1011 |
Classical and quantum investigations of four-dimensional maps with a mixed phase spaceRichter, Martin 05 July 2012 (has links)
Für das Verständnis einer Vielzahl von Problemen von der Himmelsmechanik bis hin zur Beschreibung von Molekülen spielen Systeme mit mehr als zwei Freiheitsgraden eine entscheidende Rolle. Aufgrund der Dimensionalität gestaltet sich ein Verständnis dieser Systeme jedoch deutlich schwieriger als bei Systemen mit zwei oder weniger Freiheitsgraden. Die vorliegende Arbeit soll zum besseren Verständnis der klassischen und quantenmechanischen Eigenschaften getriebener Systeme mit zwei Freiheitsgraden beitragen. Hierzu werden dreidimensionale Schnitte durch den Phasenraum von 4D Abbildungen betrachtet. Anhand dreier Beispiele, deren Phasenräume zunehmend kompliziert sind, werden diese 3D Schnitte vorgestellt und untersucht. In einer sich anschließenden quantenmechanischen Untersuchung gehen wir auf zwei wichtige Aspekte ein. Zum einen untersuchen wir die quantenmechanischen Signaturen des klassischen "Arnold Webs". Es wird darauf eingegangen, wie die Quantenmechanik dieses Netz im semiklassischen Limes auflösen kann. Darüberhinaus widmen wir uns dem wichtigen Aspekt quantenmechanischer Kopplungen klassisch getrennter Phasenraumgebiete anhand der Untersuchung dynamischer Tunnelraten. Für diese wenden wir sowohl den in der Literatur bekannten "fictitious integrable system approach" als auch die Theorie des resonanz-unterstützen Tunnelns auf 4D Abbildungen an.:Contents ..... v
1 Introduction ..... 1
2 2D mappings ..... 5
2.1 Hamiltonian systems with 1.5 degrees of freedom ..... 5
2.2 The 2D standard map ..... 6
3 Classical dynamics of higher dimensional systems ..... 11
3.1 Coupled standard maps as paradigmatic example ..... 12
Stability of fixed points in 4D maps ..... 13
Center manifolds of elliptic degrees of freedom ..... 13
3.2 Near-integrable systems ..... 15
3.2.1 Analytical description of multidimensional, near-integrable systems ..... 15
Resonance structures in 4D maps ..... 16
3.2.2 Pendulum approximation ..... 18
3.2.3 Normal forms ..... 24
3.2.4 Arnold diffusion and Arnold web ..... 24
3.3 Numerical tools for the analysis of regular and chaotic motion ..... 26
3.3.1 Frequency analysis ..... 26
Aim of the frequency analysis ..... 26
Realizations of the frequency analysis ..... 27
Wavelet transforms ..... 30
3.3.2 Fast Lyapunov indicator ..... 31
3.3.3 Phase-space sections ..... 33
Skew phase-space sections containing invariant eigenspaces ..... 34
3.4 Systems with regular dynamics and a large chaotic sea ..... 35
3.4.1 Designed maps: Map with linear regular region, P_llu ..... 36
Phase space of the designed map with linear regular region ..... 38
FLI values ..... 41
Estimating the size of the regular region ..... 43
3.4.2 Designed maps: Islands with resonances, P_nnc ..... 46
Frequency analysis ..... 46
FLI values and volume of the regular and stochastic region ..... 50
Frequency analysis for rank-2 resonance ..... 52
Phase-space sections at different positions p_1 and p_2 ..... 53
Using color to provide the 4-th coordinate ..... 53
Skew phase-space sections containing invariant eigenspaces ..... 57
Arnold diffusion ..... 58
3.4.3 Generic maps: Coupled standard maps, P_csm ..... 63
FLI values and volume of the regular and stochastic region ..... 63
Analysis of fundamental frequencies ..... 66
Skew phase-space sections containing invariant eigenspaces ..... 69
4 Quantum Mechanics ..... 75
4.1 Quantization of Classical Maps ..... 77
4.2 Eigenstates of the time evolution operator U ..... 79
4.2.1 Eigenstates of P_llu ..... 80
4.2.2 Eigenstates of P_nnc ..... 84
4.2.3 Eigenstates of P_csm ..... 87
4.3 Quantum signatures of the stochastic layer ..... 89
4.3.1 Eigenstates resolving the stochastic layer ..... 90
4.3.2 Wave-packet dynamics into the stochastic layer ..... 94
4.4 Dynamical tunneling rates ..... 98
4.4.1 Numerical calculation of dynamical tunneling rates ..... 99
4.4.2 Direct regular-to-chaotic tunneling rates gamma^d of P_llu ..... 101
4.4.3 Prediction of gamma^d using the fictitious integrable system approach ..... 103
4.4.4 Dynamical tunneling rates of P_nnc ..... 105
4.4.5 Interlude: Theory of resonance assisted tunneling (RAT) ..... 106
4.4.6 Prediction of tunneling rates for P_nnc, RAT ..... 111
Selection rules from nonlinear resonances ..... 111
Energy denominators ..... 114
Estimating the parameters of the pendulum approximation from phase-space properties ..... 116
Prediction ..... 118
4.4.7 Dynamical tunneling rates of P_csm ..... 120
5 Summary and outlook ..... 123
Appendix ..... 125
A Potential of the designed map ..... 125
B Quantum-number assignment-algorithm ..... 128
C Alternate paths due to alternate resonances in the description of RAT ..... 131
D Alternate resonances in the description of RAT leading to different tunneling rates ..... 133
E Tunneling rates of map with nonlinear resonances but uncoupled regular region ..... 133
F Interpolation of quasienergies ..... 135
G 2D Poincar'e map for the pendulum approximation ..... 137
H RAT prediction broken down to single paths ..... 139
I Linearization of the pendulum approximation ..... 140
J Iterative diagonalization schemes for the semiclassical limit ..... 143
Inverse iteration ..... 143
Arnoldi method ..... 144
Lanczos algorithm ..... 144
List of figures ..... 148
Bibliography ..... 163 / Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.:Contents ..... v
1 Introduction ..... 1
2 2D mappings ..... 5
2.1 Hamiltonian systems with 1.5 degrees of freedom ..... 5
2.2 The 2D standard map ..... 6
3 Classical dynamics of higher dimensional systems ..... 11
3.1 Coupled standard maps as paradigmatic example ..... 12
Stability of fixed points in 4D maps ..... 13
Center manifolds of elliptic degrees of freedom ..... 13
3.2 Near-integrable systems ..... 15
3.2.1 Analytical description of multidimensional, near-integrable systems ..... 15
Resonance structures in 4D maps ..... 16
3.2.2 Pendulum approximation ..... 18
3.2.3 Normal forms ..... 24
3.2.4 Arnold diffusion and Arnold web ..... 24
3.3 Numerical tools for the analysis of regular and chaotic motion ..... 26
3.3.1 Frequency analysis ..... 26
Aim of the frequency analysis ..... 26
Realizations of the frequency analysis ..... 27
Wavelet transforms ..... 30
3.3.2 Fast Lyapunov indicator ..... 31
3.3.3 Phase-space sections ..... 33
Skew phase-space sections containing invariant eigenspaces ..... 34
3.4 Systems with regular dynamics and a large chaotic sea ..... 35
3.4.1 Designed maps: Map with linear regular region, P_llu ..... 36
Phase space of the designed map with linear regular region ..... 38
FLI values ..... 41
Estimating the size of the regular region ..... 43
3.4.2 Designed maps: Islands with resonances, P_nnc ..... 46
Frequency analysis ..... 46
FLI values and volume of the regular and stochastic region ..... 50
Frequency analysis for rank-2 resonance ..... 52
Phase-space sections at different positions p_1 and p_2 ..... 53
Using color to provide the 4-th coordinate ..... 53
Skew phase-space sections containing invariant eigenspaces ..... 57
Arnold diffusion ..... 58
3.4.3 Generic maps: Coupled standard maps, P_csm ..... 63
FLI values and volume of the regular and stochastic region ..... 63
Analysis of fundamental frequencies ..... 66
Skew phase-space sections containing invariant eigenspaces ..... 69
4 Quantum Mechanics ..... 75
4.1 Quantization of Classical Maps ..... 77
4.2 Eigenstates of the time evolution operator U ..... 79
4.2.1 Eigenstates of P_llu ..... 80
4.2.2 Eigenstates of P_nnc ..... 84
4.2.3 Eigenstates of P_csm ..... 87
4.3 Quantum signatures of the stochastic layer ..... 89
4.3.1 Eigenstates resolving the stochastic layer ..... 90
4.3.2 Wave-packet dynamics into the stochastic layer ..... 94
4.4 Dynamical tunneling rates ..... 98
4.4.1 Numerical calculation of dynamical tunneling rates ..... 99
4.4.2 Direct regular-to-chaotic tunneling rates gamma^d of P_llu ..... 101
4.4.3 Prediction of gamma^d using the fictitious integrable system approach ..... 103
4.4.4 Dynamical tunneling rates of P_nnc ..... 105
4.4.5 Interlude: Theory of resonance assisted tunneling (RAT) ..... 106
4.4.6 Prediction of tunneling rates for P_nnc, RAT ..... 111
Selection rules from nonlinear resonances ..... 111
Energy denominators ..... 114
Estimating the parameters of the pendulum approximation from phase-space properties ..... 116
Prediction ..... 118
4.4.7 Dynamical tunneling rates of P_csm ..... 120
5 Summary and outlook ..... 123
Appendix ..... 125
A Potential of the designed map ..... 125
B Quantum-number assignment-algorithm ..... 128
C Alternate paths due to alternate resonances in the description of RAT ..... 131
D Alternate resonances in the description of RAT leading to different tunneling rates ..... 133
E Tunneling rates of map with nonlinear resonances but uncoupled regular region ..... 133
F Interpolation of quasienergies ..... 135
G 2D Poincar'e map for the pendulum approximation ..... 137
H RAT prediction broken down to single paths ..... 139
I Linearization of the pendulum approximation ..... 140
J Iterative diagonalization schemes for the semiclassical limit ..... 143
Inverse iteration ..... 143
Arnoldi method ..... 144
Lanczos algorithm ..... 144
List of figures ..... 148
Bibliography ..... 163
|
1012 |
Stabilitätsuntersuchungen an Asteroidenbahnen in ausgewählten Bahnresonanzen des Edgeworth-Kuiper-GürtelsGerlach, Enrico 24 October 2008 (has links)
Gegenstand dieser Dissertation ist eine umfassende Analyse der Stabilität von Asteroidenbahnen im Edgeworth-Kuiper-Gürtel am Beispiel der 3:5-, 4:7- und der 1:2-Bahnresonanz mit Neptun. Einen weiteren Schwerpunkt der Arbeit bildet die Untersuchung der numerischen Berechenbarkeit der Lyapunov-Zeit von Asteroidenbahnen. Ausgehend von einer allgemeinen Beschreibung der bei numerischen Berechnungen auftretenden Rundungs- und Diskretisierungsfehler wird deren Wachstum bei numerischen Integrationen ermittelt. Diese, teilweise maschinenabhängigen, Fehler beeinflussen die berechnete Trajektorie des Asteroiden ebenso wie die daraus abgeleitete Lyapunov-Zeit. Durch Beispielrechnungen mit unterschiedlichen Rechnerarchitekturen und Integrationsmethoden wird der Einfluss auf die erhaltenen Lyapunov-Zeiten eingehend untersucht. Als Maß zur Beschreibung dieser Abhängigkeit wird ein Berechenbarkeitsindex $\kappa$ definiert. Weiterhin wird gezeigt, dass die allgemeine Struktur des Phasenraumes robust gegenüber diesen Änderungen ist. Unter Nutzung dieser Erkenntnis werden anschließend ausgewählte Bahnresonanzen im Edgeworth-Kuiper-Gürtel untersucht. Grundlegende Charakteristika, wie die Resonanzbreiten, werden dabei aus einfachen Modellen abgeleitet. Eine möglichst realitätsnahe Beschreibung der Stabilität wird durch numerische Integration einer Vielzahl von Testkörpern zusammen mit den Planeten Jupiter bis Neptun erreicht. Die erhaltenen Ergebnisse werden dabei mit der beobachteten Verteilung der Asteroiden im Edgeworth-Kuiper-Gürtel verglichen. ---- Hinweis: Beim Betrachten der pdf-Version dieses Dokumentes mit dem Acrobat Reader mit einer Version kleiner 8.0 kann es unter Windows zu Problemen in der Darstellung der Abbildungen auf den Seiten 46, 72, 74, 79 und 86 kommen. Um die Datenpunkte zu sehen ist eine Vergrößerung von mehr als 800% notwendig. Alternativ kann in den Grundeinstellungen der Haken für das Glätten von Vektorgraphiken entfernt werden. / This dissertation presents a comprehensive description of the stability of asteroid orbits in the Edgeworth-Kuiper belt taking the 3:5, 4:7 and 1:2 mean motion resonance with Neptune as example. Further emphasis is given to the numerical computability of the Lyapunov time of asteroids. Starting with a general description of rounding and approximation errors in numerical computations, the growth of these errors within numerical integrations is estimated. These, partly machine-dependent errors influence the calculated trajectory of the asteroid as well as the derived Lyapunov time. Different hardware architectures and integration methods were used to investigate the influence on the computed Lyapunov time. As a measure of this dependence a computability index $\kappa$ is defined. Furthermore it is shown, that the general structure of phase space is robust against these changes. Subsequently, several selected mean motion resonances in the Edgeworth-Kuiper belt are investigated using these findings. Basic properties, like the resonance width, are deduced from simple models. To get a realistic description of the stability, a huge number of test particles was numerically integrated together with the planets Jupiter to Neptune. The obtained results are compared to the observed distribution of asteroids in the Edgeworth-Kuiper belt. ---- Additional information: If the pdf-file of this document is viewed using Acrobat Reader with a version less 8.0 under Windows the figures on page 46, 72, 74, 79 and 86 are shown incomplete. To see the data points a zoom factor larger than 800% is necessary. Alternatively the smoothing of vector graphics should be disabled in the settings of the reader.
|
1013 |
La metáfora del fractal en la gestión empresarial. Nuevos enfoques de gestión de organizaciones como sistemas sociales complejos / The metaphor fractal in business management. New approaches to managing organizations as complex social systemsCisneros Trujillo, Grace Milagros, Juarez Hernandez, Luis Eduardo 31 May 2020 (has links)
La presente investigación abordó, inicialmente, la teoría de la complejidad como base de entendimiento de los sistemas adaptativos complejos y la aplicación de algunas variantes de esta teoría, como la teoría fractal en el campo de la gestión estratégica en las organizaciones.
Para lograr un mejor entendimiento de estos enfoques se dividió el estudio en dos etapas. La primera explicó el desarrollo y evolución de las teorías del caos y la complejidad en la administración y la segunda presentó el paradigma de la dinamicidad y la aplicación del enfoque fractal en el ámbito de la gestión empresarial, así como su estudio.
El desarrollo constante de la ciencia y la tecnología aplicada a la gestión y los cambios de paradigmas presentados a lo largo de su evolución, desde la Revolución Industrial a la era del conocimiento, han llevado a la aplicación de diversas teorías científicas cuya aplicación inicial distaba de centrarse en la gestión empresarial y que, sin embargo, ha contribuido a un mejor entendimiento de esta. Tal es el caso de la teoría de la fractalidad y su origen en las ciencias abstractas producto del paso de la geometría clásica a la geometría fractal.
En el caso de este estudio, se mostró el aporte de la teoría de la complejidad para facilitar la comprensión de los fenómenos organizacionales, traduciéndose su aplicación al desarrollo de figuras como la “fábrica fractal- organización fractal”, como soporte de los debates de la ciencia y la tecnología de la administración o su utilización como base para el diseño y construcción de los sistemas, subsistemas, modelos, métodos y procedimientos.
También se mostró la evolución de los principales aportes teóricos respecto a la teoría de la complejidad, sus bases, definiciones, principios y aplicaciones y, por último, el comportamiento como sistemas complejos expuestos en las organizaciones. / This research initially presents the theory of complexity as a basis of understanding of complex adaptive systems, and the application of some variants of this theory such as fractal theory, in the field of strategic management in organizations.
To achieve a better understanding of these approaches, the study has been divided into two stages: 1) Development and evolution of chaos and complexity in administration; 2) The Paradigm of dynamicity and application of the fractal approach in the field of business management and its study.
The constant development of science and technology applied to the management and paradigm shifts presented throughout its evolution from the industrial revolution to the age of knowledge has led to the application of various scientific theories whose initial application was far from focusing on business management and which, however, has contributed to a better understanding of it.
This is the case of the theory of fractality whose origin in abstract sciences resulting from the transition from classical geometry to fractal geometry.
The contribution of the theory of complexity to facilitate the understanding of organizational phenomena will be shown; translating its application in the development of figures such as the “fractal factory- fractal organization” to support the debates of the science and technology of administration or its use as support for the design and construction of systems, subsystems, models, methods and procedures.
It shows the evolution of the main theoretical contributions regarding the theory complexity, its bases or definitions, principles and applications and, finally, behavior as complex systems exposed in organizations. / Trabajo de Suficiencia Profesional
|
1014 |
[pt] INTELIGÊNCIA E CAOS: ENSAIO E FORMA EM MAX BENSE E ROGÉRIO DUARTE / [en] INTELLIGENCE AND CHAOS: ESSAY AND FORM IN MAX BENSE AND ROGÉRIO DUARTEFERNANDA RODRIGUES LEMOS 03 December 2020 (has links)
[pt] Inteligência e Caos – Ensaio e Forma em Max Bense e Rogério Duarte relaciona o
ensaio Inteligência brasileira – uma reflexão cartesiana (2009), escrito pelo filósofo
alemão Max Bense (1910-1990), entre 1961 e 1964, ao livro Tropicaos (2003), coletânea
de textos do designer brasileiro Rogério Duarte (1939-2016). Conduzida por um único fio
solto – que nos remete especialmente ao início da década de 1960, quando Rogério
Duarte foi aluno de Max Bense por breve período –, a pesquisa visa preencher uma
lacuna, ou pelo menos colaborar para um futuro preenchimento, entre o pensamento
desses dois estudiosos multidisciplinares (não muito conhecidos do público em geral) e
que estavam simultaneamente em contato com importantes personalidades culturais da
época. De 1959 a 1969, a partir de fatos e desvios, trabalho com algumas interseções
estéticas entre o designer brasileiro e o filósofo alemão, averiguando como as trocas
artísticas com diferentes vanguardas e intelectuais podem ter contribuído para a
articulação da produção cultural nacional. Busco problematizar como o pensamento
benseano sobre a inteligência brasileira pode ter projetado uma ideia de futuro para o
Brasil e como suas categorias podem ter tomado forma na obra de Rogério Duarte. E,
ainda, como a fusão do espírito cartesiano (presente no urbanismo da cidade de Brasília)
com o espírito tropical (encontrado na cidade do Rio de Janeiro) poderia representar essa
inteligência brasileira e ser operada pela ordenação estética de Rogério Duarte. Assim,
monto um Organizador Gráfico para apresentar as interações entre Max Bense e Rogério
Duarte com outros intelectuais daquela época. / [en] Inteligência e Caos – Ensaio e Forma em Max Bense e Rogério Duarte relates the
essay Brazilian Intelligence – a Cartesian reflection (2009), written by the German
philosopher Max Bense (1910-1990), between 1961-1964, to the book Tropicaos (2003),
a collection of texts by the Brazilian designer Rogério Duarte (1939-2016). Conducted by
a single loose thread – which brings us especially to the early 1960 s, when Rogério
Duarte was a student of Max Bense for a short period –, the research aims to fill a gap, or
at least collaborate for a future filling, between thought these two multidisciplinary
scholars (not well known to the general public) and who were simultaneously in contact
with important cultural personalities of the time. From 1959 to 1969, based on facts and
deviations, I worked with some aesthetic intersections between the Brazilian designer and
the German philosopher, investigating how artistic exchanges with different avant-garde
and intellectuals might have contributed to the articulation of national cultural
production. I seek to problematize how bensean thinking about Brazilian intelligence
might have designed an idea of the future for Brazil and how its categories might have
taken shape in Rogério Duarte s work. And, still, how the fusion of the Cartesian spirit
(present in the urbanism of the city of Brasília) with the tropical spirit (found in the city
of Rio de Janeiro) could represent this Brazilian intelligence and be operated by the
aesthetic ordering of Rogério Duarte. So, I set up a Graphic Organizer to present the
interactions between Max Bense and Rogério Duarte with other intellectuals of that time.
|
1015 |
Minimizing Blast Radius of Chaos Engineering Experiments via Steady-State Metrics Forecasting / Minimera sprängradien för Chaos Engineering-experiment via prognoser för steady-state mätvärdenNavin Shetty, Dhruv January 2023 (has links)
Chaos Engineering (CE) intentionally disrupts distributed systems by introducing faults into the system to better understand and improve their resilience. By studying these intentional disruptions, CE provides insights that help enhance system performance and the overall user experience. However, two main challenges exist: reducing the negative impact or ”blast radius” of these CE experiments without diluting the value of the CE experiment and identifying a standardized set of metrics to monitor during such CE experiments. This research addresses these challenges by monitoring application and system-level metrics known as the Golden Signals, and a steady-state metric called the Apdex score during a CE experiment. Using Pearson and Spearman correlation analyses alongside Granger Causality tests, a strong connection between the Golden Signals and Apdex score is identified. The study also introduces a new health-check system design that uses the Apdex score to automatically stop a CE experiment if a preset threshold is violated. Furthermore, the design also introduces a method for early termination of the CE experiment based on forecasted Apdex scores. This method not only limits potential system damage but also reveals key system weaknesses, striking a balance between risk and discovery. / Chaos Engineering (CE) stör medvetet distribuerade system genom att införa fel i systemet för att bättre förstå och förbättra deras motståndskraft. Genom att studera dessa medvetna störningar ger CE insikter som hjälper till att förbättra systemprestanda och den övergripande användarupplevelsen. Två huvudutmaningar finns dock: att minska den negativa effekten eller ”blast radius” av dessa CE-experiment utan att försämra värdet av CE-experimentet och att identifiera en standardiserad uppsättning av mätvärden att övervaka under sådana CE-experiment. Denna forskning tar itu med dessa utmaningar genom att övervaka applikations- och systemnivåmätvärden kända som Golden Signals, och en jämviktsmetrik kallad Apdex-poängen under ett CE-experiment. Genom att använda Pearson och Spearmans korrelationsanalyser tillsammans med Granger orsakssambandstester identifieras en stark koppling mellan Golden Signals och Apdex-poängen. Studien introducerar också en ny hälsocheck-systemdesign som använder Apdex-poängen för att automatiskt stoppa ett CE-experiment om ett förinställt tröskelvärde överskrids. Vidare introducerar designen också en metod för tidig avslutning av CE-experiment baserat på förutsagda Apdex-poäng.. Denna metod begränsar inte bara potentiell systemskada utan avslöjar också nyckelsystemsvagheter och skapar en balans mellan risk och upptäckt.
|
1016 |
From Chaos to Qualia: An Analysis of Phenomenal Character in Light of Process Philosophy and Self-Organizing SystemsMoore, Gaylen Leslie 23 April 2010 (has links)
No description available.
|
1017 |
Uncertainty Quantification and Optimization Under Uncertainty Using Surrogate ModelsBoopathy, Komahan 05 June 2014 (has links)
No description available.
|
1018 |
Mitigation of Amplitude and Phase Distortion of Signals Under Modified Von Karman Turbulence Using Encrypted Chaos WavesMohamed, Fathi Husain Alhadi 08 September 2016 (has links)
No description available.
|
1019 |
An Impossible Profession: How To Plan the Unplanned? / Det Omöjliga Yrket: Hur Det Oplanerade Kan PlanerasBleeker, Jate January 2016 (has links)
A short film about how to design informality in the city. By comparing the chaotic Lagos with the orderly Stockholm the film rethinks the role of the designer and shows that planning as a sphere of building consistently destroys lived space. It illuminates the tension between the orderly and the chaotic, the ideal and reality.
|
1020 |
Jus Gentium & the Arab as Muselmänner: The “Islamist Winter” is the Pre-Emptive (Creative) Chaos of the “Arab Spring” Multiplying Necropolises / JUS GENTIUM & THE ARAB AS MUSELMÄNNERAl-Kassimi, Khaled January 2020 (has links)
While the (re)conquest of Arabia as manifest in 2003 Iraq, and 2006 Lebanon, were respectively Act I and II accenting sovereign figures exercising necropower by adjudicating (il)legal doctrines (i.e., pre-emptive defense strategy) legalizing extrajudicial techniques of violence founded on discursive technologies of racism, I argue that the “Islamist Winter” – temporarily dubbed the “Arab Spring” in 2011 – is Act III reifying similar legal doctrines (i.e., Bethlehem Legal Principles) and a (secular) linear temporal perception of time seeking to implement a New Middle East (NME) that is no longer “resistant to Latin-European modernity” but amenable to such inclusive exclusion historicist telos. The importance of “creative anarchy” as a positivist legal technique in producing chaotic developments such as carnage and a “crisis” or “emergency” of displacement – with sovereign members of jus gentium authorizing agents of terror (i.e., death squads/war-machines) – is that it reveals the deadly technologies of racism and relations of enmity inherent in sovereignty as a positivist juridical concept endowing sovereign figures with the power to formulate legal doctrines that ultimately subjugate Arab life to the power of death (necropower). Therefore, one of the main questions orbiting the writing of this dissertation is interested in deconstructing and critiquing jus gentium – by adopting a Third World Approach to International Law (TWAIL) in tandem with necropolitics and biopolitics as paradigms of analysis – to disclose that it is because jus gentium valorizes positivist jurisprudent scholastics postulating an unbridgeable cultural gap between an Athenian mode of Being as a universal sovereign subject, and a Madīnian mode of Being as the particular object denied sovereignty, that leads ratiocinative sovereign figures to legally exercise necropower on the Arab body. Therefore, the following chapters seek to go beyond the limited (post-colonial) idea asserting that the problem with international law is that it is primarily “Eurocentric” since the simple solution to such a claim would be to include the non-European body in International Law. Rather, the primary question constellating this monograph is: what are the experienced consequences of being temporally included and what are the experienced consequences of being temporally excluded from a legal regime (i.e., jus gentium) reifying a Latin-European philosophical theology universalizing a particular set of liberal-secular cultural mores as a “cultural benchmark” (i.e., purity-metric) in order to be-come imagined as temporally “inside” jus gentium? / Thesis / Doctor of Social Science
|
Page generated in 0.0231 seconds