• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 17
  • 8
  • 8
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 183
  • 183
  • 33
  • 31
  • 31
  • 27
  • 25
  • 23
  • 21
  • 21
  • 21
  • 20
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Design of a Wearable Flexible Resonant Body Temperature Sensor with Inkjet-Printing

Horn, Jacqueline Marie 05 1900 (has links)
A wearable body temperature sensor would allow for early detection of fever or infection, as well as frequent and accurate hassle-free recording. This thesis explores the design of a body-temperature-sensing device inkjet-printed on a flexible substrate. All structures were first modeled by first-principles, theoretical calculations, and then simulated in HFSS. A variety of planar square inductor geometries were studied before selecting an optimal design. The designs were fabricated using multiple techniques and compared to the simulation results. It was determined that inductance must be carefully measured and documented to ensure good functionality. The same is true for parallel-plate and interdigitated capacitors. While inductance remains relatively constant with temperature, the capacitance of the device with a temperature-sensitive dielectric layer will result in a shift in the resonant frequency as environmental or ambient temperature changes. This resonant frequency can be wirelessly detected, with no battery required for the sensing device, from which the temperature can be deduced. From this work, the optimized version of the design comprises of conductive silver in with a temperature-sensitive graphene oxide layer, intended for inkjet-printing on flexible polyimide substrates. Graphene oxide demonstrates a high dielectric permittivity with good sensing capabilities and high accuracy. This work pushes the state-of-the-art in applying these novel materials and techniques to enable flexible body temperature sensors for future biomedical applications.
162

Growth of graphene/hexagonal boron nitride heterostructures using molecular beam epitaxy

Nakhaie, Siamak 24 May 2018 (has links)
Zweidimensionale (2D) Materialien bieten eine Vielzahl von neuartigen Eigenschaften und sind aussichtsreich Kandidaten für ein breites Spektrum an Anwendungen. Da hexagonales Bornitrid (h-BN) für eine Integration in Heterostrukturen mit anderen 2D Materialien geeignet ist, erweckte dieses in letzter Zeit großes Interesse. Insbesondere van-der-Waals-Heterostrukturen, welche h-BN und Graphen verbinden, weisen viele potenzielle Vorteile auf, verbleiben in ihrer großflächigen Herstellung von kontinuierlichen Filmen allerdings problematisch. Diese Dissertation stellt eine Untersuchung betreffend des Wachstums von h-BN und vertikalen Heterostrukturen von Graphen und h-BN auf Ni-Substraten durch Molekularstrahlepitaxie (MBE) vor. Zuerst wurde das Wachstum von h-BN mittels elementarer B- und N-Quellen auf Ni als Wachstumssubstrat untersucht. Kristalline h-BN-Schichten konnten durch Raman-spektroskopie nachgewiesen werden. Wachstumsparameter für kontinuierliche und atomar dünne Schichten wurden erlangt. Das Keimbildungs- und Wachstumsverhalten so wie die strukturelle Güte von h-BN wurden mittels einer systemischen Veränderung der Wachstumstemperatur und -dauer untersucht. Die entsprechenden Beobachtungen wie der Änderungen der bevorzugten Keimbildungszentren, der Kristallgröße und der Bedeckung des h-BN wurden diskutiert. Ein Wachstum von großflächigen vertikalen h-BN/Graphen Heterostrukturen (h-BN auf Graphen) konnte mittels einem neuartigen, MBE-basierenden Verfahren demonstriert werden, welche es h-BN und Graphen jeweils erlaubt sich in der vorteilhaften Wachstumsumgebung, welche von Ni bereitgestellt wird, zu formen. In diesem Verfahren formt sich Graphen an der Schnittstelle von h-BN und Ni durch Präzipitation von zuvor in der Ni-Schicht eingebrachten C-Atomen. Schließlich konnte noch ein großflächiges Wachstum von Graphen/h-BN-Heterostrukturen (Graphen auf h-BN) durch das direkte abscheiden von C auf MBE-gewachsenen h-BN gezeigt werden. / Two-dimensional (2D) materials offer a variety of novel properties and have shown great promise to be used in a wide range of applications. Recently, hexagonal boron nitride (h-BN) has attracted significant attention due to its suitability for integration into heterostructures with other 2D materials. In particular, van der Waals heterostructures combining h-BN and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. This thesis presents an investigation regarding the growth of h-BN and vertical heterostructures of graphene and h-BN on Ni substrates using molecular beam epitaxy (MBE). The growth of h-BN from elemental sources of B and N was investigated initially by using Ni as the growth substrate. The presence of crystalline h-BN was confirmed using Raman spectroscopy. Growth parameters resulting in continuous and atomically thin h-BN films were obtained. By systematically varying the growth temperature and time the structural quality as well as the nucleation and growth behavior of h-BN was studied. Corresponding observations such as changes in preferred nucleation site, crystallite size, and coverage of h-BN were discussed. Growth of h-BN/graphene vertical heterostructures (h-BN on graphene) over large areas was demonstrated by employing a novel MBE-based technique, which allows both h-BN and graphene to form in the favorable growth environment provided by Ni. In this technique, graphene forms at the interface of h-BN/Ni via the precipitation of C atoms previously dissolved in the thin Ni film. No evidence for the formation of BCN alloy could be found. Additionally, the suitability of ultraviolet Raman spectroscopy for characterization of h-BN/graphene heterostructures was demonstrated. Finally, growth of large-area graphene/h-BN heterostructures (graphene on h-BN) was demonstrated via the direct deposition of C on top of MBE-grown h-BN.
163

Ion-induced stress relaxation during the growth of cubic boron nitride thin films / Ionen-induzierte Spannungsrelaxation während der Abscheidung von kubischen Bornitrid Schichten

Abendroth, Barbara 27 July 2004 (has links) (PDF)
The aim of the presented work was to deposit cubic boron nitride thin films by magnetron sputtering under simultaneous stress relaxation by ion implantation. An in situ instrument based on laser deflectometry on cantilever structures and in situ ellipsometry, was used for in situ stress measurements. The characteristic evolution of the instantaneous stress during the layered growth of cBN films observed in IBAD experiments, could be reproduced for magnetron sputter deposition. To achieve simultaneous stress relaxation by ion implantation, a complex bipolar pulsed substrate bias source was constructed. This power supply enables the growth of cBN thin films under low energy ion irradiation (up to 200 eV) and, for the first time, the simultaneous implantation of ions with an energy of up to 8 keV during high voltage pulses. It was demonstrated that the instantaneous stress in cBN thin films can be released down to -1.1 GPa by simultaneous ion bombardment during the high voltage pulses. A simultaneous stress relaxation during growth is possible in the total investigated ion energy range between 2.5 and 8 keV. These are the lowest ion energies reported for the stress relaxation in cBN. Since such a substrate bias power supply is easy to integrate in existing process lines, this result is important for industrial deposition of thin films, not only for cubic boron nitride films. It was found that the amount of stress relaxation depends on the number of atomic displacements (displacements per atom: dpa) that are induced by the high energy ion bombardment and is therefore dependent on the ion energy and the high energy ion flux. In practise, this means that the stress relaxation is controlled by the product of the pulse voltage and the pulse duty cycle or frequency. The cantilever bending measurements were complemented on microscopic scale by x-ray diffraction (XRD). The analysis of the cBN (111) lattice distances revealed a pronounced biaxial compressive state of stress in a non-relaxed cBN film with d(111) being larger in out-of-plane than in in-plane direction. Post deposition annealing at 900 ° C of a sample with an ion induced damage of 1.2 dpa, resulted in a complete relaxation of the lattice with equal in-plane and out-of-plane lattice parameters. In the case of medium-energy ion bombardment, the in-plane and out-of-plane lattice parameters approach the value of the annealed sample with increasing ion damage. This is a clear evidence for stress relaxation within the cBN lattice. The stability of cBN under ion bombardment was investigated by IR spectroscopy and XRD. The crystalline cBN was found to be very stable against ion irradiation. However a short-range ordered, sp3/sp2 - mixed phase may exist in the films, which could be preferably converted to a sp2 -phase at high damage values. From the analysis of the near surface region by XANES, it can be concluded the stress relaxation by the energetic ion bombardment is less at the surface than in the bulk film. This is explained with the dynamic profile of the ion induced damage, that reaches the stationary bulk value in 15-20 nm depth, whereas it is decreasing towards the surface. This fits with the results that the stress relaxation is dependent on the amount of ion induced damage. Comparing the results from substrate curvature measurement, XRD, XANES, and IR spectroscopy possible mechanisms of stress relaxation are discussed. Concluding the results, it can be stated that using simultaneous ion implantation for stress relaxation during the deposition it is possible to produce BN films with a high amount of the cubic phase and with very low residual stress.
164

Atomic layer deposition of boron nitride / Dépôt de couches atomiques de nitrure de bore

Hao, Wenjun 20 December 2017 (has links)
Cette thèse conclut 3 années d'études doctorales sur le "dépôt de couches atomiques (ALD) de nitrure de bore (BN)". Le but de ce travail a été d'adapter la voie des céramiques dérivées de polymères (PDC) à la technique ALD pour la croissance de films minces de h-BN et l'élaboration de nanostructures fonctionnelles. Tout d'abord, un nouveau procédé d'ALD sans ammoniac en deux étapes, comprenant une croissance par ALD à basse température (80 °C) de polyborazine (PBN) à partir de 2,4,6-trichloroborazine et d'hexaméthyldisilazane suivi un traitement thermique à haute température sous atmosphère contrôlée a été développé. Ainsi, des films minces uniformes et homogènes de BN ont pu être déposés sur divers substrats. Le caractère autolimité des réactions mises en jeu ainsi que l'homogénéité des films sur des supports très structurés ont été vérifiés. De ce fait des nanostructures fonctionnelles BN ont été réalisées à partir de substrats ou de templates de dimensionnalité variée. Leurs applications en tant que revêtements protecteurs et comme filtres et éponges absorbantes pour purifier les eaux polluées par des hydrocarbures ont en particulier été étudiées. Enfin, un deuxième procédé ALD basse température (85-150°C) utilisant le tri(isopropylamino)borane et la méthylamine comme précurseurs a été préalablement étudié afin de confirmer l'adaptabilité de la voie PDC et la technique ALD. Des films minces de BN ont été obtenus sur des substrats plans et il a été prouvé que les vapeurs de tri(isopropylamino)borane peuvent infiltrer des fibres de polyacrylonitrile électrofilées.Ce travail a été entièrement réalisé à l'Université de Lyon et a reçu le soutien financier du China Scholarship Council (CSC) pour la bourse de doctorat ainsi que de l'Agence Nationale de la Recherche (projet n° ANR-16-CE08-0021-01) / This thesis achieves 3 years of PhD studies on “Atomic layer deposition (ALD) of boron nitride (BN)”. The aim of this PhD work is to adapt the polymer derived ceramics (PDCs) route to the ALD technique for h-BN thin film growth and elaboration of functional nanostructures. A novel two-step ammonia-free ALD process, which includes ALD deposition of polyborazine at low temperature (80 °C) from 2,4,6-trichloroborazine and hexamethyldisilazane followed by post heat treatment under controlled atmosphere, has been established. Conformal and homogeneous BN thin films have been deposited onto various substrates. The self-limitation of the reactions on flat substrates and the conformality of the films on structured substrates have been verified. Functional BN nanostructures have thus been fabricated using substrates or templates with different dimensionalities. In particular, their applications as protective coatings as well as filter and absorber to purify polluted water from organic/oil hav e been investigated. Finally, a second low temperature (85-150 °C) ALD process using tri(isopropylamine)borane and methylamine as precursors has preliminary been studied in order to confirm the adaptability of PDCs route to ALD technique. BN thin films have been grown onto flat substrate and it has been proven that tri(isopropylamino)borane vapor can infiltrate into electrospun polyacrylonitrile fibers.This work was carried out at University of Lyon and financially supported by the National Research Agency (project n° ANR-16-CE08-0021-01)
165

Nanotubes de carbone et de nitrure de bore sous haute pression / Carbon nanotubes and boron nitride nanotubes under high pressure

Silva Santos, Silvio Domingos 14 December 2017 (has links)
Dans ce travail de thèse nous avons étudié la stabilité structurale à très haute pression de nanotubes de carbone et de nitrure de bore à la fois in situ et après cycle de pression. Nous essayons de cette manière une première approche pour déterminer le rôle de paramètres comme la composition (C or BN), nombre de parois ou diamètre dans la limite de stabilité de la structure des nanotubes.Les deux premiers chapitres de la thèse nous permettent de faire une introduction aux aspects fondamentaux relatifs aux propriétés des nanotubes de carbone, suivie d’une présentation des méthodes de synthèse ainsi que des techniques expérimentales utilisées dans cette thèse. Les trois chapitres suivants permettent de présenter l’évolution structurale des trois systèmes étudiés: a) Des nanotubes de carbone monoparois de faible diamètre enrichis en chiralité (6,5), b) nanotubes de carbone triple-parois, et c) des nanotubes de nitrure de bore à parois multiple. Les pressions maximales de ces études ont été de 80, 72 et 50 GPa respectivement. Le collapse radial de la structure et la stabilité tubulaire des nano-objets ont été au centre de nos recherches. En particulier, les nanotubes de carbone à simple parois de chiralité (6,5) peuvent être préservés jusqu’à 50 GPa, pression à la quelle a lieu une transformation irréversible. De leur côté, les nanotubes à 3 parois ont pu être détectés jusqu’à environ 60 GPa, présentant en suite une transformation irréversible à 72 GPa. Enfin, les nanotubes de nitrure de bore ont montré une plus faible stabilité mécanique face à leurs analogues carbonés. De plus ils présentent une évolution vers toute une variété de morphologies, parmi lesquelles certaines ont été observées pour la première fois dans ce travail de thèse / This thesis work focuses on the structural stability of well-characterized carbon and boron nitride nanotubes under very high pressures both including their in situ study as well as after the pressure cycle. We try to provide in this way a first approach to determine the role of parameters as composition (C or BN), number of walls or diameter on the limit stability of nanotube structures.In the two first chapters, we provide a basic description of the theoretical aspects related to carbon nanotubes, we address their main synthesis methods as well as the experimental techniques used in this thesis to study these systems. In the three following chapters, we describe the structural evolution of three systems i) low diameter (6,5) chirality enriched single wall nanotubes ii) triple-wall carbon nanotubes and iii) multiwall boron nitride nanotubes. The maximum pressure attained in these studies were of 80, 72 and 50 GPa respectively.Both the radial collapse of the structure and the mechanical stability of the tubular structure under very high pressure are addressed in the study. In particular, after their collapse, the low-diameter (6,5) single walled carbon nanotubes can be preserved up to 50 GPa and above this value the tubes undergo an irreversible structural transformation. On its side, the triple wall systems could be detected up to ~ 60 GPa but their transformed irreversibly at 72 GPa. Finally boron nitride tubes have a low mechanical stability when compared with their carbon counterparts. Under high pressures they present transformations at different pressures to a variety of structural morphologies, some of them having been detected for the first time in this work
166

Elasticity And Structural Phase Transitions Of Nanoscale Objects

Mogurampelly, Santosh 09 1900 (has links) (PDF)
Elastic properties of carbon nanotubes (CNT), boron nitride nanotubes (BNNT), double stranded DNA (dsDNA), paranemic-juxtapose crossover (PX-JX) DNA and dendrimer bound DNA are discussed in this thesis. Structural phase transitions of nucleic acids induced by external force, carbon nanotubes and graphene substrate are also studied extensively. Electrostatic interactions have a strong effect on the elastic properties of BNNTs due to large partial atomic charges on boron and nitrogen atoms. We have computed Young’s modulus (Y ) and shear modulus (G) of BNNT and CNT as a function of the nanotube radius and partial atomic charges on boron and nitrogen atoms using molecular mechanics calculation. Our calculation shows that Young’s modulus of BNNTs increases with increase in magnitude of the partial atomic charges on B and N atoms and can be larger than the Young’s modulus of CNTs of same radius. Shear modulus, on the other hand depends weakly on the magnitude of partial atomic charges and is always less than the shear modulus of the CNT. The values obtained for Young’s modulus and shear modulus are in excellent agreement with the available experimental results. We also study the elasticity of dsDNA using equilibrium fluctuation methods as well as nonequilibrium stretching simulations. The results obtained from both methods quantitatively agree with each other. The end-to-end length distribution P(ρ) and angle distribution P(θ) of the dsDNA has a Gaussian form which gives stretch modulus (γ1) to be 708 pN and persistence length (Lp) to be 42 nm, respectively. When dsDNA is stretched along its helix axis, it undergoes a large conformational change and elongates about 1.7 times its initial contour length at a critical force. Applying a force perpendicular to the DNA helix axis, dsDNA gets unzipped and separated into two single-stranded DNA (ssDNA). DNA unzipping is a fundamental process in DNA replication. As the force at one end of the DNA is increased the DNA starts melting above a critical force depending on the pulling direction. The critical force fm , at which dsDNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the dsDNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base-pairs. Similar force-extension curve has also been observed when crossover DNA molecules are stretched along the helix axis. In the presence of mono-valent Na+ counterions, we find that the stretch modulus (γ1 ) of the paranemic crossover (PX) and its topoisomer juxtapose (JX) DNA structure is significantly higher (30 %) compared to normal B-DNA of the same sequence and length. When the DNA motif is surrounded by a solvent of divalent Mg2+ counterions, we find an enhanced rigidity compared to in Na+ environment due to the electrostatic screening effects arising from the divalent nature of Mg2+ counterions. This is the first direct determination of the mechanical strength of these crossover motifs which can be useful for the design of suitable DNA motifs for DNA based nanostructures and nanomechanical devices with improved structural rigidity. Negatively charged DNA can be compacted by positively charged dendrimer and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. When the dsDNA is compacted by dendrimer, the stretch modulus, γ1 and persistence length, Lp decreases dramatically due to backbone charge neutralization of dsDNA by dendrimer. We also study the effect of CNT and graphene substrate on the elastic as well as adsorption properties of small interfering RNA (siRNA) and dsDNA. Our results show that siRNA strongly binds to CNT and graphene surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the CNTs and is maximum on graphene. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the CNT/graphene surface. However, dsDNA of the same sequence undergoes much less unzipping and wrapping on the CNT/graphene due to smaller interaction energy of thymidine of dsDNA with the CNT/graphene compared to that of uridine of siRNA. Unzipping probability distributions fitted to single exponential function give unzipping time (τ) of the order of few nanoseconds which decrease exponentially with temperature. From the temperature variation of unzipping time we estimate the free energy barrier to unzipping. We have also investigated the binding of siRNA to CNT by translocating siRNA inside CNT and find that siRNA spontaneously translocates inside CNT of various diameters and chiralities. Free en- ergy profiles show that siRNA gains free energy while translocating inside CNT and the barrier for siRNA exit from CNT ranges from 40 to 110 kcal/mol depending on CNT chirality and salt concentration. The translocation time τ decreases with the increase of CNT diameter having a critical diameter of 24 A for the translocation. After the optimal binding of siRNA to CNT/graphene, the complex is very stable which can serve as siRNA delivery agent for biomedical applications. Since siRNA has to undergo unwinding process in the presence of RNA-induced silencing complex, our proposed delivery mechanism by single wall CNT possesses potential advantages in achieving RNA interference (RNAi).
167

Electrical Transport And Low Frequency Noise In Graphene And Molybdenum Disulphide

Ghatak, Subhamoy 08 1900 (has links) (PDF)
This thesis work contains electrical transport and low frequency (1/f) noise measurements in ultrathin graphene and Molybdenum disulphide (MoS2) field effect transistors (FET). From the measurements, We mainly focus on the origin of disorder in both the materials. To address the orgin of disorder in graphene, we study single and bilayer graphene-FET devices on SiO2 substrate. We observe that both conductivity and mobility are mainly determined by substrate induced long range, short range, and polar phonon scattering. For further confirmation, we fabricate suspended graphene devices which show extremely high mobility. We find that, in contrast to substrate-supported graphene, conductivity and mobility in suspended graphene are governed by the longitudinal acoustic phonon scattering at high temperature and the devices reach a ballistic limit at low temperature. We also conduct low frequency 1/f noise measurements, known to be sensitive to disorder dynamics, to extract more information on the nature of disorder. The measurements are carried out both in substrate-supported and suspended graphene devices. We find that 1/f noise in substarted graphene is mainly determined by the trap charges in the SiO2 substrate. On the other hand, noise behaviour in suspended graphene devices can not be explained with trap charge dominated noise model. More-over, suspended devices exhibit one order of magnitude less noise compared to graphene on SiO2 substrate. We believe noise in suspended graphene devices probably originate from metal-graphene contact regions. In the second part of our work, We present low temperature electrical transport in ultrathin MoS2 fields effect devices, mechanically exfoliated onto Si/SiO2 substrate. Our experiments reveal that the electronic states in MoS2 are localized well up to the room temperature over the experimentally accessible range of gate voltage. This manifests in two dimensional (2D) variable range hopping (VRH) at high temperatures, while below ~ 30 K the conductivity displays oscillatory structures in gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T0) of VRH and gate voltage dependence of conductivity, we suggest that the charged impurities are the dominant source of disorder in MoS2. To explore the origin of the disorder, we perform temperature dependent I - V measurements at high source-drain bias. These measurements indicate presence of an exponentially distributed trap states in MoS2 which originate from the structural inhomogeneity. For more detailed investigation, we employ 1/f noise which further confirms possible presence of structural disorder in the system. The origin of the localized states is also investigated by spectroscopic studies, which indicate a possible presence of metallic 1T-patches inside semiconducting 2H phase. From all these evidences, we suggest that the disorder is internal, and achieving high mobility in MoS2 FET requires a greater level of crystalline homogeneity.
168

Tuning Electronic Properties of Low Dimensional Materials

Bhattacharyya, Swastibrata January 2014 (has links) (PDF)
Discovery of grapheme has paved way for experimental realization of many physical phenomena such as massless Dirac fermions, quantum hall effect and zero-field conductivity. Search for other two dimensional (2D) materials led to the discovery of boron nitride, transition metal dichalcogenides(TMDs),transition metal oxides(MO2)and silicene. All of these materials exhibit different electronic and transport properties and are very promising for nanodevices such as nano-electromechanical-systems(NEMS), field effect transistors(FETs),sensors, hydrogen storage, nano photonics and many more. For practical utility of these materials in electronic and photonic applications, varying the band gap is very essential. Tuning of band gap has been achieved by doping, functionalization, lateral confinement, formation of hybrid structures and application of electric field. However, most of these techniques have limitations in practical applications. While, there is a lack of effective method of doping or functionalization in a controlled fashion, growth of specific sized nanostructures (e.g., nanoribbons and quantum dots),freestanding or embedded is yet to be achieved experimentally. The requirement of high electric field as well as the need for an extra electrode is another disadvantage in electric field induced tuning of band gap in low dimensional materials. Development of simpler yet effective methods is thus necessary to achieve this goal experimentally for potential application of these materials in various nano-devices. In this thesis, novel methods for tuning band gap of few 2D materials, based on strain and stacking, have been proposed theoretically using first principles based density functional theory(DFT) calculations. Electronic properties of few layered nanomaterials are studied subjected to mechanical and chemical strain of various kinds along with the effect of stacking pattern. These methods offer promising ways for controlled tuning of band gap in low dimensional materials. Detailed methodology of these proposed methods and their effect on electronic, structural or vibrational properties have also been studied. The thesis has been organized as follows: Chapter1 provides a general introduction to the low dimensional materials: their importance and potential application. An overview of the systems studied here is also given along with the traditional methods followed in the literature to tune their electronic properties. The motivation of the current research work has also been highlighted in this chapter. Chapter 2 describes the theoretical methodology adopted in this work. It gives brief understanding of first principles based Density Functional Theory(DFT) and various exchange and correlation energy functionals used here to obtain electronic, structural, vibrational and magnetic properties of the concerned materials. Chapter 3 deals with finding the origin of a novel experimental phenomenon, where electromechanical oscillations were observed on an array of buckled multiwalled carbon nanotubes (MWCNTs)subjected to axial compression. The effect of structural changes in CNTs in terms of buckling on electronic properties was studied. Contribution from intra-as well as inter-wall interactions was investigated separately by using single-and double-walled CNTs. Chapter 4 presents a method to manipulate electronic and transport properties of graphene bilayer by sliding one of the layers. Sliding caused breaking of symmetry in the graphene bilayer, which resulted in change in dispersion in the low energy bands. A transition from linear dispersion in AA stacking to parabolic dispersion in AB stacking is discussed in details. This shows a possibility to use these slid bilayers to tailor graphene based devices. Chapter 5 develops a method to tune band gap of bilayers of semiconducting transition metal dichalcogenides(TMDs) by the application of normal compressive strain. A reversible semiconductor to metal(S-M) transition was reported in this chapter for bilayers of TMDs. Chapter 6 shows the evolution of S-M transition from few layers to the bulk MoS2 under various in-plane and out of plane strains. S-M transition as a function of layer number has been studied for different strain types. A comparison between the in-plan and normal strain on modifying electronic properties is also presented. Chapter 7 discusses the electronic phase transition of bulk MoS2 under hydrostatic pressure. A hydrostatic pressure includes a combined effect of both in-plane and normal strain on the structure. The origin of metallic transition under pressure has been studied here in terms of electronic structure, density of states and charge analysis. Chapter 8 studies the chemical strain present in boron nitride nanoribbons and its effect on structural, electronic and magnetic properties of these ribbons. Properties of two achiral (armchair and zig-zag) edges have been analyzed in terms of edge energy and edge stress to predict stability of the edges. Chapter9 summarizes and concludes the work presented in this thesis.
169

Příprava a charakterizace dvourozměrných heterostruktur / Fabrication and characterization of two-dimensional heterostructures

Majerová, Irena January 2019 (has links)
After the experimental discovery of graphene at the beginning of the 21st century, many other interesting 2D materials have been discovered. However, the electrical and optical properties of these layers are greatly influenced by the composition and quality of the surrounding materials. In order to preserve the exceptional properties of thin films, attention has gradually been drawn to heterostructures from 2D composite materials. This thesis describes the preparation and characterization of heterostructures composed of graphene and hexagonal boron nitride. In addition, a specific focus will be placed on optimizing the production process of heterostructures by the dry thin film transfer process, prepared by micromechanical exfoliation. Characterization and quality of prepared layers are controlled by Raman spectroscopy, while morphology is examined by atomic force microscope (AFM). Furthermore, the electrical properties of the graphene-hBN device are discussed and the charge carrier of the graphene field-effect transistor is measured.
170

Micro-Raman Spectroskopy Investigation of Hard Coatings

Werninghaus, Thomas 01 July 1997 (has links)
Abstract: Micro­Raman Spectroscopy Investigation of Hard Coatings Diamond, silicon carbide, and boron nitride have attracted great interest in the last years, due to their excellent material properties. Especially the extreme hardness and the high thermal con­ ductivity of these materials favour them as protective layers. The very large hardness gave these materials, deposited as films on various substrates, their name: hard coatings. In contrast to di­ amond, silicon carbide and boron nitride can be n­ as well as p­doped, making them promising candidates for high speed and high temperature electronic applications. Contrarily to the materials mentioned above, carbon nitride was obtained in crystalline form just very recently. Up to now the deposited films mainly consist of amorphous or nanocrystalline, carbon­rich material. For all these material systems inelastic light scattering (Raman spectroscopy) has been already applied for the material properties investigation. However, these investigations usually were restricted to only one of the various Raman spectroscopy tools, described in this work: Incident laser light energy varia­ tion, temperature variation, utilizing the selection rules, measurements at varying sample positions, two­dimensional mappings and one­dimensional scans in the conventional plane­view and the addi­ tional cross­sectional sample geometry. In contrast to this, this work demonstrates the improvement of the information about the investigated material and/or the sample heterostructure obtained by using the combination of all the above mentioned techniques. In the case of the diamond material system, films deposited on silicon substrates were investigated and an interfacial graphitic layer of 2nm thickness was found by scanning across the interface, which was obscured in the conven­ tional plane­view sample geometry. Similar to this an ultra­thin top layer and buried intermixed regions were identified in the silicon carbide material system utilizing the cross­sectional sample geometry. In addition to this, the temperature and the incident laser light energy dependences for 5 SiC polytypes (3C, 4H, 6H, 15R, and 21R) were measured. A resonance enhancement for the 3C and the 21R polytype was found corresponding to their fundamental bandgaps at 2.46eV and ß2.8eV, respectively. For the other polytypes no resonance enhancement was found, due to their larger fundamental bandgap. In the boron nitride material system the spatial correlation model for Raman lineshape analysis was applied for the first time and the values of the asymmetric broad­ ening and the frequency downshift for decreasing crystal sizes were evaluated. This was measured for single crystals of different size and for films deposited on silicon substrates. The correlation lengths in the ten nanometer region found for the deposited films corroborate the nanocrystalline nature of these films. Additionally incident laser light energy was measured, revealing the 488.0nm (Ar + ) and 482.5nm (Kr + ) laser lines as the optimum laser lines for the boron nitride investigation. Furthermore the dependence of the phonon feature parameters was investigated depending on the incident laser light power. A maximum power of 5­10mW for the micro­Raman spectroscopy setup was found to avoid any laser light induced heating of the investigated material. Two­dimensional mappings of the deposited boron nitride films were performed to improve the information about the material system. In the case of carbon nitride for the first time distinct phonon features were measured in a wide spectral range contrarily to most of the other investigations, which usually show only broad bands.

Page generated in 0.0657 seconds