• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 72
  • 57
  • 31
  • 20
  • 18
  • 14
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 490
  • 116
  • 108
  • 93
  • 77
  • 67
  • 64
  • 56
  • 55
  • 45
  • 45
  • 44
  • 42
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Precision Measurement of High Direct Voltage

de Tourreil, Claude 10 1900 (has links)
<p> This thesis describes a new method to measure high direct voltage of the range of 100 KV to 200 KV with very high accuracy. The principle, based on the capacitive divider method, is presented in the first part. </p> <p>This thesis is, however, principally concerned with the design of the low voltage capacitor of the divider and its accuracy. The investigations made lead to an instrument having the accuracy required, which is 0.1 parts per million. </p> / Thesis / Master of Engineering (MEngr)
112

Asymmetric Capacitor Based on Vanadium Dioxide/Graphene/Nickle and Carbon Nanotube Electrode

Xiao, Wanyao 10 June 2014 (has links)
No description available.
113

Characterization and Modeling of Non-Volatile SONOSSemiconductor Memories with Gridded Capacitors

Barthol, Christopher John 15 May 2015 (has links)
No description available.
114

ASIC design to monitor current for low frequency applications

Gilda, Shubham 20 April 2011 (has links)
No description available.
115

Power supply noise reduction in 90 nm using active decap

Thirumalai, Rooban Venkatesh K G 02 May 2009 (has links)
On-chip supply voltage fluctuations are known to adversely affect performance parameters of VLSI circuits. These power supply fluctuations reduce drive capability, causes reliability issues, decrease noise margin and also adversely affect timing. Technology scaling further aggravates the problem as IR and Ldi/dt noise sources increase with each device generation. Current method used to reduce power supply variations uses an on-chip decoupling capacitors (decaps). These MOS capacitors utilize significant die area with about 15%-20% common for high-end microprocessors [4]. They also consume a considerable amount of power due to leakage and are prone to oxide breakdown during an ESD event because of reduced oxide thickness, making MOS capacitors unsuitable for technologies 90 nm and below. To improve the effectiveness of decap and reduce decap’s area, a new active decap design is proposed for 90 nm technology.
116

Tunable RF MEMS bandpass filter with coupled transmission lines

Elfergani, Issa T., Hussaini, Abubakar S., Rodriguez, Jonathan, Marques, P., Abd-Alhameed, Raed January 2015 (has links)
Passive and active devices are essential devices in mobile and base stations’ transceiver. Consequently, these devices dominated the large part of the PCB of the today’s transceiver. However, the tomorrow’s mobile terminals without circuit tunability would be extremely large in size to accommodate present and future radio access technologies (RATs). The stand-alone transceiver for one single RAT is comprised of single passive and active devices and adding two or more RATs for the same transceiver would require adding two or more devices, since all of these RATs standards work on different frequency bands. Apparently, without tunability approach, this will increase the complexity of the system design and will cover a large part of the circuit space leading to power consumptions, loss which results to the poor efficiency of the transceiver. In this work, a miniaturized RF MEMS tunable bandpass is developed to operate in the frequency range from 1.8 to 2.6 GHz.
117

Characterization and Modeling of the Ionomer-Conductor Interface in Ionic Polymer Transducers

Akle, Barbar Jawad 25 August 2005 (has links)
Ionomeric polymer transducers consist of an ion-exchange membrane plated with conductive metal layers on its outer surfaces. Such materials are known to exhibit electromechanical coupling under the application of electric fields and imposed deformation (Oguro et al., 1992; Shahinpoor et al., 1998). Compared to other types of electromechanical transducers, such as piezoelectric materials, ionomeric transducers have the advantage of high-strain output (> 9% is possible), low-voltage operation (typically less than 5 V), and high sensitivity in the charge-sensing mode. A series of experiments on actuators with various ionic polymers such as Nafion and novel poly(Arylene ether disulphonate) systems (BPS and PATS) and electrode composition demonstrated the existence of a linear correlation between the strain response and the capacitance of the material. This correlation was shown to be independent of the polymer composition and the plating parameters. Due to the fact that the low-frequency capacitance of an ionomer is strongly related to charge accumulation at the electrodes, this correlation suggests a strong relationship between the surface charge accumulation and the mechanical deformation in ionomeric actuators. The strain response of water-hydrated transducers varies from 50 &#956;strain/V to 750 &#956;strain/V at 1Hz while the strain-to-charge response is between 9 <sup>&#956;strain</sup><sub><sup>c</sup><sub>m<sup>2</sup></sub></sub> and 15 <sup>&#956;strain</sup><sub><sup>c</sup><sub>m<sup>2</sup></sub></sub>. This contribution suggests a strong correlation between cationic motion and the strain in the polymer at the ionomer-conductor interface. A novel fabrication technique for ionic polymer transducers was developed for this dissertation for the purpose of quantifying the relationship between electrode composition and transducer performance. It consists of mixing an ionic polymer dispersion (or solution) with a fine conducting powder and attaching it to the membrane as an electrode. The Direct Assembly Process (DAP) allows the use of any type of ionomer, diluent, conducting powder, and counter ion in the transducer, and permits the exploration of any novel polymeric design. Several conducting powders have been incorporated in the electrode including single-walled carbon nanotubes (SWNT), polyaniline (PANI) powders, high surface area RuO2, and carbon black electrodes. The DAP provided the tool which enabled us to study the effect of electrode architecture on performance of ionic polymer transducers. The DAP allows the variation in the electrode architecture which enabled us to fabricate dry transducers with 50x better performance compared to transducers made using the state of the art impregnation-reduction technique. DAP fabricated transducers achieved a strain of 9.4% at a strain rate of 1%/s. Each electrode material had an optimal concentration in the electrode. For RuO2, the optimal loading was approximately 45% by volume. This study also demonstrated that carbon nanotubes electrodes have an optimal performance at loadings around 30 vol%, while PANI electrodes are optimized at 95 vol%. Extensional actuation in ionic polymer transducers was first reported and characterized in this dissertation. An electromechanical coupling model presented by Leo et al. (2005) defined the strain in the active areas as a function of the charge. This model assumed a linear and a quadratic term that produces a nonlinear response for a sine wave actuation input. The quadratic term in the strain generates a zero net bending moment for ionic polymer transducers with symmetric electrodes, while the linear term is canceled in extensional actuation for symmetric electrodes. Experimental results demonstrated strains on the order of 110 &#956;strain in the thickness direction compared to 1700 &#956;strain peak to peak on the external fibers for the same transducer, could be achieved when it is allowed to bend under +/-2V potential at 0.5 Hz. Extensional and bending actuation in ionic polymer transducers were explained using a bimorph active area model. Several experiments were performed to compare the bending actuation with the extensional actuation capability. The active area in the model was assumed to be the high surface area electrode. Electric double layer theory states that ions accumulate in a thin boundary layer close to the metal-polymer interface. Since the metal powders are evenly dispersed in the electrode area of the transducer, this area is expected to actuate evenly upon voltage application. This active area model emphasizes the importance the boundary layer on the conductor-ionomer interfacial area. Computing model parameters based on experimental results demonstrated that the active areas model collapses the bending data from a maximum variation of 200% for the strain per charge, to less than 68% for the model linear term. Furthermore, the model successfully predicted bending response from parameters computed using thickness experimental results. The prediction was particularly precise in estimating the trends of non-linearity as a function of the amount of asymmetry between the two electrodes. / Ph. D.
118

Capacitor-Probe Calibration and Optimization for NDE Application to Portland Cement Concrete

Alzaabi, Aref Alderbas 31 August 2000 (has links)
Three main objectives have been set for this research. The first is to develop an accurate method for measuring the dielectric constant of PCC using a capacitor probe (C-Probe) that has been recently developed at Virginia Tech and validate it for field application to detect internal PCC flaws such as delamination. The C-Probe consists of two flexible conducting plates, connected to a Network Analyzer, with a specific separation between them. The second is to optimize the C-Probe design configuration for different PCC slab thicknesses. The third objective is to develop a predictive model that correlates the bulk dielectric constant of PCC with its critical parameters (cement, aggregate, and air content). Five calibration methods have been developed and evaluated for the C-Probe to measure the dielectric properties of PCC. This evaluation has demonstrated that open, short, Teflon material (OSM) calibration method is the most appropriate one for the C-Probe. The selected calibration method was used to validate the C-Probe fixture for field application by measuring 1.5 x 1.5 m PCC slabs prepared with different mix properties, thicknesses, and induced deterioration. The C-Probe has been proved to detect induced voids in the PCC slabs. In addition, the effect of steel reinforcement on measurements can be mastered by controlling the penetration of electromagnetic (EM) field in the PCC slabs. The effective penetration depth of the EM field for different C-Probe design configuration was optimized by computer simulation. The results have been used to develop a predictive model that correlates the effective penetration depth with the plates' size, separation between them, and the dielectric constant of the PCC under test. Thus, an optimum design for different desired penetration depth was achieved. Two experimental designs were developed to identify the critical parameters that affect the bulk dielectric constant of PCC. A computer simulation was used to identify the significance of each parameter. A predictive model has been developed to correlate the PCC bulk dielectric constant to the critical parameters. The estimated dielectric constant of PCC using the predictive model was correlated to that obtained by other theoretical mixture models; the predictive model has found to correlate well with Looyenga theoretical mixture model. / Ph. D.
119

State Space Modeling and Power Flow Analysis of Modular Multilevel Converters

Li, Chen 19 July 2016 (has links)
For the future of sustainable energy, renewable energy will need to significantly penetrate existing utility grids. While various renewable energy sources are networked with high-voltage DC grids, integration between these high-voltage DC grids and the existing AC grids is a significant technical challenge. Among the limited choices available, the modular multi-level converter (MMC) is the most prominent interface converter used between the DC and AC grids. This subject has been widely pursued in recent years. One of the important design challenges when using an MMC is to reduce the capacitor size associated with each module. Currently, a rather large capacitor bank is required to store a certain amount of line-frequency related circulating energy. Several control strategies have been introduced to reduce the capacitor voltage ripples by injecting certain harmonic current. Most of these strategies were developed using trial and error and there is a lack of a systematic means to address this issue. Most recently, Yadong Lyu has proposed to control the modulation index in order to reduce capacitor ripples. The total elimination of the unwanted circulating power associated with both the fundamental line frequency and the second-order harmonic was demonstrated, and this resulted in a dramatic reduction in capacitor size. To gain a better understanding of the intricate operation of the MMC, this thesis proposes a state-space analysis technique in the present paper. Combining the power flow analysis with the state trajectory portrayed on a set of two-dimensional state plans, it clearly delineates the desired power transfer from the unwanted circulating energy, thus leading to an ultimate reduction in the circulation energy and therefore the required capacitor volume. / Master of Science
120

Energy Harvesting IC Design for an Electromagnetic Generator Based on the Split Capacitor Approach

Dancy, Alant'e Jaquan 18 September 2018 (has links)
The proposed energy harvesting system intends to harvest vibrational energy via an electromagnetic generator (EMG). The proposed circuit intends to extract maximum power from the EMG by utilizing the maximum power transfer theorem which states that maximum power is transferred to the load when the source resistance equals the load resistance. The proposed circuit is a synchronous split-capacitor boost converter operating in boundary conduction mode (BCM) to achieve impedance matching and therefore maximum power transferred to the load. The circuit topology combines the rectifier and power stage to reduce power loss of the power management integrated circuit (PMIC). The proposed circuit is designed and fabricated in 130 nm BiCMOS technology. The circuit is validated through schematic level simulations and post-layout simulations. The results conclude the proposed circuit and control operates in a manner to achieve BCM. / Master of Science / Tracking and monitoring systems and products has become more prevalent in our society. Consumers want to know when a package they ordered will arrive. Grocery stores would like to track a produce from harvest to the shelves, ensuring their produce is safe to eat. Produce should be kept around 0 °C and if it exceeds that anywhere during the supply chain, the store should be alerted. Wireless sensor nodes (WSNs) are such devices that would be able to monitor the temperature of produce or the location of a package. These devices must be small, reliable, long-life and cost efficient. Using a battery to power WSNs is an inconvenience as the battery must be replaced often. The proposed circuit enables a self-sufficient WSN that is compact, dependable, long-lasting and economical when deployed at large scale. The proposed circuit has been designed, fabricated and proven through simulations.

Page generated in 0.0377 seconds