation of thyroid hormones by iodothyronine deiodinases are discussed. This chapter also gives a brief introduction to some common problems associated with the thyroid gland, with a particular emphasis on hyperthyroidism. The structure and activity of some commonly used anti-thyroid drugs and the role of selenium in thyroid are discussed. The literature references related to this work are provided at the end of the chapter. The second chapter deals with the synthesis and characterization of the selenium analogue (MSeI) of anti-thyroid drug methimazole and a series of organoselenium compounds bearing N-methylimidazole pharmacophore are described. The clinically employed anti-thyroid drug, methimazole (MMI), exists predominantly in its thione form, which is responsible for its anti-thyroidal activity. The selenium analogue MSeI, on the other hand, is not stable in air and spontaneously oxidizes to the corresponding diselenide (MSeIox). Experimental and theoretical studies on MSeI suggest that this compound exists in a zwitterionic form in which the selenium atom carries a large negative charge. The structure of MSeI was studied in solution by NMR spectroscopy and the 77Se NMR chemical shift shows a large upfield shift (-5 ppm) in the signal as compared to the true selones for which the signals normally appear in the downfield range (500-2500 ppm). This confirms that MSeI exists predominantly in its zwitterionic form in solution. Our theoretical studies show that the formation of the diselenide (MSeIox) from selenol tautomer is energetically more favored than the formation of the disulfide (MMIox) from the thiol tautomer of MMI. This study also shows that the replacement of the N−H group in MSeI by an N-methyl or N-benzyl substituent does not affect the nature of C−Se bond. In the third chapter, the inhibition of lactoperoxidase-catalyzed oxidation of ABTS by anti-thyroid drugs and related derivatives is described. The commonly used anti-thyroid agent methemazole (MMI) inhibits the lactoperoxidase (LPO) with an IC50 value of 7.0 µM which is much lower than that of the other two anti-thyroid drugs, PTU and MTU. The selenium analogue of methimazole (MSeI) also inhibits LPO with an IC50 value of 16.4 µM, which is about 4-5 times lower than that of PTU and MTU. In contrast to thiones and selones, the S- and Se-protected compounds do not show any noticeable inhibition under identical experimental conditions. While the inhibition of LPO by MMI cannot be reversed by increasing the hydrogen peroxide concentration, the inhibition by MSeI can be completely reversed by increasing the peroxide concentration. Some of the selenium compounds in the present study show interesting anti-oxidant activity in addition to their inhibition propertities. In the presence of glutathione (GSH), MSeI constitutes a redox cycle involving a catalytic reduction of H2O2 and thereby mimics the glutathione peroxidase (GPx) activity in vitro. These studies reveal that the degradation of the intracellular H2O2 by the selenium analogues of anti-thyroid drugs may be beneficial to the thyroid gland as these compounds may act as antioxidants and protect thyroid cells from oxidative damage. Because the drugs with an action essentially on H2O2 can reversibly inhibit thyroid peroxidase, such drugs with a more controlled action could be of great importance in the treatment of hyperthyroidism. Figure 2. (A) Concentration-inhibition curves for the inhibition of LPO-catalyzed oxidation of ABTS by MMI and MSeI at pH 7.0 and 30 °C. (B) Plot of initial rates (vo) for the LPO-catalyzed oxidation of ABTS vs concentration of H2O2. (a) Control activity, (b) 40 µM of MSeI, (c) 40 µM of MSeIox, (d) 80 µM of PTU, (e) 80 µM of MTU, (f) 40 µM of MMI. The incubation mixture contained 6.5 nM LPO, 1.4 mM ABTS, 0.067 M phosphatebuffer(pH7).(Refer PDF File) The fourth chapter describes the inhibition of lactoperoxidase (LPO)-catalyzed iodination of L-tyrosine by anti-thyroid drug methimazole (MMI) and its selenium analogue (MSeI). These inhibition studies show that MSeI inhibits LPO with an IC50 value of 12.4 µM, which is higher than that of MMI (5.2 µM). The effect of hydrogen peroxide on the inhibition of LPO by MMI and MSeI is also discussed. These studies also reveal that the inhibition of LPO-catalyzed iodination by MSeI can be completely reversed by increasing the peroxide concentration. On the other hand, the inhibition by MMI cannot be reversed by increasing the concentration of the peroxide. To under stand the nature of compounds formed in the reactions between anti-thyroid drugs and iodine, the reactions of MSeI with molecular iodine is described. MSeI reacts with I2 to produce novel ionic diselenides, and the nature of the species formed in this reaction appears to be solvent dependent. The formation of ionic species (mono and dications) in the reaction is confirmed by UV-Vis, FT-IR and FT-Raman spectroscopic investigations and single crystal x-ray studies. The major conclusion drawn from this study is that MSeI reacts with iodine, even in its oxidized form, to form ionic diselenides containing iodide or polyiodide anions, which might be possible intermediates in the inhibition of thyroid hormones. Dication X-ray crystal structure of the monocation X-ray crystal structure of the dication In the fifth chapter, the synthesis and characterization of several thiones and selones having N,N-disubstituted imidazole moiety are described. Experimental and theoretical studies were performed on a number of selones, which suggest that these compounds exist as zwitterions in which the selenium atom carries a large negative charge. The structures of selones were studied in solution by NMR spectroscopy and the 77Se NMR chemical shifts for the selones show large upfield shifts in the signals, confirming the zwitterionic structure of the selones in solution. The thermal isomerization of some S- and Se-substituted methyl and benzyl imidazole derivatives to produce the thermodynamically more stable N-substituted derivatives is described. A structure–activity correlation was attempted on the inhibition of LPO-catalyzed oxidation and iodination reactions by several thiouracil compounds, which indicates that the presence of an n-propyl group in PTU is important for an efficient inhibition. In contrast to the S- and Se-substituted derivatives, the selones produced by thermal isomerization exhibited efficient inhibition, indicating the importance of reactive selone (zwitterionic) moiety in the inhibition. The inhibition data on another well-known anti-thyroid agent carbimazole (CBZ) support the assumption that CBZ acts as a prodrug, requiring a conversion to methimazole (MMI) for its inhibitory action on thyroid peroxidase. (Refer pdf file/original thesis)
72

Modelling Stochasticity In Selected Biological Processes

Chaudhury, Srabanti 07 1900 (has links)
Biological processes at the cellular level take place in heterogeneous environments, and usually involve only a small number of molecules. They tend to exhibit strong time dependent fluctuations, as a result, and are, therefore, intrinsically stochastic. The present thesis describes some of the efforts I have made during the course of my research work to develop simple, analytically tractable models of a selection of biologically-inspired problems in which this kind of stochasticity is a central ingredient. These problems are: (i) single molecule enzyme activity (ii) intermittency in single enzymes, (iii) liquids crystal dynamics (iv) modulation of electron transfer kinetics during photosynthesis, and (v) anomalous polymer translocation dynamics. All of these problems can be defined in terms of quantity that changes randomly in time because of environmental fluctuations with broad distributions of relaxation times. In this thesis I show that a generalization of a model that describes simple Brownian Motion can be used to understand many of the dynamical aspects of these problems.
73

Síntese, cristalografia e atividade biológica de complexos triazenidos de Au(I), Ag(I), Pd(II) E Pt(II) / Synthesis, crystallographic and biological activity of triazenide complexes of Au(I), Ag(I), Pd(II) E Pt(II)

Locatelli, Aline 24 August 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / This work presents the synthesis of compounds and their triazenes complexes of gold(I), silver(I), platinum(II) and paladium(II). Triazenes have three nitrogen atoms connected in sequence [ N=N N(H) ] and, when deprotonated, they become excellent ligands in coordination chemistry. The synthesized ligands have ortho nitro substituent and variable substituent halogenated, or also in a position. Characterizations were performed using various techniques: thermogravimetric analysis, ultraviolet and visible spectroscopy, infrared and proton nuclear magnetic resonance, and the main focus of this work was the structural characterization of the complexes by X-ray diffraction on monocrystal, with emphasis the study of these supramolecular arrangements. Nitro and halide substituents (F, Cl, Br and I) providing the formation of various types of interactions, which form supramolecular arrangement. Four ligands were synthesized 1-(2-flurorphenyl)-3-(2-nitrophenyl)triazene (A), 1-(2-chlorophenyl)-3-(2-nitrophenyl)triazene (B), 1-(2-bromophenyl)-3-(2-nitrophenyl)triazene (C), 1-(2-iodophenyl)-3-(2-nitrophenyl)triazene (D) and thirteen complexes {[1-(2-fluorophenyl)-3-(2-nitrophenyl)triazenide](triphenilphosfine)gold(I)} (1), {[1-(2-chlorophenyl)-3-(2-nitrophenyl)triazenide](triphenilphosfine)gold(I)} (2), {[1-(2-bromophenyl)-3-(2-nitrophenyl)triazenide](triphenilphosfine)gold(I)} (3), {trans- bis-[1-(2-chlorophenyl)-3-(2-nitrophenyl)triazenide]-bis-(pyridine)paladium(II)} (4), {trans- bis-[1-(2-bromophenyl)-3-(2-nitrophenyl)triazenide]-bis-(pyridine)paladium(II)} (5), {trans- bis-[1-(2-iodophenyl)-3-(2-nitrophenyl)triazenide]-bis-(pyridine)paladium(II)} (6), {cis- bis-[1-(2-chlorophenyl)-3-(2-nitrophenyl)triazenide]-bis-(pyridine)platinum(II)} (7), {cis- bis-[1-(2-bromophenyl)-3-(2-nitrophenyl)triazenide]-bis-(pyridine)platinum(II)} (8), {cis- bis-[1-(2-iodophenyl)-3-(2-nitrophenyl)triazenide]-bis-(pyridine)platinum(II)} (9), {trans-[1-(2-bromophenyl)-3-(2-nitrophenyl)triazenide]-bis-(pyridine)(chloro)platinum(II)} (10), {cis- [1-(2-bromophenyl)-3-(2-nitrophenyl)triazenide]-ditriphenylphosfine(chloro)platinum(II)} (11), {bis-[1-(2-iodophenyl)-3-(2-nitrophenyl)triazenide]silver(I)} (12) e {[1-(2-fluorophenyl)-3-(2-nitrophenyl)triazenide](triphenylphosfine)silver(I)} (13). For the purpose of Bioinorganic studying the triazenido complexes of gold (I), and Platinum (II) were subjected to evaluation of biological activity shown promising results. / Este trabalho apresenta a síntese de compostos triazenos e seus complexos de ouro(I), prata(I), platina(II) e paládio(II). Os compostos triazenos possuem três átomos de nitrogênio ligados em sequência [ N=N N(H) ]. Quando desprotonados transformam-se em excelentes ligantes com grande exploração na química de coordenação. Os pré-ligantes sintetizados possuem substituinte nitro em posição orto e variável substituinte halogenado, também em posição orto. Foram realizadas caracterizações com diversas técnicas: análise termogravimétrica (TGA), espectroscopia ultravioleta e visível, infravermelho e ressonância magnética nuclear de próton, sendo que o foco principal deste trabalho foi a caracterização estrutural dos complexos por difração de raios-X em monocristal, com destaque no estudo supramolecular destes compostos. Os substituintes nitro e haletos (F, Cl, Br e I) proporcionam a formação de diversos tipos de interações, as quais constituem arranjo supramoleculares. Foram sintetizados quatro pré-ligante 1-(2-fluorfenil)-3-(2-nitrofenil)triazeno (A), 1-(2-clorofenil)-3-(2-nitrofenil)triazeno (B), 1-(2-bromofenil)-3-(2-nitrofenil)triazeno (C), 1-(2-iodofenil)-3-(2-nitrofenil)triazeno (D) e treze complexos {[1-(2-fluorofenil)-3-(2-nitrofenil)triazenido](trifenilfosfina)ouro(I)} (1), {[1-(2-clorofenil)-3-(2-nitrofenil)triazenido](trifenilfosfina)ouro(I)} (2), {[1-(2-bromofenil)-3-(2-nitrofenil)triazenido](trifenilfosfina)ouro(I)} (3), {trans- bis-[1-(2-clorofenil)-3-(2-nitrofenil)triazenido]-bis-(piridina)paládio(II)} (4), {trans- bis-[1-(2-bromofenil)-3-(2-nitrofenil)triazenido]-bis-(piridina)paládio(II)} (5), {trans- bis-[1-(2-iodofenil)-3-(2-nitrofenil)triazenido]-bis-(piridina)paládio(II)} (6), {cis- bis-[1-(2-clorofenil)-3-(2-nitrofenil)triazenido]-bis-(piridina)platina(II)} (7), {cis- bis-[1-(2-bromofenil)-3-(2-nitrofenil)triazenido]-bis-(piridina)platina(II)} (8), {cis- bis-[1-(2-iodofenil)-3-(2-nitrofenil)triazenido]-bis-(piridina)platina(II)} (9), {trans-[1-(2-bromofenil)-3-(2-nitrofenil)triazenido]-bis-(piridina)(cloro)platina(II)} (10), {cis- [1-(2-bromofenil)-3-(2-nitrofenil)triazenido]-ditrifenilfosfina(cloro)platina(II)} (11), {bis-[1-(2-iodofenil)-3-(2-nitrofenil)triazenido]prata(I)} (12) e {[1-(2-fluorofenil)-3-(2-nitrofenil)triazenido](trifenilfosfina)prata(I)} (13). Para fins de estudar a Bioinorgânica dos complexos triazenidos de Ouro(I) e Platina(II), os compostos foram submetidos a avaliação de atividade biológica apresentando resultados promissores.
74

Desenvolvimento de compostos de coordenação com atividades antibacterianas e antitumorais, e interações com biomoléculas / Development of coordination compounds with antibacterial and antitumor activities, and interaction with biomolecules

Abbehausen, Camilla, 1979- 24 August 2018 (has links)
Orientadores: Pedro Paulo Corbi, André Luiz Barboza Formiga / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-24T12:00:41Z (GMT). No. of bitstreams: 1 Abbehausen_Camilla_D.pdf: 19393479 bytes, checksum: 3e6aaec4c411ad2e24a5f26226d19220 (MD5) Previous issue date: 2014 / Resumo: Complexos metálicos inéditos de paládio, platina, ouro e prata com diferentes classes de ligantes foram desenvolvidos. Dentre os ligantes selecionados estão a L-aliina (ali) e a N-acetil-L-cisteína (nac) que compreendem a classe dos aminoácidos, a 2-mercaptotiazolina (mtz), dentro da classe das tiazolidinas, a sulfadoxina (sfx), representante da classe das sulfonamidas, e ligantes N-heterociclos, piridino derivados com diferentes valores de pKa. Complexos de Pd(II) com L-aliina ([Pd(C6H11NO3S)2]), Ag(I) com N-acetil-L-cisteína ([Ag(C5H9NO3S)]), Ag(I) com sulfadoxina ([Ag(C12H13N4O4S)]), Au(I) com 2-mercaptotiazolina ([Au(CN)(C3H5NS2)]) e uma série de complexos trifenilfosfinoouro(I) com ligantes N-heterociclos ([Au(PPh3)L]+) foram sintetizados e caracterizados por um conjunto de análises químicas e espectroscópicas. Estudos in vitro das sua atividades antibacterianas e antitumorais foram também reali-zados. Atividades antibacterianas e antitumorais significativas foram encontradas para o complexo de Pd(II) com ali e o DNA se mostrou um alvo provável. O complexo Au(I) com mtz apresentou atividade antitumoral e antibacteriana bastante expressiva e uma investigação preliminar de seus mecanismos de ação também demonstrou que o DNA não parece ser o alvo destes compostos nas células. Os complexos de Ag(I) com nac e sfx apresentaram atividades antibacterianas significativas sobre cepas Gram-positivas e Gram-negativas. Os ligantes N-heterociclos 4-picolina (pic), 2-amino-4-picolina (NH2pic) e dimetilaminopriridina (DMAP) possuem valores de pKa crescentes, e foram selecionados para investigar o efeito do pKa na atividade biológica de complexos trife-nilfosfinoouro(I) do tipo [Au(PPh3)L]+, onde L = N-heterocíclico. Esta investigação foi realizada por avaliações in vitro de suas atividades antitumorais, além de estudos do acúmulo celular, do bloqueio do ciclo celular e por interações com biomoléculas como o DNA e proteínas dedos de zinco (zinc fingers, ZF). A atividade antitumoral foi expressiva e os estudos de suas interações com os ZF mostraram que a inibição pode ser modulada com a variação do tipo de proteína e do ligante N-heterociclo selecionado / Abstract: Novel palladium, platinum, gold and silver complexes with different classes of ligands were designed. The selected ligands were L-alliin (ali) and N-acetyl-L-cysteine (nac) which are aminoacids, 2-mercaptothiazoline (mtz), which belongs to the class of thiazolidines, sulfadoxine that represents the class of sulfonamides and N-heterocyclic pyridine derivatives, with different values of pKa. Complexes of Pd(II) with L-alliin ([Pd(C6H11NO3S)2]), Ag(I) with N-acetyl-L-cysteine ([Ag(C5H9NO3S)]), Ag(I) with sulfa-doxine ([Ag(C12H13N4O4S)]), Au(I) with 2-mercaptotiazoline [(Au(CN)(C3H5NS2)]) and a series of complexes of triphenylphosphinegold(I) with N-heterocyclic ligands ([Au(PPh3)L]+) were synthesized and characterized by a set of chemical and spectroscopic analyses. Antibacterial and antitumor activities in vitro were also studied. Significant antibacterial and antitumor activities were found for Pd(II) with ali, and the DNA is the probable biological target. The Au(I) with mtz complex presented noteworthy antitumor and antibacterial activities, and preliminary investigations of its biological mechanism showed that, the DNA is probable not a target of this complex in the cells. The silver complexes with nac and sfx presented significant antibacterial activities. The series of N-heterocyclic ligands 4-picoline (pic), 2-amino-4-picoline (NH2pic) and dimethylaminopyridine (DMAP) shows crescent pKa values and they were selected to investigate the pKa effect in the biological activity of the complexes triphenylphosphinegold(I) [Au(PPh3)L]+, which L = N-heterocyclic. This investigation was performed by evaluation of its antitumor activities in vitro, and also by studies of cell uptake, cell cycle arrest and by interactions with biomolecules as DNA and zinc finger proteins (ZF). The antitumor activity was expressive and the studies with ZF showed that the inhibition is dependent of the kind of protein and of the N-heterocyclic ligand / Doutorado / Quimica Inorganica / Doutora em Ciências
75

Teoretický přístup k selektivní aktivaci vazeb C-H / Selective Activation of C-H Bonds from Theoretical Perspective

Bím, Daniel January 2019 (has links)
The transfer of a hydrogen atom is a crucial step in a wide variety of chemical and biological processes and modus operandi of many metalloenzymes. While several factors that govern the reactivity and selectivity were already clarified in the past century, a growing body of experimental and theoretical studies also revealed numerous gaps in our unified understanding. As a consequence, the direct functionalization of non-activated C-H bonds by synthetic catalysts is still very limited. In the thesis, the hydrogen-atom-abstraction (HAA) reactions are broken down into the elementary proton- and electron-transfer steps and the reactivity/selectivity of oxidants is analyzed with respect to their physico-chemical properties, acidity constants and reduction potentials. First, a quantum chemical (QM)-based computational protocol for calculation of reduction potentials of iron complexes is introduced and validated over a large series of experimental data, including a set of challenging mononuclear FeIV O species that provide direct connection to biomimetic non-heme iron catalysis. Next, the methodology is extended to deal with reduction potentials of transition-metal complexes possessing higher total molecular charges, experimentally measured in polar solvents. In such cases, the accurate description of solvation...
76

Biomimetische Trispyrazolylborato-Übergangsmetallkomplexe als Modelle für Metall-Cofaktor-unspezifische Dioxygenasen

Hoof, Santina 10 June 2020 (has links)
Quercetin-Dioxygenasen (QueD) katalysieren die oxidative Spaltung von Quercetin, einem Pflanzenfarbstoff aus der Gruppe der Flavonole und bilden dabei das entsprechende Depsid und Kohlenstoffmonoxid. Interessanterweise werden in den QueDs natürlicher Quellen verschiedene zweiwertige Metallionen als Cofaktor im aktiven Zentrum des Enzyms gefunden. So stellt sich die Frage, welche Rolle dem Metallzentrum im Mechanismus der Katalyse zukommt. Um die Umgebung des Metallions im aktiven Zentrum mit einer biomimetischen, niedermolekularen Modellverbindung nachzuempfinden, wurde das Trispyrazolylborato-Ligandsystem (Tp) gewählt und als Substratanalogon diente 3-Hydroxyflavon (FlaH). So konnte ein strukturelles und funktionelles Modellsystem der NiQueD in Form von des Tp*NiFla-Komplexes synthetisiert und vollständig charakterisiert werden. Es erfolgte eine Variation dieses Systems, um verschiedene Einflüsse auf die Reaktivität mit Disauerstoff zu untersuchen. Der Austausch der Carbonylfunktion von FlaH durch C=S sowie C=Se Einheiten führte bei der Umsetzung mit O2 nicht zu der antizipierten Erhöhung der Reaktionsraten, stattdessen wurden zusätzlich Nebenreaktionen beobachtet. Die Veränderung der Substituenten am Tp-Ligandrückgrat zeigte, dass sterisch anspruchsvollere Gruppen zur Erhöhung der Reaktionsraten bei Umsetzungen mit O2 führen, vermutlich weil das Substrat für eine direkte Reaktion mit O2 leichter zugänglich wird. Durch systematische Variation der 3d-Übergangsmetallionen im Zentrum der Modellkomplexe wurde ein Einfluss auf die Redoxeigenschaften des metallgebundenen Flavonolats beobachtet. Die reversiblen Redoxpotentiale stehen in direktem Zusammenhang mit der Reaktionsrate. Ergebnisse mechanistischer Untersuchungen legen einen outer-sphere Elektronentransferprozess nahe, bei dem ein Elektron des Flavonolats direkt auf O2 übertragen wird. Durch Rekombination der entstandenen Radikale werden die nach biomimetischer Reaktion zu erwartenden Produkte gebildet. / Quercetin dioxygenases (QueD) catalyze the oxidative cleavage of quercetin, a flavonol commonly found in fruits and leaves, forming the corresponding depside and carbon monoxide. Interestingly, quercetinases of various natural sources show a different selectivity towards the divalent metal ion incorporated as cofactor, raising the questions on the role of the metal center in the mechanism of catalysis. Synthetic can help to gain insight into the mechanistic pathway of the reaction and thus clearify such questions. In order to synthesize a biomimetic model compound, the trispyrazolylborato ligands (Tp) were used and 3 hydroxyflavone (FlaH) was chosen as substrate. The compound Tp*NiFla with a was synthesized and fully characterized as a structural and functional model for the NiQueD. Based on this, the system was varied in different ways in order to investigate the influence on the reactivity towards O2. It was shown that the substitution of the carbonyl function of FlaH by C=S and C=Se units did not lead to an increase in the reaction rates, but additionally to undesirable side reactions. By altering the residues on the Tp ligand backbone it turned out that sterically more demanding groups increase the rates of reaction with dioxygen, likely because the substrate is more accessible for direct reaction with O2. By systematic variation of the metal ions in the center of the model compounds, an influence on the redox properties of the metal-bound flavonolate was observed. For the first time, reversible redox reactions of flavonolate bound to 3d transition metals was demonstrated. Furthermore, a direct relation of the redox potentials to the reaction rates emerged. The results of mechanistic studies indicate that all model complexes react via an initial outer-sphere electron transfer process, in which an electron of the flavonolate is directly transferred to O2. By recombination of the formed radicals, the products expected for a biomimetic process can be obtained.
77

水中で機能する超分子ペルオキシダーゼモデルに関する研究 / スイチュウ デ キノウ スル チョウブンシ ペルオキシダーゼ モデル ニカンスル ケンキュウ

上田 卓典, Takunori Ueda 22 March 2014 (has links)
ピリジン配位子を持つメチル化シクロデキストリン二量体と水溶性鉄ポルフィリンから構成される超分子ヘムタンパク質モデル化合物"hemoCD"を用いて、過酸化水素などのヒドロペルオキシドとの反応から、ペルオキシダーゼなどの酸化酵素における反応中間体および酸化活性種の捕捉とそれら反応性について検討を行った。 / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
78

Kinetic and Mechanistic Studies on the Reaction of the Reduced Vitamin B12 Complex Cob(II)alamin with Hydrogen Peroxide

Hunt, Andrew P. 09 May 2013 (has links)
No description available.
79

Complexes osmium nitrosyle avec des ligands bioactifs : synthèse, structure, réactivité et activité antiproliférative in vitro / Osmium nitrosyl complexes with bioactive ligands : synthesis, structure, reactivity and antiproliferative activity in vitro

Gavriluta, Anatolie 24 September 2013 (has links)
Notre travail de thèse a été dédié à la synthèse et à la caractérisation bio-physicochimique de complexes osmium nitrosyle, qui pourraient relarguer l’oxyde nitrique (NO) au sein des cellules tumorales pour conjuguer les propriétés anticancéreuses souvent associés aux complexes du groupe du platine avec la toxicité de l’oxyde nitrique. Le premier chapitre de notre mémoire de thèse présente l’état de l’art dans le domaine des composés anticancéreux et le rôle de l’oxyde nitrique dans l’apoptose cellulaire. Le deuxième chapitre concerne la synthèse et la caractérisation de complexes d’azole (C)[Os(NO)Cl4(A)] (C = Bu4N+, Na+, HA+; A = indazole, pyrazole, benzimidazole, imidazole), où le plus cytotoxique est H2ind[cis-Os(NO)Cl4(indazole)]. Le troisième chapitre est consacré à l’étude cinétique et thermodynamique par RMN de l’isomérisation trans ↔ cis du complexe (Bu4N)[Os(NO)Cl4(indazole)] qui met en évidence un processus d’isomérisation de type dissociatif. Le quatrième chapitre concerne la synthèse et la caractérisation de complexes d’aminoacides (Bu4N)[Os(NO)Cl4(L)] (L = gly, picolinate, L-, D-pro) qui ont une très faible activité antiproliférative. Le dernier chapitre est consacré à la synthèse et à la caractérisation de clusters hétérométalliques [{Os(NO)Cl3(Ox)}4Ln] (Ln = Gd, Tb, Dy, Y ; Ox=oxalate) dans lesquels la coordinance 8 ou 9 du lanthanide dépend de son rayon ionique. Le précurseur {Os(NO)Cl3(Ox)} a l’activité antiproliférative la plus élevée de tous les complexes osmium nitrosyle connus / The PhD thesis was dedicated to the synthesis and bio-physic-chemical characterization of osmium nitrosyl complexes which could release nitric oxide (NO) in tumor cells to combine the anticancer properties of the platinum group complexes and the nitric oxide cytotoxicity. The first chapter presents the state of the art in the field of anticancer compounds and the role of nitric oxide in the apoptosis. The second chapter concerns the synthesis and characterization of azole complexes with the general formulae (C)[Os(NO)Cl4(A)] (C = Bu4N+, Na+, HA+; A = indazole, pyrazole, benzimidazole, imidazole), where the most cytotoxic is H2ind[cis-Os(NO)Cl4(indazole)]. The third chapter focuses on the kinetic and thermodynamic study of the trans ↔ cis isomerisation of (Bu4N)[Os(NO)Cl4(indazole)] complex by NMR, which highlights a dissociative isomerisation process. The fourth chapter concerns the synthesis and the characterization of amino acids complexes with the general formulae (Bu4N)[Os(NO)Cl4(L)] (L = gly, picolinate, L-, D-pro) of whose antiproliferative activity is very low. The last chapter is dedicated to the synthesis and characterization of heterometallic clusters with the general formulae [{Os(NO)Cl3(Ox)}4Ln] (Ln = Gd, Tb, Dy, Y ; Ox = oxalate), where the coordination number 8 or 9 depends on its ionic radius. The precursor {Os(NO)Cl3(Ox)} has the highest antiproliferative activity among of all osmium nitrosyl known so far
80

Estudo de nanopartículas de ouro e de magnetita voltadas para medicina diagnóstica / Study of gold and magnetite nanoparticles for medical diagnostics applicatios

Uchiyama, Mayara Klimuk 14 August 2015 (has links)
A teragnóstica de doenças tem sido extremamente marcada nos últimos anos por nanomateriais formados pela conjugação de nanopartículas a biomoléculas, pois a aplicação de tecnologias baseadas em materiais na dimensão nanométrica é capaz de aumentar a seletividade, sensibilidade e praticidade dos métodos atualmente empregados, ou mesmo criar novos métodos de diagnóstico e tratamento de doenças. Dentre os vários tipos de nanomateriais desenvolvidos, aqueles baseados em nanopartículas de ouro ou nanopartículas magnéticas apresentam propriedades químicas e físicas diferenciadas que propiciam novas possibilidades. Por exemplo, a presente tese demonstrou que nanopartículas superparamagnéticas são excelentes agentes de contraste em exames de imagem por ressonância magnética (IRM) por serem mais seguros, apresentarem melhor contraste nas imagens e possibilitarem direcionar/concentrar o material em tecidos ou tumores através de um gradiente de campo magnético aplicado. Foram feitos numerosos ensaios de toxicidade tanto in vitro quanto in vivo para assegurar a segurança da aplicação de nanopartículas no organismo, cujo potencial de uso somente se tornará uma realidade caso os nanomateriais se mostrem não tóxicos e biocompatíveis. Apesar dos significativos avanços na área da aplicação desses nanomateriais, não foram encontrados na literatura modelos capazes de explicar ou prever por quais sítios de ligação devem ocorrer as interações proteína-nanopartícula, como também não foram encontrados estudos sistemáticos acerca dos fatores que determinam a estabilidade e a funcionalidade dos nanobioconjugados (NBCs). Assim, nesta tese buscamos compreender os fatores responsáveis pela ligação/adsorção das proteínas nas nanopartículas de ouro e sua influência sobre a estabilidade das suspensões e a funcionalidade das proteínas. Desta forma, foram obtidos NBCs com propriedades adequadas para o desenvolvimento ou aprimoramento de ensaios de diagnóstico e até para o tratamento de doenças. Foi demonstrado o potencial das nanopartículas de ouro para melhorar a performance de imunoensaios do tipo ELISA, mas também podem ser utilizadas para o desenvolvimento de métodos de diagnóstico, explorando as propriedades plasmônicas das nanopartículas de ouro acopladas a técnicas como SERS, SPR e microscopia Raman confocal. / Theranostics has been intensively pursued in recent years using hybrid materials based on nanoparticles conjugated with biomolecules. This is an interesting strategy to increase the selectivity and sensitivity, as well as to improve the currently used methods facilitating their use or creating new ones. Among the various types of nanomaterials, those based on gold and magnetic nanoparticles exhibit interesting chemical and physical properties in the biological environment, differing from that of free drugs or current explored in assay methods. For example, superparamagnetic nanoparticles are excellent contrast agents for magnetic resonance image (MRI) diagnostics because they are safer, present a better contrast efficiency for imaging and can be magnetically accumulated in tissues or tumors using a magnetic field. Numerous in vitro and in vivo toxicity assays were performed to ensure the safety for medical applications. Clearly, these type of applications only will be realized if nanomaterials prove to be nontoxic and biocompatible. This imply an strict control on their structure and composition. However, despite the significant advances in the development of such nanomaterials, there were not found in the literature model systems explaining or that can be used to predict by which sites the protein-nanoparticle binding should take place. In addition, no systematic studies on the factors determining the stability and the functionality of nanobioconjugates (NBC) were found. Thus, this thesis is focused in unveiling the factors responsible for binding/adsorption of proteins on gold nanoparticles and their influence on the colloidal stability of hybrid nanoparticles suspensions while keeping the functionality of biomolecules. In fact, NBC with enhanced properties suitable for the development of diagnostic methods and even for treatment of diseases were obtained. These nanomaterials can improve the ELISA immunoassay, or other diagnosis methods can be developed by using the gold nanoparticles plasmonic properties in association with SERS, SPR and confocal Raman microscopy techniques.

Page generated in 0.0991 seconds