1021 |
Parametric Optimal Design Of Uncertain Dynamical SystemsHays, Joseph T. 02 September 2011 (has links)
This research effort develops a comprehensive computational framework to support the parametric optimal design of uncertain dynamical systems. Uncertainty comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it; not accounting for uncertainty may result in poor robustness, sub-optimal performance and higher manufacturing costs.
Contemporary methods for the quantification of uncertainty in dynamical systems are computationally intensive which, so far, have made a robust design optimization methodology prohibitive. Some existing algorithms address uncertainty in sensors and actuators during an optimal design; however, a comprehensive design framework that can treat all kinds of uncertainty with diverse distribution characteristics in a unified way is currently unavailable. The computational framework uses Generalized Polynomial Chaos methodology to quantify the effects of various sources of uncertainty found in dynamical systems; a Least-Squares Collocation Method is used to solve the corresponding uncertain differential equations. This technique is significantly faster computationally than traditional sampling methods and makes the construction of a parametric optimal design framework for uncertain systems feasible.
The novel framework allows to directly treat uncertainty in the parametric optimal design process. Specifically, the following design problems are addressed: motion planning of fully-actuated and under-actuated systems; multi-objective robust design optimization; and optimal uncertainty apportionment concurrently with robust design optimization. The framework advances the state-of-the-art and enables engineers to produce more robust and optimally performing designs at an optimal manufacturing cost. / Ph. D.
|
1022 |
Mean square solutions of random linear models and computation of their probability density functionJornet Sanz, Marc 05 March 2020 (has links)
[EN] This thesis concerns the analysis of differential equations with uncertain input parameters, in the form of random variables or stochastic processes with any type of probability distributions. In modeling, the input coefficients are set from experimental data, which often involve uncertainties from measurement errors. Moreover, the behavior of the physical phenomenon under study does not follow strict deterministic laws. It is thus more realistic to consider mathematical models with randomness in their formulation. The solution, considered in the sample-path or the mean square sense, is a smooth stochastic process, whose uncertainty has to be quantified. Uncertainty quantification is usually performed by computing the main statistics (expectation and variance) and, if possible, the probability density function.
In this dissertation, we study random linear models, based on ordinary differential equations with and without delay and on partial differential equations. The linear structure of the models makes it possible to seek for certain probabilistic solutions and even approximate their probability density functions, which is a difficult goal in general.
A very important part of the dissertation is devoted to random second-order linear differential equations, where the coefficients of the equation are stochastic processes and the initial conditions are random variables. The study of this class of differential equations in the random setting is mainly motivated because of their important role in Mathematical Physics. We start by solving the randomized Legendre differential equation in the mean square sense, which allows the approximation of the expectation and the variance of the stochastic solution. The methodology is extended to general random second-order linear differential equations with analytic (expressible as random power series) coefficients, by means of the so-called Fröbenius method. A comparative case study is performed with spectral methods based on polynomial chaos expansions. On the other hand, the Fröbenius method together with Monte Carlo simulation are used to approximate the probability density function of the solution. Several variance reduction methods based on quadrature rules and multilevel strategies are proposed to speed up the Monte Carlo procedure. The last part on random second-order linear differential equations is devoted to a random diffusion-reaction Poisson-type problem, where the probability density function is approximated using a finite difference numerical scheme.
The thesis also studies random ordinary differential equations with discrete constant delay. We study the linear autonomous case, when the coefficient of the non-delay component and the parameter of the delay term are both random variables while the initial condition is a stochastic process. It is proved that the deterministic solution constructed with the method of steps that involves the delayed exponential function is a probabilistic solution in the Lebesgue sense.
Finally, the last chapter is devoted to the linear advection partial differential equation, subject to stochastic velocity field and initial condition. We solve the equation in the mean square sense and provide new expressions for the probability density function of the solution, even in the non-Gaussian velocity case. / [ES] Esta tesis trata el análisis de ecuaciones diferenciales con parámetros de entrada aleatorios, en la forma de variables aleatorias o procesos estocásticos con cualquier tipo de distribución de probabilidad. En modelización, los coeficientes de entrada se fijan a partir de datos experimentales, los cuales suelen acarrear incertidumbre por los errores de medición. Además, el comportamiento del fenómeno físico bajo estudio no sigue patrones estrictamente deterministas. Es por tanto más realista trabajar con modelos matemáticos con aleatoriedad en su formulación. La solución, considerada en el sentido de caminos aleatorios o en el sentido de media cuadrática, es un proceso estocástico suave, cuya incertidumbre se tiene que cuantificar. La cuantificación de la incertidumbre es a menudo llevada a cabo calculando los principales estadísticos (esperanza y varianza) y, si es posible, la función de densidad de probabilidad.
En este trabajo, estudiamos modelos aleatorios lineales, basados en ecuaciones diferenciales ordinarias con y sin retardo, y en ecuaciones en derivadas parciales. La estructura lineal de los modelos nos permite buscar ciertas soluciones probabilísticas e incluso aproximar su función de densidad de probabilidad, lo cual es un objetivo complicado en general.
Una parte muy importante de la disertación se dedica a las ecuaciones diferenciales lineales de segundo orden aleatorias, donde los coeficientes de la ecuación son procesos estocásticos y las condiciones iniciales son variables aleatorias. El estudio de esta clase de ecuaciones diferenciales en el contexto aleatorio está motivado principalmente por su importante papel en la Física Matemática. Empezamos resolviendo la ecuación diferencial de Legendre aleatorizada en el sentido de media cuadrática, lo que permite la aproximación de la esperanza y la varianza de la solución estocástica. La metodología se extiende al caso general de ecuaciones diferenciales lineales de segundo orden aleatorias con coeficientes analíticos (expresables como series de potencias), mediante el conocido método de Fröbenius. Se lleva a cabo un estudio comparativo con métodos espectrales basados en expansiones de caos polinomial. Por otro lado, el método de Fröbenius junto con la simulación de Monte Carlo se utilizan para aproximar la función de densidad de probabilidad de la solución. Para acelerar el procedimiento de Monte Carlo, se proponen varios métodos de reducción de la varianza basados en reglas de cuadratura y estrategias multinivel. La última parte sobre ecuaciones diferenciales lineales de segundo orden aleatorias estudia un problema aleatorio de tipo Poisson de difusión-reacción, en el que la función de densidad de probabilidad es aproximada mediante un esquema numérico de diferencias finitas.
En la tesis también se tratan ecuaciones diferenciales ordinarias aleatorias con retardo discreto y constante. Estudiamos el caso lineal y autónomo, cuando el coeficiente de la componente no retardada i el parámetro del término retardado son ambos variables aleatorias mientras que la condición inicial es un proceso estocástico. Se demuestra que la solución determinista construida con el método de los pasos y que involucra la función exponencial retardada es una solución probabilística en el sentido de Lebesgue.
Finalmente, el último capítulo lo dedicamos a la ecuación en derivadas parciales lineal de advección, sujeta a velocidad y condición inicial estocásticas. Resolvemos la ecuación en el sentido de media cuadrática y damos nuevas expresiones para la función de densidad de probabilidad de la solución, incluso en el caso de velocidad no Gaussiana. / [CA] Aquesta tesi tracta l'anàlisi d'equacions diferencials amb paràmetres d'entrada aleatoris, en la forma de variables aleatòries o processos estocàstics amb qualsevol mena de distribució de probabilitat. En modelització, els coeficients d'entrada són fixats a partir de dades experimentals, les quals solen comportar incertesa pels errors de mesurament. A més a més, el comportament del fenomen físic sota estudi no segueix patrons estrictament deterministes. És per tant més realista treballar amb models matemàtics amb aleatorietat en la seua formulació. La solució, considerada en el sentit de camins aleatoris o en el sentit de mitjana quadràtica, és un procés estocàstic suau, la incertesa del qual s'ha de quantificar. La quantificació de la incertesa és sovint duta a terme calculant els principals estadístics (esperança i variància) i, si es pot, la funció de densitat de probabilitat.
En aquest treball, estudiem models aleatoris lineals, basats en equacions diferencials ordinàries amb retard i sense, i en equacions en derivades parcials. L'estructura lineal dels models ens fa possible cercar certes solucions probabilístiques i inclús aproximar la seua funció de densitat de probabilitat, el qual és un objectiu complicat en general.
Una part molt important de la dissertació es dedica a les equacions diferencials lineals de segon ordre aleatòries, on els coeficients de l'equació són processos estocàstics i les condicions inicials són variables aleatòries. L'estudi d'aquesta classe d'equacions diferencials en el context aleatori està motivat principalment pel seu important paper en Física Matemàtica. Comencem resolent l'equació diferencial de Legendre aleatoritzada en el sentit de mitjana quadràtica, el que permet l'aproximació de l'esperança i la variància de la solució estocàstica. La metodologia s'estén al cas general d'equacions diferencials lineals de segon ordre aleatòries amb coeficients analítics (expressables com a sèries de potències), per mitjà del conegut mètode de Fröbenius. Es duu a terme un estudi comparatiu amb mètodes espectrals basats en expansions de caos polinomial. Per altra banda, el mètode de Fröbenius juntament amb la simulació de Monte Carlo són emprats per a aproximar la funció de densitat de probabilitat de la solució. Per a accelerar el procediment de Monte Carlo, es proposen diversos mètodes de reducció de la variància basats en regles de quadratura i estratègies multinivell. L'última part sobre equacions diferencials lineals de segon ordre aleatòries estudia un problema aleatori de tipus Poisson de difusió-reacció, en què la funció de densitat de probabilitat és aproximada mitjançant un esquema numèric de diferències finites.
En la tesi també es tracten equacions diferencials ordinàries aleatòries amb retard discret i constant. Estudiem el cas lineal i autònom, quan el coeficient del component no retardat i el paràmetre del terme retardat són ambdós variables aleatòries mentre que la condició inicial és un procés estocàstic. Es prova que la solució determinista construïda amb el mètode dels passos i que involucra la funció exponencial retardada és una solució probabilística en el sentit de Lebesgue.
Finalment, el darrer capítol el dediquem a l'equació en derivades parcials lineal d'advecció, subjecta a velocitat i condició inicial estocàstiques. Resolem l'equació en el sentit de mitjana quadràtica i donem noves expressions per a la funció de densitat de probabilitat de la solució, inclús en el cas de velocitat no Gaussiana. / This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017–89664–P. I acknowledge the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID),
Universitat Politècnica de València. / Jornet Sanz, M. (2020). Mean square solutions of random linear models and computation of their probability density function [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138394
|
1023 |
Excited States in U(1)2+1 Lattice Gauge Theory and Level Spacing Statistics in Classical ChaosHosseinizadeh, Ahmad 17 April 2018 (has links)
Cette thèse est organisé en deux parties. Dans la première partie nous nous adressons à un problème vieux dans la théorie de jauge - le calcul du spectre et des fonctions d'onde. La stratégie que nous proposons est de construire une base d'états stochastiques de liens de Bargmann, construite à partir d'une distribution physique de densité de probabilité. Par la suite, nous calculons les amplitudes de transition entre ces états par une approche analytique, en utilisant des intégrales de chemin standards ainsi que la théorie des groupes. Également, nous calculons numériquement matrices symétrique et hermitienne des amplitudes de transition, via une méthode Monte Carlo avec échantillonnage pondéré. De chaque matrice, nous trouvons les valeurs propres et les vecteurs propres. En appliquant cette méthode â la théorie de jauge U(l) en deux dimensions spatiales, nous essayons d'extraire et de présenter le spectre et les fonctions d'onde de cette théorie pour des grilles de petite taille. En outre, nous essayons de faire quelques ajustement dynamique des fenêtres de spectres d'énergie et les fonctions d'onde. Ces fenêtres sont outiles de vérifier visuellement la validité de l'hamiltonien Monte Carlo, et de calculer observables physiques. Dans la deuxième partie nous étudions le comportement chaotique de deux systèmes de billard classiques, par la théorie des matrices aléatoires. Nous considérons un gaz périodique de Lorentz à deux dimensions dans des régimes de horizon fini et horizon infini. Nous construisons quelques matrices de longueurs de trajectoires de un particule mobile dans ce système, et réalisons des études des spectres de ces matrices par l'analyse numérique. Par le calcul numérique des distributions d'espacement de niveaux et rigidité spectral, nous constatons la statistique des espacements de niveaux suggère un comportement universel. Nous étudions également un tel comportement pour un système optique chaotique. En tant que quasi-système de potentiel, ses fluctuations dans l'espacement de ses niveaux suivent aussi un comportement GOE, ce qui est une signature d'universalité. Dans cette partie nous étudions également les propriétés de diffusion du gaz de Lorentz, par la longueur des trajectoires. En calculant la variance de ce quantité, nous montrons que dans le cas d'horizons finis, la variance de longueurs est linéaire par rapport au nombre de collisions de la particule dans le billard. Cette linéarité permet de définir un coefficient de diffusion pour le gaz de Lorentz, et dans un schéma général, elle est compatible avec les résultats obtenus par d'autres méthodes.
|
1024 |
Exploring the Diffusion Potential of a Collaborative Mobile Platform for Disaster Management and Reliefde Mendonca Salim, Joao 01 January 2024 (has links) (PDF)
This thesis describes the creation of a collaborative digital platform for disaster management and relief, focusing on the case study of the city of Petrópolis natural disaster in February 2022. The frequency and intensity of natural disasters are rising, necessitating efficient and timely disaster response efforts. This thesis details the development of a software application that fosters collaboration among governmental agencies, emergency services, non-governmental organizations (NGOs), and civil society to enhance logistical planning and situational awareness during disasters. The proposed platform harnesses the power of social networking and leverages the ubiquitous presence of smartphones equipped with cameras, GPS, and sensors to gather crucial real-time data. Through a secure and user-friendly interface, verified stakeholders can access essential information while the public contributes valuable data through their smartphones. The platform ensures reliable data collection and dissemination by analyzing metadata, assessing human needs, empowering decision-makers with up-to-date information, and providing verified information channels and real-time data analysis. The platform seeks to minimize overlapping efforts, reduce mismanagement of resources, and ultimately save lives and livelihoods in disaster-stricken areas.
|
1025 |
Nonlinear dynamics of the voiceNeubauer, Jürgen 17 October 2005 (has links)
Die Physik der Lauterzeugung (Phonation) wurde mit Hilfe der Theorie der Nichtlinearen Dynamik untersucht. Digitale Hochgeschwindigkeitsaufnamen von Schwingungen in menschlichen und nichtmenschlichen Kehlkoepfen, digitale Bildanalyse, Signalanalyse und Modenanalyse wurden zur quantitativen Beschreibung nichtlinearer Phaenomene eingesetzt. Es wurden nichtlineare Phaenomene bei stimmkranker (pathologischer) menschlicher Lauterzeugung untersucht, wie auch in stimmgesunden Singstimmen und in Kehlkoepfen von nichtmenschlichen Saeugetieren mit Stimmlippen-Membranen. Durch Bifurkationsanalyse eines einfachen mathematischen Modells fuer Stimmlippen mit Membranen konnten beobachtete Lautmuster nichtmenschlicher Saeugetiere qualitativ "nichtlinear gefittet" werden. Die Schwerpunkte dieser Arbeit waren: 1. die Klassifikation von Lautmustern in zeitgenoessischer Vokalmusik, um Erzeugungsmechanismen fuer komplexe Stimmklaenge zu erklaeren, die im kuenstlerischen Kontext vorkommen. Im besonderen war die Rolle der Quelle-Trakt-Kopplung von Interesse; 2. Instabilitaeten in Stimmpatienten, die durch Asymmetrien in einzelnen Stimmlippen wie auch zwischen den Stimmlippen verursacht wurden; 3. dynamische Effekte von duennen, leichten und schwingenden Stimmlippen-Membranen, vertikalen Fortsaetzen der Stimmlippen bei Saeugetieren. Stimmlippen-Membrane finden sich in Kehlkoepfen von Fledermaeusen und Primaten, wo sie einerseits zur Ultraschallerzeugung verwendet werden und andererseits fuer eine grosse Lautvielfalt sorgen. Ein Stimmlippen-Membran-Modell wurde entwickelt, um dieses diverse Lautrepertoire zu reproduzieren. Dieses Modell zeigte zwei Stimmregister. Ueber die Geometry der Stimmlippen-Membrane konnte der subglottale Einsatzdruck minimiert werden und der Druckbereich fuer Phonationen vergroessert werden. Numerische Simulationen demonstrierten, dass das phaenomenologische Stimm-Membran-Modell das Lautrepertoire von Fledermaeusen und Primaten qualitativ reproduzieren konnte. / In this thesis, the physics of phonation was discussed using the theory of nonlinear dynamics. Digital high speed recordings of human and nonhuman laryneal oscillations, image processing, signal analysis, and modal analysis have been used to quantitatively describe nonlinear phenomena in pathological human phonation, healthy voices in singing, and nonhuman mammalian larynges with vocal membranes. Bifurcation analysis of a simple mathematical model for vocal folds with vocal membranes allowed a qualitative ''nonlinear fit'' of observed vocalization patterns in nonhuman mammals. The main focus of the present work was on: 1. the classification of vocalizations of contemporary vocal music to provide insight to production mechanisms of complex sonorities in artistic contexts, especially to nonlinear source-tract coupling; 2. pathological voice instabilities induced by asymmetries within single vocal folds and between vocal folds; 3. the dynamic effects of thin, lightweight, and vibrating vocal membranes as upward extensions of vocal folds in nonhuman mammals. In nonhuman mammals, vocal membranes are one widespread morphological variation of vocal folds. In bats they are responsible to produce ultrasonic echolocation calls. In nonhuman primates they facilitate the production of highly diverse vocalizations. A vocal membrane model was developed to understand the production of these complex calls. Two voice registers were found in the vocal membrane model. The vocal membrane geometry could minimize phonation onset pressure and enlarge the phonatory pressure range of the model. Numerical simulations of the model revealed instabilities that qualitatively resembled observed vocalization patterns in bats and primates.
|
1026 |
Itérations chaotiques pour la sécurité de l'information dissimulée / Chaotic iterations for the Hidden Information SecurityFriot, Nicolas 05 June 2014 (has links)
Les systèmes dynamiques discrets, œuvrant en itérations chaotiques ou asynchrones, se sont avérés être des outils particulièrement intéressants à utiliser en sécurité informatique, grâce à leur comportement hautement imprévisible, obtenu sous certaines conditions. Ces itérations chaotiques satisfont les propriétés de chaos topologiques et peuvent être programmées de manière efficace. Dans l’état de l’art, elles ont montré tout leur intérêt au travers de schémas de tatouage numérique. Toutefois, malgré leurs multiples avantages, ces algorithmes existants ont révélé certaines limitations. Cette thèse a pour objectif de lever ces contraintes, en proposant de nouveaux processus susceptibles de s’appliquer à la fois au domaine du tatouage numérique et au domaine de la stéganographie. Nous avons donc étudié ces nouveaux schémas sur le double plan de la sécurité dans le cadre probabiliste. L’analyse de leur biveau de sécurité respectif a permis de dresser un comparatif avec les autres processus existants comme, par exemple, l’étalement de spectre. Des tests applicatifs ont été conduits pour stéganaliser des processus proposés et pour évaluer leur robustesse. Grâce aux résultats obtenus, nous avons pu juger de la meilleure adéquation de chaque algorithme avec des domaines d’applications ciblés comme, par exemple, l’anonymisation sur Internet, la contribution au développement d’un web sémantique, ou encore une utilisation pour la protection des documents et des donnés numériques. Parallèlement à ces travaux scientifiques fondamentaux, nous avons proposé plusieurs projets de valorisation avec pour objectif la création d’une entreprise de technologies innovantes. / Discrete dynamical systems by chaotic or asynchronous iterations have proved to be highly interesting toolsin the field of computer security, thanks to their unpredictible behavior obtained under some conditions. Moreprecisely, these chaotic iterations possess the property of topological chaos and can be programmed in anefficient way. In the state of the art, they have turned out to be really interesting to use notably through digitalwatermarking schemes. However, despite their multiple advantages, these existing algorithms have revealedsome limitations. So, these PhD thesis aims at removing these constraints, proposing new processes whichcan be applied both in the field of digital watermarking and of steganography. We have studied these newschemes on two aspects: the topological security and the security based on a probabilistic approach. Theanalysis of their respective security level has allowed to achieve a comparison with the other existing processessuch as, for example, the spread spectrum. Application tests have also been conducted to steganalyse and toevaluate the robustness of the algorithms studied in this PhD thesis. Thanks to the obtained results, it has beenpossible to determine the best adequation of each processes with targeted application fields as, for example,the anonymity on the Internet, the contribution to the development of the semantic web, or their use for theprotection of digital documents. In parallel to these scientific research works, several valorization perspectiveshave been proposed, aiming at creating a company of innovative technology.
|
1027 |
Weak nonergodicity in anomalous diffusion processesAlbers, Tony 23 November 2016 (has links)
Anomale Diffusion ist ein weitverbreiteter Transportmechanismus, welcher für gewöhnlich mit ensemble-basierten Methoden experimentell untersucht wird.
Motiviert durch den Fortschritt in der Einzelteilchenverfolgung, wo typischerweise Zeitmittelwerte bestimmt werden, entsteht die Frage nach der Ergodizität.
Stimmen ensemble-gemittelte Größen und zeitgemittelte Größen überein, und wenn nicht, wie unterscheiden sie sich?
In dieser Arbeit studieren wir verschiedene stochastische Modelle für anomale Diffusion bezüglich ihres ergodischen oder nicht-ergodischen Verhaltens hinsichtlich der mittleren quadratischen Verschiebung.
Wir beginnen unsere Untersuchung mit integrierter Brownscher Bewegung, welche von großer Bedeutung für alle Systeme mit Impulsdiffusion ist.
Für diesen Prozess stellen wir die ensemble-gemittelte quadratische Verschiebung und die zeitgemittelte quadratische Verschiebung gegenüber und charakterisieren insbesondere die Zufälligkeit letzterer.
Im zweiten Teil bilden wir integrierte Brownsche Bewegung auf andere Modelle ab, um einen tieferen Einblick in den Ursprung des nicht-ergodischen Verhaltens zu bekommen.
Dabei werden wir auf einen verallgemeinerten Lévy-Lauf geführt.
Dieser offenbart interessante Phänomene, welche in der Literatur noch nicht beobachtet worden sind.
Schließlich führen wir eine neue Größe für die Analyse anomaler Diffusionsprozesse ein, die Verteilung der verallgemeinerten Diffusivitäten, welche über die mittlere quadratische Verschiebung hinausgeht,
und analysieren mit dieser ein oft verwendetes Modell der anomalen Diffusion, den subdiffusiven zeitkontinuierlichen Zufallslauf. / Anomalous diffusion is a widespread transport mechanism, which is usually experimentally investigated by ensemble-based methods.
Motivated by the progress in single-particle tracking, where time averages are typically determined, the question of ergodicity arises.
Do ensemble-averaged quantities and time-averaged quantities coincide, and if not, in what way do they differ?
In this thesis, we study different stochastic models for anomalous diffusion with respect to their ergodic or nonergodic behavior concerning the mean-squared displacement.
We start our study with integrated Brownian motion, which is of high importance for all systems showing momentum diffusion.
For this process, we contrast the ensemble-averaged squared displacement with the time-averaged squared displacement and, in particular, characterize the randomness of the latter.
In the second part, we map integrated Brownian motion to other models in order to get a deeper insight into the origin of the nonergodic behavior.
In doing so, we are led to a generalized Lévy walk.
The latter reveals interesting phenomena, which have never been observed in the literature before.
Finally, we introduce a new tool for analyzing anomalous diffusion processes, the distribution of generalized diffusivities, which goes beyond the mean-squared displacement, and we analyze with this tool an often used model of anomalous diffusion, the subdiffusive continuous time random walk.
|
1028 |
Divorce as bifurcation: redefining a nuclear systemFerreira Da Costa, Talita Maria 30 April 2007 (has links)
The purpose of this study is to explore the nature of dynamic relationships within families, and indicating how the decision to divorce may result from a family's difficulty in adjusting to new changes and stressors. Thus, divorce results in the redefinition of a nuclear system.
This study made use of social constructionism as its epistemological framework. By means of in-depth one-on-one interviews, the researcher was able to hear the narratives of all six participants. Hermeneutics was used to analyze the data.
The participants' stories were reencountered through the researcher's own frame of reference in which common themes of the divorce process were co-constructed. These themes were later elaborated on and a comparative analysis was undertaken to link them to the available literature.
The information gained from the study could contribute to existing research on the impact of divorce, family reorganization following a divorce, and offer a new perspective in understanding family systems. / Clinical Psychology / M.A. (Clinical Psychology)
|
1029 |
Cognitive rationality and indeterminism in the contemporary detective novel, with special reference to the work of Umberto Eco, Carlo Emilio Gadda and Stanislaw LemVan der Linde, G. P. L. (Gerhardus Philippus Leonardus) 06 1900 (has links)
The study examines cognitive rationality as to()l for problemsolving within the context of a
movement from determinism and monolithic universal Reason towards indeterminism and plurality.
It is contended that theories of literature do not provide an adequate conceptual framework, and
therefore, extensive use is made of pluralist fallibilism (Popper, Helmut Spinner) and chaos theory.
The philosophy of Friedrich Nietzsche is viewed as a decisive influence in the shift towards plurality
and scepticism. In chapter 2, Conan Doyle's Sherlock Holmes stories, a novel by Agatha Christie
and Gaston Leroux's Le mystere de Ia chambre jaune are discussed as examples of optimistic
rationalism. Chapter 3 indicates that Eco's II nome della rosa emphasizes the conjectural nature of
truth and objective knowledge, underpinned by a 'soft' rationalism which amounts to monopolistic
pluralism. Chapter 4 analyses the defeat of cognitive rationality by the complex interaction of a
multiplicity of independent causal series. The detectives' relationship with the feminine exemplifies
the interpenetration of rationality and the instinctual, while the mystery of the feminine is a
metaphor for impenetrable complexity. Chapter 5 shows that hypotheses concerning random
complex systems remain inconclusive. However, as the trajectory of a complex system can be
regulated, so reason can be viewed as the underlying regulative pattern (strange attractorl for an
infinite proliferation of hypotheses. Thus, despite .shifting conceptions of rationality and order, all
the detectives in the study accept objective truth as regulative principle and are involved in a
search for objective knowledge / Afrikaans & Theory of Literature / D.Litt. et Phil. (Theory of literature)
|
1030 |
Perceptions of the serpent in the Ancient Near East : its Bronze Age role in apotropaic magic, healing and protectionGolding, Wendy Rebecca Jennifer 11 1900 (has links)
In this dissertation I examine the role played by the ancient Near Eastern serpent in apotropaic and prophylactic magic. Within this realm the serpent appears in roles in healing and protection where magic is often employed. The possibility of positive and negative roles is investigated. The study is confined to the Bronze Age in ancient Egypt, Mesopotamia and Syria-Palestine. The serpents, serpent deities and deities with ophidian aspects and associations are described. By examining these serpents and deities and their roles it is possible to incorporate a comparative element into his study on an intra- and inter-regional basis.
In order to accumulate information for this study I have utilised textual and pictorial evidence, as well as artefacts (such as jewellery, pottery and other amulets) bearing serpent motifs. / Old Testament & Ancient Near Eastern Studies / M.A. (Ancient Near Eastern Studies)
|
Page generated in 0.0382 seconds