• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effektivisering av bussdepå med hjälp av automation : En kartläggning av hur sensorteknik kan användas för att minska antalet karosseriskador på bussar / Potentation of a bus depot using automation

Sandgren, Simon, Lindfors, Jack January 2018 (has links)
While there is an increase in population and an extensiveurbanization, the city-scape of Sweden’s big cities evolves, whichrequires new demands for inventive solutions regardinginfrastructure. As increased population calls for more effectiveutilization of the land, the need for public transportation andits infrastructure has expanded. Bus depots are one fundamentalexample of the infrastructure that is needed to provide attractivepublic transportation, which is why Transdev has initiated theproject of automatizing a bus depot. Transdev is planning to equip12 of their 24 buses with ultrasonic sensors to alert driversabout oncoming obstacles by the help of light. Given that Transdevwishes to identify current sensor technology as a first step to anautomated depot, the purpose of this project is to map out thepotential of such technology by analyzing the damage on the busesas well as by analyzing current and future technology. The theoretical background is an outline of the subject ofautomation and includes a brief description of the technology usedin automated vehicles as well as a summary of the different levelsof automation and what is needed in terms of technology to achievea given level. The outline also includes a glossary and adescription of ongoing projects in the field of automation. Theinformation was used to create the necessary basic understanding,and was collected using documents, reports and internet-basedsources. To map the bodywork damages, a mix of a quantitative anda qualitative method was used, where the quantitative relied onstatistics from in-house systems. The qualitative relied oninterviews with drivers involved in the project. In order toassociate a bodywork damage to a given area of the bus, the buswas divided into separate zones. The collected data was presentedusing a circle diagram to make the information comparable andperspicuous, and the interviews were summarized. It was mainly thedepot in Lund that was investigated. The result shows that the placement of the bodywork damage differdepending on the investigated depot, and that the zone with mostdamages is not necessarily the zone with the highest cost. It alsoshows that the sensors have the potential to prevent 51% of thebodywork damage at Lund’s depot. The drivers are positive to theuse of sensors but think that the feedback needs improvement.Today the feedback is only visual and designed in a way that makesit difficult to read and react on, and in order to get an adequateimplementation of the sensors, a detailed pre-study is necessary.Finally, it is clear that the use of sensors can be a profitableinvestment with the potential of higher cost savings with adequateimplementation, and that further steps of automation should bemotivated by other factors than the one of bodywork damage. / I takt med en ökande befolkningsmängd och stark urbanisering pågår en utveckling av stadsbilden i destora städerna som innebär nya krav på smarta lösningar kring infrastruktur. Som en konsekvens avökat antal invånare samtidigt som effektivare utnyttjande av markytan eftersträvas, ökar behovet avkollektivtrafik och infrastrukturen runt denna. Bussdepåer är ett exempel på den grundläggandeinfrastruktur som krävs för att tillhandahålla en attraktiv kollektivtrafik, varför Transdev har inlett ettprojekt kring ett första steg till en automatiserad bussdepå. På en av deras depåer planeras 12 av 24 fordon att utrustas med ultraljudssensorer och tillhörande utrustning för att med ljus varna för hinder.Mot bakgrund av att Transdev önskar identifiera potential och befintlig sensorteknik för att uppnå ettförsta steg till en automatiserad depå är syftet att kartlägga potentialen för en sådan genom att delsundersöka skadeläget på bussarna, dels analysera befintlig och kommande teknik. Den teoretiska bakgrunden består av en kartläggning av området kring automation och innefattar delsden teknologin som används i helt eller delvis autonoma fordon i dagsläget, dels en sammanfattning avden standard som redogör för vilka nivåer av automation det finns och vad som krävs för att ett fordonska vara associerad till en given nivå. Vidare följer en ord- och begreppsförklaring samt enbeskrivning av pågående projekt inom området autonomi. Informationen samlades in genom enlitteraturstudie som främst förlitade sig på internetbaserade källor samt dokument och rapporter, ochhar använts för att skapa den grundläggande förståelsen som var nödvändig för fortsatt arbete. För kartläggning av skadestatistiken användes en mix av kvantitativ och kvalitativ metod, där denkvantitativa bestod av datainsamling genom statistik från interna system. Den kvalitativa metoden i sintur förlitade sig på intervjuer med två förare som varit delaktiga i projektet sedan start. För atttydligare associera en skada till en given placering delades bussen in i zoner. Informationen har sedansammanställts i cirkeldiagram med tillhörande figur för att göra skadestatistiken överskådlig ochjämförbar, och intervjuerna är sammanfattade utifrån transkriberingarna. I huvudsak är det Transdevsdepå i Lund som har undersökts. Resultatet visar att skadornas placering skiljer sig beroende på undersökt depå, samt att den zon somflest skador sker i inte nödvändigtvis har högst skadekostnad. Det visar också att sensorerna harpotential att avhjälpa 51% av alla skador vid depån i Lund. Av intervjuerna framkom att förarna ärpositivt inställda till användandet av sensorer men att återkopplingen bör förbättras, då den i dagslägetendast är visuell. Dessutom är den utformad på ett sätt som gör det svårt att uppmärksammas påförestående hinder, samt att läsa av den information som ges. Undertecknade ser även vikten av enutförlig förstudie för en adekvat sensorimplementering. Slutligen står det klart att användandet avultraljudssensorer kan vara en lönsam investering med potential till större kostnadsreducering omovanstående beaktas, och att fortsatta steg av automation bör motiveras av fler faktorer än enbartskadeläget.
2

Elektrifiering av Uppsalas stadsbussar : Lösningar för att hantera kapacitetsbristen i en växande region / Electrification of city buses in Uppsala : Solutions for managing the capacity shortage in a growing region

Bernström, Vendela, Andersson, Jonas January 2019 (has links)
Region Uppsala, who are responsible for the public transport in Uppsala county, are currently building a new city bus depot. Due to capacity shortage in the transmission grid to Uppsala, the operation of the new bus depot must be adapted to a limited power output. In addition to this, the city of Uppsala aims to introduce the first electrical buses by 2021. The purpose of this study was to investigate how electrical buses of different penetration level will affect the power demand at the new city bus depot. The results showed that the current power limitation was already exceeded by 200 kW if 12 electrical buses were to be introduced. Therefore, different technical solutions were evaluated in terms of increasing the penetration level of electrical buses. These solutions were evaluated by a life cycle cost analysis. The cheapest solution was to connect the city bus depot with the regional bus depot. This is possible because the grid connection to the regional bus depot is oversized, compared to its load. However, this solution does not solve the general problem of capacity-shortage in Uppsala and the legality of it must be analyzed further. Two other solutions that were investigated were a local battery storage and a gas engine coupled with a generator at the depot. None of the solutions could solve the power problem at the depot on its own. For a scenario with more than 40 electrical buses, the different technical solutions that were investigated must be combined.
3

Tekniska lösningar för att hantera laddning av elbussar vid effektbrist : En analys av Uppsalas stadsbussdepå i olika framtidsscenarion / Technical solutions to handle charging of electrical busses during power shortage : An analysis of Uppsala’s city bus depot in different future scenarios

Björk, Ebba January 2022 (has links)
The city of Uppsala is suffering from power shortage, which is creating issues for Region Uppsala, which manages the new city bus depot. Gamla Uppsala Buss (GUB), the operator of the city busses, has bought 12 electrical busses and is planning to increase that number up to 60, which is a political goal. Charging of the electrical busses occurs mostly in the nights, but also during lunch time. In this thesis, scenarios of how different number of buses (12, 36 and 60) relates to the power subscription limit at the depot is studied. The study was made through interviews with industry experts and by creating different scenarios in an Excel-model which was produced in this work. One main conclusion from the interview study was that the regulation control of all the technical components of the system, and foremost the regulation control of the charging of the busses, is a vital component to handle the charging properly. Optimal regulation control requires accurate planning and advanced calculations which relies upon access of data, i.e., charging cycles, battery range and electric energy consumption. The simulations in the Excel-model showed that the bus depot could handle 12 electrical buses with the available power subscription that is today. For 36 or 60 electrical busses additional power had to be added behind-the-meter, which could be obtained with energy storage (batteries), a biogas engine linked to a generator or a combination of those two. The simulations showed that either an energy storage or a biogas engine could compensate for the lack of power, with reasonable proportions. The two technical solutions could also be combined in infinite ways, depending on the goal of Region Uppsala, to fulfill the task. The technical solution that is most feasible for Region Uppsala depends on their priorities. The economics of the solution will of course be a big factor, which has not been included in this work. Another feasible priority could be to choose a technical solution that creates utility for the power system of Uppsala, i.e., mitigating power shortage, with a solution that has a high selfproduction of electric energy and a power consumption profile of the bus depot that is inverted to the rest of the city’s.
4

Bussparkering inomhus i Hall kontra utomhus på Bussvärmeramp : Energiutmaning - ett arbete för hållbar förändring / Estimates regarding Energy Consumption concerning Outdoor versus Indoor Bus Parking

Lindberg, Malin January 2016 (has links)
Stockholms läns landsting är en demokratiskt styrd organisation där en av huvuduppgifterna är att länets invånare får tillgång till en väl fungerande kollektivtrafik. Trafikförvaltningen i Stockholm ansvarar för att utveckla och förvalta kollektivtrafiken. Ett mål är att öka resandet med kollektivtrafiken och samtidigt uppnå miljömål. En ren, hel och lagom varm buss ökar kundnöjdheten och främjar dessutom arbetsmiljön för bussföraren. Idag är det vanligaste sättet att parkera våra bussar utomhus längs så kallade bussvärmeramper. Tekniken har genom åren förändrats i bussen men det har inte skett i samverkan med bussvärmerampen. Arbetsmiljön vid förarplatsen kräver enligt ett regeringsbeslut temperaturen 5 °C vid förararstolen och tillufttemperaturen 10 °C vid defrostermunstycket, vilket då är det minsta kravet när bussen ska tas i bruk vid arbetspassets början. Bussar som parkeras utomhus kräver stora mängder energi för att klara de krav som finns för bussförarens arbetsmiljö och om vi istället parkerar bussarna inomhus så kan vi spara pengar och uppnå organisationens miljömål på vägen. Syfte med examensarbetet är att undersöka hur snabbt det går att räkna hem en investering genom att bygga hall istället för bussvärmeramp. Arbetet belyser bussens parkering och arbetsmiljön för bussföraren och de fördelar och nackdelar som finns om vi istället parkerar våra bussar inomhus i hall. För att öka intresset för att förändra behöver vi lära oss mer om förutsättningarna i bussdepåerna och en investering kan hjälpa trafikförvaltningen i Stockholm att minska energianvändningen, öka kundnöjdheten, förbättra arbetsmiljön för bussföraren och skydda våra bussar mot väder och vind. / Stockholm County Council is a democratically controlled organization, one of their main responsibilities is that people has access to a well-functioning public transport. Trafikförvaltningen of Stockholm is responsible for developing and taking care of the public transport. One aim is to increase traveling by public transport while achieving environmental objectives. A bus that is clean, without any dents of fault and temperately warm will increase customer satisfaction and promote working as a bus driver. The most common way to park our buses today is outside lined up along the heating ramps. The technology in the bus has been developed over the years but the heat ramps haven’t been developed as much. The working environment the driver requires, according to a government decision, is temperature 5 °C at the driver's seat and supply air temperature 10 °C at the defroster jets these are the minimum requirements for the bus when it takes into service at the beginning of a shift. Buses parked outdoors require a large amount of energy to meet the requirements of the bus driver's working environment. If we instead park buses indoors we can save money and achieve environmental objectives. The aim of this master thesis is to investigate pay-back time for the investment of parking buses indoors instead of parking buses outdoors on heating ramp. The work highlights the bus parking condition and the working environment for the bus driver the advantages and disadvantages if we park our buses indoors in halls instead of outdoors. We need to learn more about the conditions in the bus depots to increase interest of change. An investment can help the organization achieve environmental goals, reduce energy consumption, improve the working environment for the bus driver, increase customer satisfaction and protect our buses from bad weather and become independent of the outdoor temperature.
5

Smart charging of an electric bus fleet

Färm, Emil January 2021 (has links)
Controlling the balance of production and consumption of electricity will become increasingly challenging as the transport sector gradually converts to electric vehicles along with a growing share of wind power in the Swedish electric power system. This puts greater demand on resources that maintain the balance to ensure stable grid operation. The balancing act is called frequency regulation which historically has been performed almost entirely by hydropower. As the power production becomes more intermittent with renewable energy sources, frequency regulation will need to be performed in higher volumes on the demand side by having a more flexible consumption. In this report, the electrification of 17 buses Svealandstrafiken bus depot in Västerås has been studied. The aim has been to assess different charging strategies to efficiently utilize the available time and power but also to investigate if Svealandstrafiken can participate in frequency regulation. A smart charging model was created that demonstrated how smart charging can be implemented to optimize the charging in four different cases. The simulated cases were: charging with load balancing, reduced charging power, frequency regulation, and electrifying more buses. The results show that the power capacity limit will be exceeded if the buses are being charged directly as they arrive at the depot and without scheduling the charging session. By implementing smart charging, Svealandstrafiken can fully charge the 17 buses within the power capacity limit of the depot with 82 minutes to spare. By utilizing this 82-minute margin in the four different charging strategies, it was found that Svealandstrafiken can save 88 200SEK per year by load balancing, save 30 000 SEK per year by reducing the charging power by 10 %, earn 111 900 SEK per year by frequency regulation or electrify five more buses. Reducing the charging power may also increase the lifetime of the batteries but quantifying this needs further studies. Conclusively, there is economic potential for Svealandstrafiken for implementing smart charging.

Page generated in 0.0275 seconds