• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 26
  • 24
  • 21
  • 18
  • 17
  • 17
  • 10
  • 10
  • 10
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Effect of Lap Belt Position on Kinematics & Injuries by using 6YO PIPER child HBM : in Frontal Crash Simulations / Höftbältets påverkan på kinematiken och skador genom att använda 6åriga PIPER barnhumanmodellen vid frontalkrock

El-Mobader, Sarah Hassan January 2018 (has links)
Traffic accidents are the second leading cause of child fatality among children younger than 15 years of age. In the course of 10 years, the implementation of child restraint systems has decreased child fatality in traffic accidents with 50%, for children younger than 15 years. To gain an understanding of the kinematics and injury mechanisms of children in cars, finite element based human body models, representing higher biofidelity compared to crash test dummies, are developed. An FP7 European project, PIPER, developed a child HBM with an associated framework for scaling, morphing and positioning. The PIPER child HBM is scalable between the ages of 1.5-6YO, with scalable anthropometrics. This makes the PIPER child HBM, a powerful tool for analyzing children in vehicles.  There are insufficient analyses conducted with the PIPER child HBM, due to its recent release. The purpose is thus to study the robustness of the HBM and its sensitivity to variation of lap belts by conducting a parametric study. Injury analysis and its sensitivity to lap belt variations were in addition studied in terms of kinematics by the study of submarining, the pelvic interaction with the lap belt, and the study of injuries related to the skull, brain, kidneys and liver. A full frontal crash simulation of a 6YO PIPER child HBM, with anthropometrics, covering the 50th percentile, have been investigated. The 6YO PIPER child HBM was seated with no booster, Volvo booster cushion and Volvo highback booster, with variations of the lap belt. The hip interactions and the submarining response of the 6YO PIPER child HBM were studied, by the study of the lap belt interactions with the pelvis and abdominal organs. The abdominal organs were related to the liver and kidneys, and compared to published threshold values.  This study showed that the overall robustness of the model was questionable. With respect to kinematics, the model indicated higher robustness, however, when conducted the crash simulations with the 6YO PIPER child HBM, it was concluded that the robustness was low due to repeated premature terminations. The 6YO PIPER child HBM revealed repeated errors such as, mesh distortions, negative volume and shooting nodes. When studying the sensitivity of the 6YO PIPER child HBM, when varying the lap belt angles, as well as changing the type of boosters in addition to vehicle anchorage positions, it could be seen that the 6YO PIPER child HBM was able to capture variations with respect to lap belt positioning. Hence, the model seems to be capable of providing relevant information regarding sensitivity for lap belt variations from the kinematic perspective, in terms of being able to capture kinematic o↵set, submarining and pelvis interaction with the lap belt. However, with respect to predicted abdominal injuries and head injuries, the sensitivity was not as distinct. Some limitations were observed in which the 6YO PIPER child HBM indicated unrealistic predicted injuries related to the head, which was associated with excessive movement of the 6YO PIPER child HBM. / Trafikolyckor är den näst vanligaste orsaken till barndödlighet i världen bland barn yngre än 15 år. Inom loppet av 10 år har användning av bilbarnstolar i fordon minskat barndödligheten med 50% hos barn under 15 år. För att få en ökad förståelse om barn i bilar framtogs finita element humanmodeller som har en detaljerad anatomi samt responser liknande till människan. Ett FP7 finansierat europeiskt projekt, PIPER, skapade en barnhumanmodell med en tillhörande programvara som används för skalning, förvandling, och positionering av barnhumanmodellen. Humanmodellen är skalbar för åldrarna 1.5 år upp till 6 år, med olika antropometriska värden. Detta gör att PIPER barnhumanmodellen är ett kraftfullt verktyg att använda sig av för att studera barn i bilar. Då PIPER barnhumanmodell lanserades nyligen, finns det i dagsläget bristfällig information om humanmodellen och programmet. Syftet var därmed att undersöka hur robust modellen var samt hur dess känslighet var mot variationer av höftbältet genom en parameterstudie. Skadors känslighet studerades dessutom mot variationer av höftbältet genom att studera kinematiken i form av underglidning och höftens interaktion med höftbältet. Dessutom studerades känsligheten på skador relaterade till skallen, levern och njurarna. I denna studie har en frontalkrock med en 6 årig PIPER barnhumanmodell med antropometriska värden, som innefattar 50:e percentilen, undersökts. Den 6åriga PIPER barnhumanmodellen var placerad utan bilbarnstol, på en Volvo bälteskudde och på en Volvo bältesstol, där höftbältet sedan varierades. Höftens interaktion och PIPER barnhumanmodellens respons för variationer i höftbälte studerades. Interaktionerna med höften och bukorganen var relaterade till skador på levern och njurarna genom att jämföra med publicerad data. Denna studie påvisade att den generella robustheten av modellen kunde ifrågasättas. Modellen hade ändock högre robusthet med hänsyn på kinematiken, men på grund av de upprepande felen vid simuleringarna, kunde man konstatera att robustheten på den 6åriga PIPER barnhumanmodellen var låg. När höftbältet varierades, både när bilbarnstol varierades såväl som vinkel på höftbälte, kunde man konstatera att den 6åriga PIPER barnhumanmodellen kunde fånga skillnaderna med hänsyn på höftbältets vinkel. Modellen var dessutom kapabel till att fånga känsligheten från det kinematiska perspektivet i form av kinematisk förskjutning, underglidningen samt höftens interaktion med höftbältet. Modellen påvisade däremot ingen distinkt känslighet med hänsyn på skador relaterade till bukorganen samt huvudet. Några begränsningar observerades där den 6åriga PIPER barnhumanmodellen indikerade orealistiska skador på huvudet, som var relaterade till modellens överrörlighet. / FFI, Assessment of Passenger Safety in Future Cars
42

Study of Vehicle-to-Pedestrian Interactions with FEM – Evaluation of Upper Leg Test Methods using a Human Body Model / Studie av Fotgängarkollisioner med FEM – Utvärdering av Testmetoder för Lårben/Höft med en Humanmodell

Morén, David, Pehrs, Georg January 2013 (has links)
The European New Car Assessment Programme (Euro NCAP) performs several different tests to evaluate vehicles and rate their safety. Some of these tests are subsystem tests made to mimic different body parts of a pedestrian in an interaction with a vehicle. However, some criticism to the test method for the upper leg has been presented, stating that there is a discrepancy between this test method and a real-life interaction. Therefore, a modified test method for the upper leg has been proposed. The aim of this thesis was to evaluate the upper leg test method used today by Euro NCAP, and compare it with the proposed modified test method as well as to computer simulations with a Human Body Model (HBM). The evaluation was performed by comparing different parameters obtained in the two test methods. These have also been compared to computer simulations using a HBM in interaction with a passenger vehicle model. Prior to the evaluation of the test methods, the HBM was positioned into different stances to mimic postures in the human walking cycle. The vehicle model was positioned at four different heights, and three different impact points along the bonnet were used. The results showed that the different methods had their own advantages for some parameters. However, no general conclusion of which method showed the closest correlation to the HBM reference simulations could be determined. / European New Car Assessment Programme (Euro NCAP) utför flera olika tester för att utvärdera fordon och betygsätta deras säkerhet. Några av dessa tester sker med delsystem skapade för att efterlikna olika kroppsdelar hos en fotgängare i en kollision med ett fordon. Viss kritik har dock riktats mot testmetoden för lårben och höft, då studier visat att det finns en skillnad mellan testmetoden och en verklig kollision. En modifierad testmetod för lårbenet och höften har därför föreslagits. Syftet med detta examensarbete har varit att utvärdera testmetoden för lårben och höft, som idag används av Euro NCAP, och jämföra den med den föreslagna modifierade testmetoden men även datorsimuleringar med en humanmodell. Utvärderingen har genomförts genom att jämföra olika parametrar som erhållits från de två testmetoderna. Dessa parametrar har även jämförts med datorsimuleringar av fotgängarkollisioner med en humanmodell och en bilmodell. Humanmodellen positionerades i olika kroppsställningar innan utvärderingen av testmetoderna genomfördes. Detta för att efterlikna verkliga positioner i en mänsklig gångcykel. Bilmodellen positionerades vid fyra olika höjder och tre träffpunkter längs motorhuven användes. Resultaten visade att båda metoderna hade fördelar gentemot varandra för vissa parametrar. Ingen generell slutsats kunde dock dras om vilken metod som visade närmast korrelation till referenssimuleringarna med humanmodellen.
43

Influence of Active Musculature & Parameters of the Final Pre-Crash State on the Occupant Response / Påverkan av aktiv muskulatur och parametrar från ”pre-crash” fasen på åkanderesponsen

Wehrmeyer, Lara January 2020 (has links)
Collision avoidance systems have become an integrated part of modern vehicles and aim to avoid accidents or mitigate the crash severity for the occupant. For example, the autonomous emergency braking system influences the pre-crash state of the occupant in sitting posture, stress state, or velocity. The occupant might try to retain its posture by activating muscles, which induce muscle bracing and could counteract the movement of the occupant in the pre-crash phase.  Therefore, it is essential to study the influence of active musculature on occupant response in pre-crash and crash events. A finite element human body model (HBM) with and without closed-loop muscle activation control was used to simulate the occupant response during those events. Comparing the HBM responses & head kinematics reveal an influence of muscle bracing in the evasive braking manoeuvre. Simulating the pre-crash and in-crash phase in two stages can provide multiple benefits. However, the correlation between a single-stage simulation (baseline) and a two-stage simulation needs to be investigated. The baseline simulation uses an active HBM to model an occupant during an evasive braking manoeuvre and the muscles are deactivated when entering the frontal impact phase. The parameters of the final pre-crash state, which are needed to mimic the baseline’s response when transitioning from the pre-crash to the in-crash event are investigated in this study. For that reason, sitting position, stress state and velocity are transferred respectively to the initial passive in-crash HBM state. The simulations enabled the comparison of occupant response and calculation of cross-correlation. Each retainment strategy gave a good cross-correlation with the baseline simulation. / Kollisionsundvikande system har blivit en viktig del i moderna fordon där syftet är att undvika olyckor samt att minska allvarhetsgraden av olyckor för de åkande. Ett exempel är nödbromssystem som kan påverka den åkandes initiala tillstånd direkt före en krock som, till exempel, sittposition, spänningstillstånd, eller initial hastighet inför krock. Den åkande kan försöka att bibehålla sin hållning genom att aktivera sina muskler vilket påverkar rörelsen av dess kropp under för-krocks fasen. Det är därför viktigt att studera hur aktiva muskler påverkar rörelsen av kroppen hos den åkande under både före krocksfasen och själva krockfasen. En finit element humanmodell (HBM) med och utan reglerad muskelaktivitet används för att prediktera responsen hos den åkande i båda faserna. En jämförelse mellan simuleringarna visar att aktiva muskler kan påverka åkandekinematiken under bromsningsförloppet. Att simulera fasen före krock och fasen under krock i två steg kan medföra flera fördelar. Korrelationen mellan en enkelstegssimulering (originalsimulering) och en tvåstegssimulering måste dock studeras. Som originalsimulering används en aktiv HBM för att modellera den åkande under för-krocksfasen där den reglerade muskelaktiviteten inaktiveras under krockfasen. I denna studie undersöks den åkandes initiala tillstånd före krocken som behövs för att efterlikna originalsimulerings respons vid övergången från för-krocksfasen till krockfasen. Av den anledningen mappas det passiva HBM-tillståndet till det slutliga tillståndet av före krocksfasen för sittposition, spänningstillstånd respektive hastighet. Simuleringarna möjliggjorde en jämförelse av åkande respons och beräkning av korskorrelation. Varje mappningsstrategi gav en bra korskorrelation med originalsimuleringen.
44

Optimisation de code Galerkin discontinu sur ordinateur hybride : application à la simulation numérique en électromagnétisme / Discontinuous Galerkin code optimization on hybrid computer : application to the numerical simulation in electromagnetism

Weber, Bruno 26 November 2018 (has links)
Nous présentons dans cette thèse les évolutions apportées au solveur Galerkin Discontinu Teta-CLAC, issu de la collaboration IRMA-AxesSim, au cours du projet HOROCH (2015-2018). Ce solveur permet de résoudre les équations de Maxwell en 3D, en parallèle sur un grand nombre d'accélérateurs OpenCL. L'objectif du projet HOROCH était d'effectuer des simulations de grande envergure sur un modèle numérique complet de corps humain. Ce modèle comporte 24 millions de mailles hexaédriques pour des calculs dans la bande de fréquences des objets connectés allant de 1 à 3 GHz (Bluetooth). Les applications sont nombreuses : téléphonie et accessoires, sport (maillots connectés), médecine (sondes : gélules, patchs), etc. Les évolutions ainsi apportées comprennent, entre autres : l'optimisation des kernels OpenCL à destination des CPU dans le but d'utiliser au mieux les architectures hybrides ; l'expérimentation du runtime StarPU ; le design d'un schéma d'intégration à pas de temps local ; et bon nombre d'optimisations permettant au solveur de traiter des simulations de plusieurs millions de mailles. / In this thesis, we present the evolutions made to the Discontinuous Galerkin solver Teta-CLAC – resulting from the IRMA-AxesSim collaboration – during the HOROCH project (2015-2018). This solver allows to solve the Maxwell equations in 3D and in parallel on a large amount of OpenCL accelerators. The goal of the HOROCH project was to perform large-scale simulations on a complete digital human body model. This model is composed of 24 million hexahedral cells in order to perform calculations in the frequency band of connected objects going from 1 to 3 GHz (Bluetooth). The applications are numerous: telephony and accessories, sport (connected shirts), medicine (probes: capsules, patches), etc. The changes thus made include, among others: optimization of OpenCL kernels for CPUs in order to make the best use of hybrid architectures; StarPU runtime experimentation; the design of an integration scheme using local time steps; and many optimizations allowing the solver to process simulations of several millions of cells.
45

The modelling and optimal design of a three degree-of-freedom XYθz micro-motion stage.

Handley, Daniel Charles January 2007 (has links)
This thesis presents an investigation of the modelling and optimal design of a particular 3-degree-of-freedom (DOF) XYθz micro-motion stage. This stage provides micron-scale motion in X and Y directions and a rotation about the Z-axis. Such a stage can be used for applications where positioning of components with micrometre, or even nanometre positioning accuracy is required. Some applications are; the positioning of samples in a scanning-electron-microscope; the positioning of masks in lithography; aligning fibre-optics and lasers; and manipulation of micro-scale objects in micro-biology or micro-systems assembly. The XYθz micro-motion stage investigated in this study uses a particular topology of monolithic compliant mechanism and three stack piezoelectric actuators. The compliant mechanism used is a 3RRR (three revolute-revolute-revolute) parallel compliant mechanism using flexure hinges. This parallel mechanism uses three RRR linkages. Each of the three RRR linkages uses three circular profile flexure hinges. Each flexure hinge provides predominantly rotational motion about one axis. This topology of mechanism has a symmetrical structure and provides numerous advantages that make it appropriate for use in a micro-motion stage. However, as yet this topology of compliant mechanism has only been investigated by a handful of researchers and it has not been used in any commercially developed systems. The design methodology of a stage using the 3RRR compliant mechanism has not been investigated in detail. In this thesis a study is presented that investigates different approaches to model the 3RRR compliant mechanism and also considers the piezo-actuator modelling, to give the complete XYθz micro-motion stage. Three models are presented and compared; the Pseudo-Rigid-Body Model (PRBM); a two-dimensional Finite-Element-Model (2-D FEM); and a third model is developed that is similar to the PRBM, but uses analytical equations to model the multiple degree-of-freedom compliance of the flexure hinges. The models developed are then used in parametric study so that the relationship between design parameters and output behaviour can be understood. An optimal design approach is then presented to develop an XYθz micro-motion stage for a particular application in a Scanning-Electron-Microscope (SEM). Finally experimental validation of the models is presented. The results of this study indicate which modelling approaches are accurate enough to prove useful for design, while also considering which models are computationally simple enough to be efficient and easy to use. The kinematic and dynamic behaviour of the 3RRR compliant mechanism and XYθz micro-motion stage is discussed in detail. This includes; a comprehensive description of the stage workspace, defining reachable and constant-rotation workspace areas; a discussion of actuator coupling; and in depth investigation of the modes of vibration. The results of the parametric study provide useful insight to aid the design of the XYz micro-motion stage and help simplify optimal design. The parametric study also highlights the difference in trends predicted by different modelling methods, which demonstrates the importance of using an appropriate model in design. The experimental validation demonstrates the accuracy of some modelling approaches while highlighting the limited accuracy of others. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1272186 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2007
46

The modelling and optimal design of a three degree-of-freedom XYθz micro-motion stage.

Handley, Daniel Charles January 2007 (has links)
This thesis presents an investigation of the modelling and optimal design of a particular 3-degree-of-freedom (DOF) XYθz micro-motion stage. This stage provides micron-scale motion in X and Y directions and a rotation about the Z-axis. Such a stage can be used for applications where positioning of components with micrometre, or even nanometre positioning accuracy is required. Some applications are; the positioning of samples in a scanning-electron-microscope; the positioning of masks in lithography; aligning fibre-optics and lasers; and manipulation of micro-scale objects in micro-biology or micro-systems assembly. The XYθz micro-motion stage investigated in this study uses a particular topology of monolithic compliant mechanism and three stack piezoelectric actuators. The compliant mechanism used is a 3RRR (three revolute-revolute-revolute) parallel compliant mechanism using flexure hinges. This parallel mechanism uses three RRR linkages. Each of the three RRR linkages uses three circular profile flexure hinges. Each flexure hinge provides predominantly rotational motion about one axis. This topology of mechanism has a symmetrical structure and provides numerous advantages that make it appropriate for use in a micro-motion stage. However, as yet this topology of compliant mechanism has only been investigated by a handful of researchers and it has not been used in any commercially developed systems. The design methodology of a stage using the 3RRR compliant mechanism has not been investigated in detail. In this thesis a study is presented that investigates different approaches to model the 3RRR compliant mechanism and also considers the piezo-actuator modelling, to give the complete XYθz micro-motion stage. Three models are presented and compared; the Pseudo-Rigid-Body Model (PRBM); a two-dimensional Finite-Element-Model (2-D FEM); and a third model is developed that is similar to the PRBM, but uses analytical equations to model the multiple degree-of-freedom compliance of the flexure hinges. The models developed are then used in parametric study so that the relationship between design parameters and output behaviour can be understood. An optimal design approach is then presented to develop an XYθz micro-motion stage for a particular application in a Scanning-Electron-Microscope (SEM). Finally experimental validation of the models is presented. The results of this study indicate which modelling approaches are accurate enough to prove useful for design, while also considering which models are computationally simple enough to be efficient and easy to use. The kinematic and dynamic behaviour of the 3RRR compliant mechanism and XYθz micro-motion stage is discussed in detail. This includes; a comprehensive description of the stage workspace, defining reachable and constant-rotation workspace areas; a discussion of actuator coupling; and in depth investigation of the modes of vibration. The results of the parametric study provide useful insight to aid the design of the XYz micro-motion stage and help simplify optimal design. The parametric study also highlights the difference in trends predicted by different modelling methods, which demonstrates the importance of using an appropriate model in design. The experimental validation demonstrates the accuracy of some modelling approaches while highlighting the limited accuracy of others. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1272186 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2007
47

Contribution à la prédiction du risque lésionnel thoracique lors de chocs localisés à travers la caractérisation et la modélisation d'impacts balistiques non pénétrants / Towards the prediction of thoracic injuries during blunt ballistic impacts through experimental and numerical approaches

Bracq, Anthony 05 July 2018 (has links)
Depuis plusieurs décennies, l’évaluation des armes à létalité réduite (ALR) et des gilets pare-balles suscite l’intérêt majeur des forces de l’ordre autour du globe. En effet, ces armes présumées à létalité réduite ou non létales sont tenues d’occasionner uniquement une douleur suffisamment importante à un individu afin d’assurer sa neutralisation. Les gilets pare-balles, quant à eux, doivent garantir un certain niveau de protection pour réduire le risque de traumatismes lié à leur déformation dynamique. Le Centre de Recherche, d’Expertise et d’appui Logistique (CREL) du Ministère de l’Intérieur français a ainsi pour objectif le développement d’un outil de prédiction du risque lésionnel thoracique lors d’impacts balistiques non pénétrants. Cela permettrait alors d’évaluer les performances des ALR et des gilets pare-balles avant leur déploiement en théâtre d’opérations. Plus précisément, cette méthode doit uniquement être fondée sur la mesure directe du processus dynamique de déformation d’un bloc de gel synthétique soumis à un impact balistique. Pour répondre à ce besoin, l’approche numérique est considérée dans ces travaux de thèse par l’emploi du mannequin numérique du thorax humain HUByx comme un outil intermédiaire permettant la détermination de fonctions de transfert entre les mesures expérimentales sur un bloc de gel et le risque lésionnel. La reproduction de conditions d’impact réelles sur HUByx nécessite la caractérisation et la modélisation de projectiles ALR ainsi que de projectiles d’armes à feu et de gilets pare-balles. Elles reposent sur une procédure d’identification par méthode inverse appliquée à l’essai de Taylor pour la modélisation des ALR et à l’essai du cône dynamique d’enfoncement sur le bloc de gel pour celle du couple projectile/gilet pare-balles. Des travaux sont dédiés à la caractérisation mécanique et à la modélisation du gel synthétique sous sollicitations dynamiques. Enfin, une approche statistique basée sur des analyses de corrélation est introduite exploitant à la fois les mesures expérimentales, les données numériques ainsi que les rapports de cas de la littérature. Une cartographie du thorax associée au risque de fractures costales est établie et est uniquement fonction d’une mesure expérimentale. / For decades, the assessment of less-lethal weapons (LLW) and bulletproof vests has generated major interest from law enforcement agencies around the world. Indeed, these presumed less-lethal or non-lethal weapons are required to cause only significant pain to an individual to ensure their neutralization. Bulletproof vests, in turn, must provide a certain level of protection to reduce the risk of trauma related to their dynamic deformation. The Center for Research, Expertise and Logistics Support (CREL) of the French Ministry of the Interior aims to develop a tool to predict thoracic injury risk during non-penetrating ballistic impacts. It would therefore be possible to evaluate the performance of LLW and bulletproof vests before their deployment in operations. More precisely, this method must only be based on the direct measurement of the dynamic process of deformation of a synthetic gel block subjected to a ballistic impact. To address that issue, the numerical approach is considered in this thesis by the use of the human thorax dummy HUByx as an intermediate tool for the determination of transfer functions between experimental metrics on a gel block and the risk of injury. The reproduction of real impact conditions on HUByx thus requires the characterization and modeling of less-lethal projectiles as well as projectiles of firearms and bulletproof vests. They rely on an inverse method identification procedure applied to the Taylor test for modeling LLW and on the analysis of blunt impacts on the gel block for projectiles/bulletproof vests. Work is then dedicated to the mechanical characterization and modeling of the synthetic gel under dynamic loadings. Finally, a statistical approach based on correlation analyses is introduced using both experimental measurements, numerical data as well as case reports from the literature. A thorax mapping associated with the risk of rib fractures is established and only depends on an experimental metric.
48

Achieving Complex Motion with Fundamental Components for Lamina Emergent Mechanisms

Winder, Brian Geoffrey 01 March 2008 (has links) (PDF)
Designing mechanical products in a competitive environment can present unique challenges, and designers constantly search for innovative ways to increase efficiency. One way to save space and reduce cost is to use ortho-planar compliant mechanisms which can be made from sheets of material, or lamina emergent mechanisms (LEMs). This thesis presents principles which can be used for designing LEMs. Pop-up paper mechanisms use topologies similar to LEMs, so it is advantageous to study their kinematics. This thesis outlines the use of planar and spherical kinematics to model commonly used pop-up paper mechanisms. A survey of common joint types is given, as well as an overview of common monolithic and layered mechanisms. In addition, it is shown that more complex mechanisms may be created by combining simple mechanisms in various ways. The principles presented are applied to the creation of new pop-up joints and mechanisms, which also may be used for lamina emergent mechanisms. Models of the paper mechanisms presented in Chapter 2 of the thesis are found in the appendix, and the reader is encouraged to print, cut out and assemble them. One challenge associated with spherical and spatial LEM design is creating joints with the desired motion characteristics, especially where complex spatial mechanism topologies are required. Hence, in addition to a study of paper mechanisms, some important considerations for designing joints for LEMs are presented. A technique commonly used in robotics, using serial chains of revolute and prismatic joints to approximate the motion of complex joints, is presented for use in LEMs. Important considerations such as linkage configuration and mechanism prototyping are also discussed. Another challenge in designing LEMs is creating multi-stable mechanisms with the ability to have coplanar links. A method is presented for offsetting the joint axes of a spatial compliant mechanism to introduce multi-stability. A new bistable spatial compliant linkage that uses that technique is introduced. In the interest of facilitating LEM design, the final chapter of this thesis presents a preliminary design method. While similar to traditional methods, this method includes considerations for translating the mechanism topology into a suitable configuration for use with planar layers of material.

Page generated in 0.0586 seconds